1
|
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, Gai X, Qin D. Glioblastoma multiforme: an updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol 2025; 16:731. [PMID: 40353925 PMCID: PMC12069213 DOI: 10.1007/s12672-025-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with high lethality. The typical treatment regimen includes post-surgical radiotherapy and temozolomide (TMZ) chemotherapy, which helps extend survival. Nevertheless, TMZ resistance occurs in approximately 50% of patients. This resistance is primarily associated with the expression of O6-methylguanine-DNA methyltransferase (MGMT), which repairs O6-methylguanine lesions generated by TMZ and is thought to be the major mechanism of drug resistance. Additionally, the mismatch repair and base excision repair pathways play crucial roles in TMZ resistance. Emerging studies also point to drug transport mechanisms, glioma stem cells, and the heterogeneous tumor microenvironment as additional influences on TMZ resistance in gliomas. A better understanding of these mechanisms is vital for developing new treatments to improve TMZ effectiveness, such as DNA repair inhibitors, inhibitors of multidrug transporting proteins, TMZ analogs, and combination therapies targeting multiple pathways. This article discusses the main resistance mechanisms and potential strategies to counteract resistance in GBM patients, aiming to broaden the understanding of these mechanisms for future research and to explore the therapeutic effects of traditional Chinese medicines and their active components in overcoming TMZ resistance.
Collapse
Affiliation(s)
- Jianlin Pu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Tao
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Yongxin Li
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Jing Fu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhong Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Haimei Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengxiu Tang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Li
- Department of Emergency Trauma Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
2
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2209-2228. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
3
|
Wang HN, Wang PH, Jiang MR, Zhang JQ, Ma SY, Hu YF, Wang YZ. The processed Euphorbia lathyris L. alleviates the inflammatory injury via regulating LXRα/ABCA1 expression and TLR4 positioning to lipid rafts. Fitoterapia 2024; 177:106111. [PMID: 38971330 DOI: 10.1016/j.fitote.2024.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1β and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1β expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.
Collapse
Affiliation(s)
- Hui-Nan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Pei-Hua Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ming-Rui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Jing-Qiu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Si-Yuan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Feng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ying-Zi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
4
|
Joung JY, Son CG. Evaluating the Safety of Herbal Medicine on Renal Function: A Comprehensive Analysis from Six Randomized Controlled Trials Conducted with Four Formulations from Traditional Korean Medicine. Pharmaceuticals (Basel) 2024; 17:544. [PMID: 38794115 PMCID: PMC11124499 DOI: 10.3390/ph17050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The growing popularity of herbal medicine raises concerns about potential nephrotoxicity risks, while limited evidence hinders a comprehensive impact assessment. This study aims to investigate the overall risk features of herbal medicine on kidney injury. We conducted a retrospective analysis on renal function changes, including blood urea nitrogen (BUN), serum creatinine, and estimated glomerular filtration rate (eGFR), through data from six randomized controlled trials (RCTs) in South Korea. A total of 407 participants (142 males, 265 females) received either one of four different herbal medicines (240 participants) or a placebo (167 participants). When comparing changes in eGFR regarding the mean, 90th-percentile value, and 20% reduction after treatment, there was no significant difference between the herbal-treated and placebo groups. This study provided a helpful reference for examining the safety issues of herbal remedies, especially regarding kidney function.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Department of Internal Medicine, Daejeon Good-Morning Oriental Hospital, Dunsan-ro 123 beon-gil 21, Seo-gu, Daejeon 35240, Republic of Korea;
- Department of Korean Medicine, Korean Medical College, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Department of Korean Medicine, Korean Medical College, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
5
|
Ren K, Zhang C, Liu M, Gao H, Ren S, Wang D, Yuan Z, Pan Y, Liu X. The attenuation effect of licorice on the hepatotoxicity of Euodiae Fructus by inhibiting the formation of protein conjugates and GSH depletion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116307. [PMID: 36842722 DOI: 10.1016/j.jep.2023.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine and food, Euodiae Fructus (EF) is widely used in clinics to relieve pain and prevent vomiting and for making tea for more than a thousand years. In recent years, hepatotoxic reactions to EF have been reported. The intermediates produced by evodiamine and rutaecarpine metabolism in vitro were captured by glutathione (GSH), suggesting that the toxicity of EF may be related to metabolic activation. Whether licorice can inhibit the metabolic activation of EF has not been reported, which needed an effective strategy to clarify the correlation between protein conjugates and hepatotoxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY This study aimed to explore the toxic components and mechanisms of EF based on metabolic activation and the detoxification of licorice. MATERIALS AND METHODS The content and toxicity index of protein conjugates in the liver were determined by orally administering mice and rats with EF. The attenuation mechanism of licorice was examined in cell and enzymology experiments. RESULTS The change in evodiamine-cysteinylglycine (EVO-Cys-Gly) and evodiamine-cysteine (EVO-Cys) levels was consistent with the change in hepatotoxicity. Licorice inhibited the formation of the protein conjugates of EF and increased the content of GSH in L02 cells. CONCLUSION EF mediated by P450 enzymes produced toxic intermediates, which combined with cysteine residues in animal liver and inactivate them, leading to hepatotoxicity. Interestingly, licorice can alleviate the GSH depletion caused by EF and inhibit the production of protein conjugates by inhibiting P450 enzymes.
