1
|
Ma L, Yao Y, Zhang Z, Huang Y, Zhang L, Qiao P, Kang J, Ren C, Xie W, Liang R, Wu H, Liu Z, Ma Y. SARS-CoV-2 infection negatively impacts on the quality of embryos by delaying early embryonic development. Am J Reprod Immunol 2024; 91:e13831. [PMID: 38444103 DOI: 10.1111/aji.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is an unprecedented health crisis that has affected in vitro fertilization practices globally. Previous studies have shown that SARS-CoV-2 impacts the quality of embryos by inducing an immunological response in infertile patients. In this study, the early embryonic development of SARS-CoV-2-infected infertile patients was investigated. METHODS Sixty-five SARS-CoV-2 infected infertile patients and 258 controls were involved in this study. The major outcome parameters for the cycle were analyzed, including the number of oocytes, maturation oocytes, available embryos per cycle, and embryo morpho kinetic characteristics. RESULTS From SARS-CoV-2 infection until oocyte retrieval, it took an average of 6.63 days. The results revealed that the number of oocytes and high-quality embryos on day 3 dramatically reduced in SARS-CoV-2-infected infertile patients. SARS-CoV-2 was detected in the follicular fluid of three infertile patients. SARS-CoV-2 infection had negatively impacted the number of oocytes in multivariate linear regression models. The early embryonic development in the SARS-CoV-2 infection group had a noticeable delay from the six-cell stage to blastocyst stage. CONCLUSIONS SARS-CoV-2 infection reduced the number of oocytes and high-quality embryos on day 3. It delays the early embryonic development from the six-cell stage to blastocyst stage and has a negative impact on the quality of embryos.
Collapse
Affiliation(s)
- Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan Province, China
| | - Yufei Yao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan Province, China
| | - Zhao Zhang
- Qinzhou Maternal and Child Health Care Hospital, Qinzhou, Guangxi Province, China
| | - Yanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan Province, China
| | - Liuguang Zhang
- Department of Reproductive Medicine, Haikou Mary Hospital, Haikou, Hainan, China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Jinyu Kang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan Province, China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Wenling Xie
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Rongwei Liang
- Qinzhou Maternal and Child Health Care Hospital, Qinzhou, Guangxi Province, China
| | - Hongbo Wu
- Qinzhou Maternal and Child Health Care Hospital, Qinzhou, Guangxi Province, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
2
|
Solarino B, Nicolì S, Benevento M, Zedda M, Oliva A. Editorial: Children's health and safety: what we learned from the COVID-19 pandemic and future policy's perspective. Front Public Health 2023; 11:1220977. [PMID: 37346109 PMCID: PMC10280161 DOI: 10.3389/fpubh.2023.1220977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Biagio Solarino
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| | - Simona Nicolì
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| | - Marcello Benevento
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| | - Massimo Zedda
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Dimopoulou K, Zelli S, de Salazar A, Reiter R, Janocha H, Grossi A, Omony J, Skevaki C. Update of ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2023:S1198-743X(23)00192-1. [PMID: 37088423 PMCID: PMC10122552 DOI: 10.1016/j.cmi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
SCOPE Since the onset of coronavirus disease 2019 (COVID-19), several assays have been deployed for the diagnosis of SARS-CoV-2. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first set of guidelines on SARS-CoV-2 in-vitro diagnosis in February 2022. Since the COVID-19 landscape is rapidly evolving, the relevant ESCMID guidelines panel releases an update of the previously published recommendations on diagnostic testing for SARS-CoV-2. This update aims to delineate the best diagnostic approach for SARS-CoV-2 in different populations based on current evidence. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. The panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, and outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews with a third panellist involved in case of inconsistent results. The panel reassessed the PICOs previously defined as priority in the first set of guidelines and decided to address 49 PICO questions, as 6 of them were discarded as outdated/non-clinically relevant. The "Grading of Recommendations Assessment, Development and Evaluation(GRADE)-adoption, adaptation, and de novo development of recommendations (ADOLOPMENT)" evidence-to-decision framework was utilized to produce the guidelines. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS After literature search, we updated 16 PICO questions; these PICOs address the use of antigen-based assays among symptomatic and asymptomatic patients with different ages, COVID-19 severity status or risk for severe COVID-19, time since onset of symptoms/contact with an infectious case, and finally, types of biomaterials used.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV)
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fusun Can
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for respiratory viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Second Department of Paediatrics, "P. and A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Silvia Zelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Rieke Reiter
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | - Hannah Janocha
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | | | - Jimmy Omony
- Institute for Asthma and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Centre for Environmental Health (GmbH), Munich, Germany
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
4
|
Khan UI, Mahmood SF, Khan S, Hasan Z, Cheema A, Hakim A, Ali SI. Using rapid antigen testing for early, safe return-to-work for healthcare personnel after SARS-CoV-2 infection in a healthcare system in Pakistan: A retrospective cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001746. [PMID: 36963102 PMCID: PMC10032526 DOI: 10.1371/journal.pgph.0001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Anticipating staff shortage during the Omicron variant surge, we modified the US Centers for Disease Control and Prevention's contingency guidelines at a healthcare system in Pakistan. Infected staff had a SARS-CoV-2 rapid antigen test after 5-7 days of isolation, to decide a safe return-to-work. This led to signifcant cost savings without compromising patient/staff safety.