Collapse
Affiliation(s)
- Kun Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Chuhao Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Meihan Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhong Yuan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
6
|
Liu S, Li K, Zhao Y, Wang W, Bao J, Wang X, Shi L, Zhou L, Fu Q. Fermented Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer alleviates diabetic erectile dysfunction by attenuating oxidative stress and regulating PI3K/Akt/eNOS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116249. [PMID: 36775080 DOI: 10.1016/j.jep.2023.116249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (G. officinalis) has been historically as tonics to treat impotence. Fermentation is an ancient processing method for traditional Chinese medicine. Whether fermentation affects the therapeutic effects of G. officinalis on diabetic erectile dysfunction has so far remained unknown. AIMS OF THE STUDY In this research, we aim to determine the effect of fermented or unfermented G. officinalis root extract on diabetes mellitus-induced erectile dysfunction (DMED) and the potential mechanisms. MATERIALS AND METHODS Candida sp. B5, Lactobacillus sp. Y5 and Lactobacillus sp. R2 are applied for the fermentation of G. officinalis. The optimum fermentation conditions of G. officinalis are investigated. Sprague-Dawley rats were used to establish a diabetic erectile dysfunction model, treated with different concentrations of fermented or unfermented G. officinalis, to compare the effect of fermented or unfermented G. officinalis on DMED and explore underlying mechanisms by assessment of intracavernous pressure, ELISA, Western blot, Masson's trichrome staining, and immunofluorescence. The corpus cavernosum smooth muscle cells (CCSMCs) and Schwann cells were isolated and used to investigate the effect of fermented or unfermented G. officinalis on hydrogen peroxide (H2O2)-induced apoptosis. RESULTS The results reveal the optimum fermentation conditions of G. officinalis using Lactobacillus sp. Y5 were determined to be 35 °C, the ratio of solid to liquid 1:10, and six days of fermentation. The fermentation increases the abundance of major active ingredients within G. officinalis. After fermented or unfermented G. officinalis treatment for eight weeks by oral gavage at a dose of 100 mg kg-1 or 300 mg kg-1, the results show that the fermentation enhances the effect of G. officinalis on diabetic erectile dysfunction detected by intracavernous pressure. The protein expressions of the PI3K/Akt/eNOS pathway were upregulated in diabetic rats after fermented or unfermented G. officinalis treatment, while the level of oxidative stress was significantly reduced. Meanwhile, Masson's trichrome staining also displayed an improvement in the ratio of smooth muscle to collagen. In vitro experiments confirmed that fermented or unfermented G. officinalis protected CCSMCs and Schwann cells from apoptosis. In contrast, fermented G. officinalis showed a fortified protective effect over unfermented G. officinalis. CONCLUSION Our findings suggest that fermentation can increase the composition of main active ingredients in G. officinalis and enhance its role in diabetic erectile dysfunction. It augurs the potential therapeutic application of fermented G. officinalis well for treating diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Kefan Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Yanfen Zhao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Wenbo Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Xinxin Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Liwen Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Zhang Z, Sun Y, Wang H, Yang Y, Dong R, Xu Y, Zhang M, Lv Q, Chen X, Liu Y. Melatonin pretreatment can improve the therapeutic effect of adipose-derived stem cells on CCl 4-induced liver fibrosis. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2191263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Song H, Pei X, Liu Z, Shen C, Sun J, Liu Y, Zhou L, Sun F, Xiao X. Pharmacovigilance in China: Evolution and future challenges. Br J Clin Pharmacol 2023; 89:510-522. [PMID: 35165914 PMCID: PMC10078654 DOI: 10.1111/bcp.15277] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 01/18/2023] Open
Abstract
Drug-related adverse reactions are among the main reasons for harm to patients under care worldwide and even their deaths. The pharmacovigilance system has been proven to be an effective method of avoiding or alleviating such adverse events. In 2019, after two decades of implementation of the drug-related adverse reaction reporting system, China formally implemented a pharmacovigilance system with the Pharmacovigilance Quality Management Standards and a series of supporting technical documents created to improve the safety of medication given to patients. China's pharmacovigilance system has faced many problems and challenges during its implementation. This spontaneous reporting system is the main source of data for China's medication vigilance activities, but it has not provided sufficiently powerful evidence for regulatory decision-making. In conformity with the health-centred drug regulatory concept, the Chinese government has accelerated the speed of examination and approval of urgently needed clinical drugs and orphan drugs along with the requirement to improve the safety supervision of these drugs after their listing. China's marketing authorization holders (MAHs) must strengthen their pharmacovigilance capabilities as the primary responsible departments for drug safety. Chinese medical schools generally lack professional courses on pharmacovigilance. The regulatory authorities have recognized such problems and have made efforts to improve the professional capacity of pharmacovigilance personnel and to strengthen cooperation with stakeholders through the implementation of an action plan of medication surveillance and the establishment of a patient-based adverse events reporting system and active surveillance systems, which will help China bridge the gap to bring its pharmacovigilance practice up to standards.
Collapse
Affiliation(s)
- Haibo Song
- National Center for ADR MonitoringBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
| | | | - Zuoxiang Liu
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Chuanyong Shen
- National Center for ADR MonitoringBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
| | - Jun Sun
- Center for Evaluation, Jiangsu Medical Products AdministrationNanjingJiangsuChina
| | - Yuqin Liu
- Gansu Center for Drug and Medical Devices Adverse Reaction MonitoringLanzhouGansuChina
| | - Lingyun Zhou
- Lingyun Zhou, Sanofi (China) Investment Co., Ltd, Shanghai BranchShanghaiChina
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Xiaohe Xiao
- China Military Institute of Chinese MedicineFifth Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
9
|
Huang X, Hyuga S, Amakura Y, Hyuga M, Uchiyama N, Hakamatsuka T, Goda Y, Odaguchi H, Hanawa T, Kobayashi Y. Overlooked switch from transient sedation to sustained excitement in the Biphasic effects of Ephedra Herb extract administered orally to mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115827. [PMID: 36240977 DOI: 10.1016/j.jep.2022.115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In our previous study, we reported that Ephedra Herb extract (EHE) increased the locomotor activity of mice in the open-field test and reduced the immobility time in the forced swim test. Ephedrine alkaloids (EAs) are thought to be responsible for the adverse effects of Ephedra Herb. However, there are no reports to verify that the adverse effects of Ephedra Herb are caused by the amount of EAs in the herb. Therefore, we investigated whether these adverse effects of EHE are caused by the amounts of ephedrine (Eph) and pseudoephedrine (Pse) in the herbal extract. In a preliminary study of the time course analysis of the open field test, we newly observed that EHE evoked switching from transient sedation to sustained excitement. AIM OF THE STUDY We aimed to confirm whether EHE evokes switching from transient sedation to sustained excitement, investigate whether these actions of EHE are caused by the amount of ephedrine (Eph) and pseudoephedrine (Pse) in the herbal extract, and clarify the molecular mechanism of the transient sedative effect. MATERIALS AND METHODS The locomotor activity of mice was tested using the open-field test. The immobility times were measured using a forced swim test, and the motor dysfunction in mice was tested using the rotarod test. RESULTS EHE, Eph, and Pse induced transient motionlessness between 0 and 15 min after oral administration, however, they did not induce depression-like behavior and motor dysfunction in mice, suggesting that the motionlessness induced by EHE, Eph, or Pse resulted from sedation. The α2a adrenoceptor inhibitor, atipamezole, decreased their sedative effects. Thus, immediately after EHE administration, the transient sedative effect is mediated through the activation of the α2a adrenoreceptor by Eph and Pse. EHE and Eph increased total locomotor activity for 15-120 min after oral administration; however, Pse had no effect. Therefore, the slow-onset and sustained excitatory effects of EHE are mediated by Eph. CONCLUSIONS We discovered for the first time that EHE evokes diphasic action by switching from transient sedation to sustained excitement. The transient sedation was evoked by the Eph and Pse in the herbal extract via activation of the α2a adrenoceptor and the sustained excitement was caused by the Eph in the herbal extract.