Collapse
Affiliation(s)
- Unab Inayat Khan
- Department of Family Medicine, Aga Khan University Medical College, Karachi, Pakistan
| | - Syed Faisal Mahmood
- Department of Medicine, Section of Infectious Diseases, Aga Khan University Medical College, Karachi, Pakistan
| | - Sara Khan
- Department of Medicine, Dean’s Research Fellow, Section of Infectious Diseases, Aga Khan University Medical College, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University Medical College, Karachi, Pakistan
| | - Ahmed Cheema
- Alumnus, Aga Khan University Medical College, Karachi, Pakistan
| | - Asif Hakim
- Department of Family Medicine, Aga Khan University Medical College, Karachi, Pakistan
| | - Shehreen Inayat Ali
- Department of Family Medicine, Aga Khan University Medical College, Karachi, Pakistan
| |
Collapse
|
5
|
Irkham I, Ibrahim AU, Nwekwo CW, Al-Turjman F, Hartati YW. Current Technologies for Detection of COVID-19: Biosensors, Artificial Intelligence and Internet of Medical Things (IoMT): Review. SENSORS (BASEL, SWITZERLAND) 2022; 23:426. [PMID: 36617023 PMCID: PMC9824404 DOI: 10.3390/s23010426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | | | - Chidi Wilson Nwekwo
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 99138, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
6
|
Corrêa IA, Faffe DS, Galliez RM, Gonçalves CCA, Maia RA, da Silva GP, Moreira FRR, Mariani D, Campos MF, Leitão IDC, de Souza MR, Cunha MS, Nascimento ÉRDS, Ribeiro LDJ, da Cruz TFC, Policarpo C, Gonzales L, Rodgers MA, Berg M, Vijesurier R, Cloherty GA, Hackett J, Ferreira ODC, Castiñeiras TMPP, Tanuri A, da Costa LJ. A SARS-CoV-2 Negative Antigen Rapid Diagnostic in RT-qPCR Positive Samples Correlates With a Low Likelihood of Infectious Viruses in the Nasopharynx. Front Microbiol 2022; 13:912138. [PMID: 35966714 PMCID: PMC9364907 DOI: 10.3389/fmicb.2022.912138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) transmission occurs even among fully vaccinated individuals; thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDTs) are highly specific, but sensitivity is variable. Discordant RT-qPCR vs. Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross-sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that RT-qPCR positive while SARS-CoV-2 Ag-RDT negative discordant results correlate with the absence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was also verified in these samples. The data clearly demonstrate that a negative Ag-RDT sample is less likely to harbor infectious SARS-CoV-2 and, consequently, has a lower transmissible potential.
Collapse
Affiliation(s)
- Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Souza Faffe
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mello Galliez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Richard Araújo Maia
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Mariani
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Freire Campos
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela de Carvalho Leitão
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Romário de Souza
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Sabino Cunha
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Liane de Jesus Ribeiro
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix Cordeiro da Cruz
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Policarpo
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Gonzales
- Abbott Laboratories Inc., Chicago, IL, United States
| | | | - Michael Berg
- Abbott Laboratories Inc., Chicago, IL, United States
| | | | | | - John Hackett
- Abbott Laboratories Inc., Chicago, IL, United States
| | - Orlando da Costa Ferreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Mack E, de Salazar A, Grossi A, Lytras T, Skevaki C. ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2022; 28:812-822. [PMID: 35218978 PMCID: PMC8863949 DOI: 10.1016/j.cmi.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
SCOPE The objective of these guidelines is to identify the most appropriate diagnostic test and/or diagnostic approach for SARS-CoV-2. The recommendations are intended to provide guidance to clinicians, clinical microbiologists, other health care personnel, and decision makers. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews, with a third panellist involved in case of inconsistent results. Quality of evidence assessment was based on the GRADE-ADOLOPMENT (Grading of Recommendations Assessment, Development and Evaluation - adoption, adaptation, and de novo development of recommendations) approach. RECOMMENDATIONS A total of 43 PICO questions were selected that involve the following types of populations: (a) patients with signs and symptoms of COVID-19; (b) travellers, healthcare workers, and other individuals at risk for exposure to SARS-CoV-2; (c) asymptomatic individuals, and (d) close contacts of patients infected with SARS-CoV-2. The type of diagnostic test (commercial rapid nucleic acid amplification tests and rapid antigen detection), biomaterial, time since onset of symptoms/contact with an infectious case, age, disease severity, and risk of developing severe disease are also taken into consideration.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fusun Can
- Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for Respiratory Viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Second Department of Paediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Mack
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg Campus Marburg and Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Adriano Grossi
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Theodore Lytras
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
9
|