Collapse
Affiliation(s)
- Xuedan Huang
- Department of Pharmacognosy, School of Pharmacy, Kitasato University, Tokyo, Japan; Oriental Medicine Research Center of Kitasato University, Tokyo, Japan.
| | - Sumiko Hyuga
- Oriental Medicine Research Center of Kitasato University, Tokyo, Japan.
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Ehime, Japan.
| | - Masashi Hyuga
- National Institute of Health Sciences, Kanagawa, Japan.
| | | | | | - Yukihiro Goda
- National Institute of Health Sciences, Kanagawa, Japan.
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center of Kitasato University, Tokyo, Japan.
| | - Toshihiko Hanawa
- Oriental Medicine Research Center of Kitasato University, Tokyo, Japan.
| | - Yoshinori Kobayashi
- Department of Pharmacognosy, School of Pharmacy, Kitasato University, Tokyo, Japan; Oriental Medicine Research Center of Kitasato University, Tokyo, Japan.
| |
Collapse
|
10
|
Xu X, Li L, Zhou H, Fan M, Wang H, Wang L, Hu Q, Cai Q, Zhu Y, Ji S. MRTCM: A comprehensive dataset for probabilistic risk assessment of metals and metalloids in traditional Chinese medicine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114395. [PMID: 36508783 DOI: 10.1016/j.ecoenv.2022.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Traditional Chinese medicine (TCM) is still considered a global complementary or alternative medical system, but exogenous hazardous contaminants remain in TCM even after decocting. Besides, it is time-consuming to conduct a risk assessment of trace elements in TCMs with a non-automatic approach due to the wide variety of TCMs. Here, we present MRTCM, a cloud-computing infrastructure for automating the probabilistic risk assessment of metals and metalloids in TCM. MRTCM includes a consumption database and a pollutant database involving forty million rows of consumption data and fourteen types of TCM potentially toxic elements concentrations. The algorithm of probabilistic risk assessment was also packaged in MRTCM to assess the risks of eight elements with Monte Carlo simulation. The results demonstrated that 96.64% and 99.46% had no non-carcinogenic risk (hazard indices (HI) were < 1.0) for animal and herbal medicines consumers, respectively. After twenty years of exposure, less than 1% of the total carcinogenic risk (CRt) was > 10-4 for TCM consumers, indicating that they are at potential risk for carcinogenicity. Sensitivity analysis revealed that annual consumption and concentration were the main variables affecting the assessment results. Ultimately, a priority management list of TCMs was also generated, indicating that more attention should be paid to the non-carcinogenic risks of As, Mn, and Hg and the carcinogenic risks of As and Cr in Pheretima and Cr in Arcae Conch. In general, MRTCM could significantly enhance the efficiency of risk assessment in TCM and provide reasonable guidance for policymakers to optimize risk management.
Collapse
Affiliation(s)
- Xiaohui Xu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Limin Li
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Heng Zhou
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingcong Fan
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Hongliang Wang
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Lingling Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Qing Hu
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Zhuang S, Zhang J, Lin X, Wang X, Yu W, Shi H. Dendrobium mixture ameliorates type 2 diabetes mellitus with non-alcoholic fatty liver disease through PPAR gamma: An integrated study of bioinformatics analysis and experimental verification. Front Pharmacol 2023; 14:1112554. [PMID: 36874030 PMCID: PMC9978952 DOI: 10.3389/fphar.2023.1112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Dendrobium mixture (DM) is a patented Chinese herbal medicine indicated which has anti-inflammatory and improved glycolipid metabolism. However, its active ingredients, targets of action, and potential mechanisms are still uncertain. Here, we investigate the role of DM as a prospective modulator of protection against non-alcoholic fatty liver disease (NAFLD) induced by type 2 diabetes mellitus (T2DM) and illustrate the molecular mechanisms potentially involved. The network pharmacology and TMT-based quantitative protomics analysis were conducted to identify potential gene targets of the active ingredients in DM against NAFLD and T2DM. DM was administered to the mice of DM group for 4 weeks, and db/m mice (control group) and db/db mice (model group) were gavaged by normal saline. DM was also given to Sprague-Dawley (SD) rats, and the serum was subjected to the palmitic acid-induced HepG2 cells with abnormal lipid metabolism. The mechanism of DM protection against T2DM-NAFLD is to improve liver function and pathological morphology by promoting peroxisome proliferator-activated receptor γ (PPARγ) activation, lowering blood glucose, improving insulin resistance (IR), and reducing inflammatory factors. In db/db mice, DM reduced RBG, body weight, and serum lipids levels, and significantly alleviated histological damage of liver steatosis and inflammation. It upregulated the PPARγ corresponding to the prediction from the bioinformatics analysis. DM significantly reduced inflammation by activating PPARγ in both db/db mice and palmitic acid-induced HepG2 cells.
Collapse
Affiliation(s)
- Shuting Zhuang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jieping Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaohui Lin
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenzhen Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong Shi
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
12
|
Variation of Saponins in Sanguisorba officinalis L. before and after Processing ( Paozhi) and Its Effects on Colon Cancer Cells In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249046. [PMID: 36558181 PMCID: PMC9785891 DOI: 10.3390/molecules27249046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The incidence of colon cancer is increasing year over year, seriously affecting human health and quality of life in recent years. However, traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. S. officinalis Saponins (S-Saponins), the potential compound of TCM, displays multiple biological activities in colon cancer treatment. In our study, ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with multivariate statistical analysis were performed to analyze and identify raw and processed saponins. Then, MTT and cell migration assays were used to preliminarily explore the effects of saponins in vitro on colon cancer cells. The results showed that 29 differential saponins compounds under Paozhi were identified by UHPLC-MS/MS. Moreover, in vitro validation showed that Sprocessed better inhibited the proliferation and migration of colon cancer cells than Sraw. This study provides a basis for the determination of the chemical fundamentals of the efficacy changes during Paozhi through inferring the changes in saponin components and its possible transformation mechanisms before and after processing S. officinalis. Meanwhile, it also provides new insights into potential bioactive ingredients for the treatment of colon cancer.
Collapse
|
13
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
14
|
Feng Y, Shi T, Fu Y, Lv B. Traditional chinese medicine to prevent and treat diabetic erectile dysfunction. Front Pharmacol 2022; 13:956173. [PMID: 36210810 PMCID: PMC9532934 DOI: 10.3389/fphar.2022.956173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic erectile dysfunction (DED) is one of the most common complications of diabetes mellitus. However, current therapeutics have no satisfactory effect on DED. In recent years, traditional Chinese medicine (TCM) has shown good effects against DED. By now, several clinical trials have been conducted to study the effect of TCM in treating DED; yet, the underlying mechanism is not fully investigated. Therefore, in this review, we briefly summarized the pathophysiological mechanism of DED and reviewed the published clinical trials on the treatment of DED by TCM. Then, the therapeutic potential of TCM and the underlying mechanisms whereby TCM exerts protective effects were summarized. We concluded that TCM is more effective than chemical drugs in treating DED by targeting multiple signaling pathways, including those involved in oxidation, apoptosis, atherosclerosis, and endothelial function. However, the major limitation in the application of TCM against DED is the lack of a large-scale, multicenter, randomized, and controlled clinical trial on the therapeutic effect, and the underlying pharmaceutical mechanisms also need further investigation. Despite these limitations, clinical trials and further experimental studies will enhance our understanding of the mechanisms modulated by TCM and promote the widespread application of TCM to treat DED.
Collapse
Affiliation(s)
- Yanfei Feng
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuli Fu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bodong Lv
- Zhejiang Province Key Laboratory of Traditional Chinese Medicine (Laboratory of Andrology), Hangzhou, China
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Bodong Lv,
| |
Collapse
|
15
|
Chelerythrine-Induced Apoptotic Cell Death in HepG2 Cells Involves the Inhibition of Akt Pathway and the Activation of Oxidative Stress and Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11091837. [PMID: 36139911 PMCID: PMC9495744 DOI: 10.3390/antiox11091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mechanisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment (at 1.25–10 μM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the expression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1 protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms and health risks of CHE.