Puligedda RD, Al-Saleem FH, Wirblich C, Kattala CD, Jović M, Geiszler L, Devabhaktuni H, Feuerstein GZ, Schnell MJ, Sack M, Livornese LL, Dessain SK. A Strategy to Detect Emerging Non-Delta SARS-CoV-2 Variants with a Monoclonal Antibody Specific for the N501 Spike Residue. Diagnostics (Basel) 2021; 11:2092. [PMID: 34829439 PMCID: PMC8625484 DOI: 10.3390/diagnostics11112092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Efforts to control SARS-CoV-2 have been challenged by the emergence of variant strains that have important implications for clinical and epidemiological decision making. Four variants of concern (VOCs) have been designated by the Centers for Disease Control and Prevention (CDC), namely, B.1.617.2 (delta), B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), although the last three have been downgraded to variants being monitored (VBMs). VOCs and VBMs have shown increased transmissibility and/or disease severity, resistance to convalescent SARS-CoV-2 immunity and antibody therapeutics, and the potential to evade diagnostic detection. Methods are needed for point-of-care (POC) testing to rapidly identify these variants, protect vulnerable populations, and improve surveillance. Antigen-detection rapid diagnostic tests (Ag-RDTs) are ideal for POC use, but Ag-RDTs that recognize specific variants have not yet been implemented. Here, we describe a mAb (2E8) that is specific for the SARS-CoV-2 spike protein N501 residue. The 2E8 mAb can distinguish the delta VOC from variants with the N501Y meta-signature, which is characterized by convergent mutations that contribute to increased virulence and evasion of host immunity. Among the N501Y-containing mutants formerly designated as VOCs (alpha, beta, and gamma), a previously described mAb, CB6, can distinguish beta from alpha and gamma. When used in a sandwich ELISA, these mAbs sort these important SARS-CoV-2 variants into three diagnostic categories, namely, (1) delta, (2) alpha or gamma, and (3) beta. As delta is currently the predominant variant globally, they will be useful for POC testing to identify N501Y meta-signature variants, protect individuals in high-risk settings, and help detect epidemiological shifts among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rama Devudu Puligedda
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Fetweh H. Al-Saleem
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Cristoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | - Chandana Devi Kattala
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Marko Jović
- Nicoya Lifesciences, Kitchener, ON N2G 2K4, Canada;
| | - Laura Geiszler
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Himani Devabhaktuni
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | | | - Matthias J. Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | | | - Lawrence L. Livornese
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Scott K. Dessain
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| |
Collapse
|
10
|
Bohn MK, Lippi G, Horvath AR, Erasmus R, Grimmler M, Gramegna M, Mancini N, Mueller R, Rawlinson WD, Menezes ME, Patru MM, Rota F, Sethi S, Singh K, Yuen KY, Wang CB, Adeli K. IFCC interim guidelines on rapid point-of-care antigen testing for SARS-CoV-2 detection in asymptomatic and symptomatic individuals. Clin Chem Lab Med 2021; 59:1507-1515. [PMID: 33908222 DOI: 10.1515/cclm-2021-0455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
With an almost unremittent progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all around the world, there is a compelling need to introduce rapid, reliable, and high-throughput testing to allow appropriate clinical management and/or timely isolation of infected individuals. Although nucleic acid amplification testing (NAAT) remains the gold standard for detecting and theoretically quantifying SARS-CoV-2 mRNA in various specimen types, antigen assays may be considered a suitable alternative, under specific circumstances. Rapid antigen tests are meant to detect viral antigen proteins in biological specimens (e.g. nasal, nasopharyngeal, saliva), to indicate current SARS-CoV-2 infection. The available assay methodology includes rapid chromatographic immunoassays, used at the point-of-care, which carries some advantages and drawbacks compared to more conventional, instrumentation-based, laboratory immunoassays. Therefore, this document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 aims to summarize available data on the performance of currently available SARS-CoV-2 antigen rapid detection tests (Ag-RDTs), providing interim guidance on clinical indications and target populations, assay selection, and evaluation, test interpretation and limitations, as well as on pre-analytical considerations. This document is hence mainly aimed to assist laboratory and regulated health professionals in selecting, validating, and implementing regulatory approved Ag-RDTs.
Collapse
Affiliation(s)
- Mary Kathryn Bohn
- Department of Paediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Andrea R Horvath
- Department of Clinical Chemistry, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rajiv Erasmus
- Stellenbosch University, Cape Town, Western Cape, Republic of South Africa
| | | | | | | | | | - William D Rawlinson
- Department of Virology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | | | | - Sunil Sethi
- National University Hospital, Singapore, Singapore
| | | | | | | | - Khosrow Adeli
- Department of Paediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
11
|
Brümmer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Carmona S, Ongarello S, Sacks JA, Denkinger CM. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med 2021; 18:e1003735. [PMID: 34383750 PMCID: PMC8389849 DOI: 10.1371/journal.pmed.1003735] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers' instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies' heterogeneity in design and reporting. CONCLUSIONS In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mary Gaeddert
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stephani Schmitz
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | - Claudia M. Denkinger
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Partner Site Heidelberg University Hospital, German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|