Collapse
|
16
|
Yang M, Wang Y, Yue Y, Liang L, Peng M, Zhao M, Chen Y, Cao X, Li W, Li C, Zhang H, Du J, Zhong R, Xia T, Shu Z. Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia. Biomed Pharmacother 2022; 153:113523. [DOI: 10.1016/j.biopha.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022] Open
|
17
|
Liu L, Li H, Tan G, Ma Z. Traditional Chinese herbal medicine in treating amenorrhea caused by antipsychotic drugs: Meta-analysis and systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115044. [PMID: 35101572 DOI: 10.1016/j.jep.2022.115044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amenorrhea caused by antipsychotic drugs is not uncommon in clinical practice, and various treatment strategies are used to treat the condition. Chinese herbal medicine has its own theory for amenorrhea caused by antipsychotic drugs and has developed its own medication methods. AIM OF THE STUDY To review and conduct meta-analysis of the use of traditional Chinese herbal medicine in treatment of amenorrhea caused by antipsychotic drugs. MATERIALS AND METHODS A search was conducted across seven Chinese electronic databases (the China National Knowledge Infrastructure (CNKI) database, the China Science and Technology Journal Database, the Wanfang Database, the SinoMed, the Foreign Medical Literature Retrieval Service(FMRS), the Chinese University of Hong Kong Library, the Airiti Library), and the following English databases: MEDLINE, PreMEDLINE, OLD MEDLINE、Publisher Supplied Citation in pubmed; JBI EBP Database, EBM Reviews, Embase, OVID Emcare, Ovid MEDLINE(R), Maternity & Infant Care Database(MIDIRS), APA PsycInfo in OVID, and Cochrane Database of Systematic Reviews (Cochrane Reviews), Database of Abstracts of Reviews of Effects (Other Reviews), Cochrane Central Register of Controlled Trials (Clinical Trials),The Cochrane Methodology Register (Method Studies), Health Technology Assessment Database (Technology Assessments), NHS Economic Evaluation Database (Economic Evaluations) in Cochrane Library; and four databases (Science Direct, ProQuest, Web of Science, and Scopus) in official website using common standards and inclusion/exclusion criteria. The remaining reports were used for preliminary studies. Due to inconsistencies in control groups, randomized controlled trials and articles that combined with other drugs were also excluded. This study is a META analysis of a single rate. RESULTS Initial screening returned 912 potentially relevant publications in all databases. After subsequent filtering, a total of 18 articles were included in the analysis. The overall effectiveness for treatment amenorrhea caused by antipsychotic drugs using traditional Chinese herbal medicine was 0.91, with 95% confidence interval of 0.89-0.93. Notably in most studies, the time needed to achieve this level of effectiveness was relatively long, usually in excess of three months. Although a satisfactory verification of an improvement in menstrual cycling takes time, the long treatment duration is a downside. Our analysis revealed that the following Chinese herbal remedies were most common: Danggui (Angelica sinensis (Oliv.) Diels), Chuanxiong (Ligusticum striatum DC.), Taoren (Prunus persica (L.) Batsch), Honghua (Carthamus tinctorius L.), Gancao (Glycyrrhiza uralensis Fisch.), Fuling ((Fungus) Poria cocos (Schw.) Wolf), Baizhu (Atractylodes macrocephala Koidz.), Xiangfu (Cyperus rotundus L.), Chaihu (Bupleurum chinense DC.), Shudihuang (Rehmannia glutinosa (Gaertn.) DC.(Processed), Baishao (Cynanchum otophyllum C.K.Schneid.) CONCLUSIONS: Chinese herbal medicine can effectively treat amenorrhea caused by psychiatric drugs, although it takes a long time to achieve satisfactory effectiveness. More research is needed to better understand different aspects of Chinese herbal medicine use in treatment of this particular medical condition.
Collapse
Affiliation(s)
- Liangshuai Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, No. 36 Mingxin Road, Liwan District, Guangzhou City, Guangdong Province, PR China.
| | - Heping Li
- The First Affiliated Hospital of Sun Yat Sen University, No.183 Huangpu East Road, Huangpu District, Guangzhou City, Guangdong Province, PR China.
| | - Guosheng Tan
- The First Affiliated Hospital of Sun Yat Sen University, No.183 Huangpu East Road, Huangpu District, Guangzhou City, Guangdong Province, PR China.
| | - Zhenjiang Ma
- The First Affiliated Hospital of Sun Yat Sen University, No.183 Huangpu East Road, Huangpu District, Guangzhou City, Guangdong Province, PR China.
| |
Collapse
|
18
|
Li L, Zhang H, Chen B, Xia B, Zhu R, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, Orekhov AN, Prentki M, Wang L, Guo S, Zhang D. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114653. [PMID: 34547420 DOI: 10.1016/j.jep.2021.114653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, H2X 0A9, QC, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuzhen Guo
- Department of Scientific Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
19
|
Zhang X, Qiu H, Li C, Cai P, Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends 2021; 15:283-298. [PMID: 34421064 DOI: 10.5582/bst.2021.01318] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional Chinese medicine (TCM), especially Chinese herbal medicines and acupuncture, has been traditionally used to treat patients with cancers in China and other East Asian countries. Numerous studies have indicated that TCM not only alleviates the symptoms (e.g., fatigue, chronic pain, anorexia/cachexia, and insomnia) of patients with cancer and improves their quality of life (QOL) but also diminishes adverse reactions and complications caused by chemotherapy, radiotherapy, or targeted-therapy. Therefore, Chinese herbal medicines and acupuncture and other alternative therapies need to be understood by TCM physicians and other health care providers. This review mainly summarizes the experimental results and conclusions from literature published since 2010, and a search of the literature as been performed in the PubMed, MEDLINE, Web of Science, Scopus, Springer, ScienceDirect, and China Hospital Knowledge Database (CHKD) databases. Some Chinese herbal medicines (e.g., Panax ginseng, Panax quinquefolius, Astragali radix, Bu-zhong-yi-qi-tang (TJ-41), Liu-jun-zi-tang (TJ-43), Shi-quan-da-bu-tang (TJ-48), and Ban-xia-xie-xin-tang (TJ-14)) and some acupuncture points (e.g., Zusanli (ST36), Zhongwan (CV12), Neiguan (PC6) and Baihui (GV20)) that are commonly used to treat cancer-related symptoms and/or to reduce the toxicity of chemotherapy, radiotherapy, or targeted-therapy are highlighted and summarized. Through a review of literature, we conclude that TCM can effectively alleviate adverse gastrointestinal reactions (including diarrhea, nausea, and vomiting) to these anti-cancer therapies, decrease the incidence of bone marrow suppression, alleviate cardiotoxicity, and protect against chemotherapy-induced peripheral neuropathy and radiation-induced pneumonitis. Moreover, TCM can alleviate epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-related acneiform eruptions, diarrhea, and other adverse reactions. The hope is that this review can contribute to an understanding of TCM as an adjuvant therapy for cancer and that it can provide useful information for the development of more effective anti-cancer therapies. However, more rigorously designed trials involving cancer treatment must be conducted in the future, including complete quality control and standardized models at the cellular, organic, animal and clinical levels, in order to study TCM in multiple forms and at multiple levels.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Chensheng Li
- Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| |
Collapse
|
20
|
Ang LP, Ng PW, Lean YL, Kotra V, Kifli N, Goh HP, Lee KS, Sarker MMR, Al-Worafi YM, Ming LC. Herbal products containing aristolochic acids: A call to revisit the context of safety. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Wang S, Fu JL, Hao HF, Jiao YN, Li PP, Han SY. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol Res 2021; 170:105728. [PMID: 34119622 DOI: 10.1016/j.phrs.2021.105728] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
22
|
Wuniqiemu T, Qin J, Teng F, Nabijan M, Cui J, Yi L, Tang W, Zhu X, Abduwaki M, Nurahmat M, Wei Y, Dong JC. Quantitative proteomic profiling of targeted proteins associated with Loki Zupa Decoction Treatment in OVA-Induced asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113343. [PMID: 32991972 DOI: 10.1016/j.jep.2020.113343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki Zupa (LKZP) decoction is one of the herbal prescriptions in traditional Uyghur medicine, which is commonly used for treating airway abnormality. However, underlying pathological mechanism and pathways involved has not been well studied. OBJECTIVES In this paper, we aim to further confirmed the anti-inflammatory and anti-fibrotic role of LKZP decoction in airway, and uncover the passible mechanism involved via comprehensive quantitative proteomic DIA-MS analysis. MATERIALS AND METHODS Mice asthmatic model was established with sensitizing and challenging with OVA. Lung function, pathological status, and inflammatory cytokines were assessed. Total of nine lung tissues were analyzed using proteomic DIA-MS analysis and 18 lung tissues were subjected to PRM validation. RESULTS Total of 704 differentially expressed proteins (DEPs) (363 up regulated, 341 down regulated) were quantified in comparison of asthmatic and healthy mice, while 152 DEPs (91 up regulated, 61 down regulated) were quantified in LKZP decoction treated compared to asthmatic mice. Total of 21 proteins were overlapped between three groups. ECM-receptor interaction was significantly enriched and commonly shared between downregulated DEPs in asthma and upregulated DEPs in LKZP decoction treated mice. Total of 20 proteins were subjected to parallel reaction monitoring (PRM) analysis and 16 of which were quantified. At last, two proteins, RMB 10 and COL6A6, were validated with significant difference (P < 0.001) in protein abundance. CONCLUSIONS Our results suggest that attenuated airway inflammation and fibrosis caused by LKZP decoction may associated with ECM-receptor interaction and RMB 10 and COL6A6 may be targeted by LKZP decoction in OVA-induced asthmatic mice.
Collapse
Affiliation(s)
- Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mohammadtursun Nabijan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Muhammadjan Abduwaki
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mammat Nurahmat
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jing Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Wang J, Qi F. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther 2020; 14:149-150. [PMID: 32669523 DOI: 10.5582/ddt.2020.03054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coronavirus disease 2019 (COVID-19) broke out in 2019 and spread rapidly around the world, causing a global pandemic. Traditional Chinese medicine has a history of more than 2,000 years in the prevention and treatment of epidemics and plagues. In guidelines on fighting COVID-19, the National Health Commission (NHC) has recommended some traditional Chinese medicines (TCM), including Jinhua Qinggan granules, Lianhua Qingwen capsules, XueBijing injections, a Qingfei Paidu decoction, a Huashi Baidu decoction, and a Xuanfei Baidu decoction. Based on current results, TCM has displayed some efficacy in combating COVID-19. However, TCM faces many challenges in terms of being recognized around the world. Therefore, evidence-based research is crucial to the development of TCM.
Collapse
Affiliation(s)
- Jinjing Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| |
Collapse
|
24
|
Wang ZF, Liu J, Yang YA, Zhu HL. A Review: The Anti-inflammatory, Anticancer and Antibacterial Properties of Four Kinds of Licorice Flavonoids Isolated from Licorice. Curr Med Chem 2020; 27:1997-2011. [PMID: 30277142 DOI: 10.2174/0929867325666181001104550] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
Plants have always been an important source of medicines for humans, and licorice is a very significant herb in the development of humans. As a traditional herb, it is widely cultivated in China, Japan, Russia, Spain and India. With the development of organic chemistry and biochemistry, various chemical ingredients extracted from licorice have been studied and identified. Among them, many chemical components were considered to have strong pharmacological activities, such as anti-inflammatory, anti-ulcer, antibacterial, anticancer and so on. Based on those reports, licorice has attracted the attention of many researchers in recent years, and they are devoted to discovering the active ingredients and mechanism of action of active compounds. Licorice flavonoids are one of the main extracts of licorice root and stem and have many potential biological properties. This paper aims to summarize the four kinds of licorice flavonoids, including liquiritigenin, isoliquiritigenin, licochalcone (including licochalcone A and licochalcone B) and glabridin, about their biological activities of anti-inflammatory, anticancer, antibacterial.
Collapse
Affiliation(s)
- Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| |
Collapse
|
25
|
Wang J, Qi F, Wang Z, Zhang Z, Pan N, Huai L, Qu S, Zhao L. A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends 2019; 13:476-487. [PMID: 31866614 DOI: 10.5582/bst.2019.01323] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant intracranial tumor. Due to its high morbidity, high mortality, high recurrence rate, and low cure rate, it has brought great difficulty for treatment. Although the current treatment is multimodal, including surgical resection, radiotherapy, and chemotherapy, it does not significantly improve survival time. The dismal prognosis and inevitable recurrence as well as resistance to chemoradiotherapy may be related to its highly cellular heterogeneity and multiple subclonal populations. Traditional Chinese medicine has its own unique advantages in the prevention and treatment of it. A comprehensive literature search of anti-glioblastoma active ingredients and derivatives from traditional Chinese medicine was carried out in literature published in PubMed, Scopus, Web of Science Cochrane library, CNKI, Wanfang, and VIP database. Hence, this article systematically reviews experimental research progress of some traditional Chinese medicine in treatment of glioblastoma from two aspects: strengthening vital qi and eliminating pathogenic qi. Among, strengthening vital qi medicine includes panax ginseng, licorice, lycium barbarum, angelica sinensis; eliminating pathogenic medicine includes salvia miltiorrhiza bunge, scutellaria baicalensis, coptis rhizoma, thunder god vine, and sophora flavescens. We found that the same active ingredient can act on different signaling pathways, such as ginsenoside Rg3 inhibited proliferation and induced apoptosis via the AKT, MEK signal pathway. Hence, this multi-target, multi-level pathway may bring on a new dawn for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jinjing Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhikun Zhang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ni Pan
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lei Huai
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Shuyu Qu
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| |
Collapse
|