1
|
Kowalski T, Bilański P. Recognition of Davidsoniella virescens on Fagus sylvatica Wood in Poland and Assessment of Its Pathogenicity. J Fungi (Basel) 2024; 10:465. [PMID: 39057350 PMCID: PMC11278147 DOI: 10.3390/jof10070465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Davidsoniella virescens is so far only known in North America. However, recently in southern Poland, blackish growth consisting of fungal mycelia and sporulation structures was found on the wood of Fagus sylvatica. As a result of isolation, 17 cultures of this fungus were obtained. All cultures produced an intense sweet odor. This fungus, both in situ and in vitro, abundantly produced perithecia with long necks and asexual stage. Particularly characteristic was the production of variable endoconidia in two types of phialophores differing mainly in the width of the collarette. The nucleotide sequences for five gene fragments of representative cultures were used in phylogenetic analyses: 18S; the internal transcribed spacer regions ITS1 and ITS2, including the 5.8S gene (ITS); 28S region of the ribosomal RNA (rRNA), β-tubulin 2 (TUB2) and translation elongation factor 1-α (TEF1). Based on morphological and phylogenetic analyses, the fungus on European beech in Poland was identified as Davidsoniella virescens. The optimal temperature for radial colony growth was 20 °C. However, the differences between colony diameter at 25 °C compared to that at the optimal temperature were not statistically significant. Six D. virescens isolates were used for pathogenicity assay. They were inoculated into wounds on stems of two-year-old seedlings of Fagus sylvatica and Acer saccharum (36 seedlings of each tree species). Final evaluation was performed 4 months after inoculation. No external symptoms were observed in any A. saccharum seedling, neither in the crown nor on the stem. However, 13.9% of F. sylvatica seedlings showed wilting symptoms throughout the entire crown within 3-6 weeks after inoculation. Moreover, after 4 months on the stems of 30.6% beech seedlings, necrotic lesions with a length of 1.3 to 7.2 cm were formed, without any symptoms of wilting. The most noticeable internal symptom was the discoloration of the wood, which was observed in all inoculated seedlings of both tree species. All D. virescens isolates caused greater wood discoloration in F. sylvatica than in A. saccharum. Most of the differences found in the extent of discoloration between host plants were statistically significant. The discoloration caused by all D. virescens isolates in F. sylvatica was significantly greater than in the control. However, none of the isolates tested on A. saccharum caused significantly greater wood discoloration compared to the control. Pathogenicity tests showed that the D. virescens isolates identified in southern Poland may pose a greater threat to native European beech than to foreign sugar maple.
Collapse
Affiliation(s)
| | - Piotr Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland;
| |
Collapse
|
2
|
Aylward J, Wilson AM, Visagie CM, Spraker J, Barnes I, Buitendag C, Ceriani C, Del Mar Angel L, du Plessis D, Fuchs T, Gasser K, Krämer D, Li W, Munsamy K, Piso A, Price JL, Sonnekus B, Thomas C, van der Nest A, van Dijk A, van Heerden A, van Vuuren N, Yilmaz N, Duong TA, van der Merwe NA, Wingfield MJ, Wingfield BD. IMA Genome - F19 : A genome assembly and annotation guide to empower mycologists, including annotated draft genome sequences of Ceratocystis pirilliformis, Diaporthe australafricana, Fusarium ophioides, Paecilomyces lecythidis, and Sporothrix stenoceras. IMA Fungus 2024; 15:12. [PMID: 38831329 PMCID: PMC11149380 DOI: 10.1186/s43008-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Joseph Spraker
- Hexagon Bio, 1490 O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Carla Buitendag
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Callin Ceriani
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Lina Del Mar Angel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Deanné du Plessis
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Taygen Fuchs
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Katharina Gasser
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Institute of Plant Protection, Konrad Lorenz-Strasse 24, Tulln an Der Donau, 3430, Vienna, Austria
| | - Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Kiara Munsamy
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Chanel Thomas
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicole van Vuuren
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
3
|
Wilken PM, Lane FA, Steenkamp ET, Wingfield MJ, Wingfield BD. Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture. Fungal Genet Biol 2024; 170:103859. [PMID: 38114017 DOI: 10.1016/j.fgb.2023.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Dishliyska V, Stoyancheva G, Abrashev R, Miteva-Staleva J, Spasova B, Angelova M, Krumova E. Catalase from the Antarctic Fungus Aspergillus fumigatus I-9-Biosynthesis and Gene Characterization. Indian J Microbiol 2023; 63:541-548. [PMID: 38031622 PMCID: PMC10682308 DOI: 10.1007/s12088-023-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Extremely cold habitats are a serious challenge for the existing there organisms. Inhabitants of these conditions are mostly microorganisms and lower mycetae. The mechanisms of microbial adaptation to extreme conditions are still unclear. Low temperatures cause significant physiological and biochemical changes in cells. Recently, there has been increasing interest in the relationship between low-temperature exposure and oxidative stress events, as well as the importance of antioxidant enzymes for survival in such conditions. The catalase is involved in the first line of the cells' antioxidant defense. Published information supports the concept of a key role for catalase in antioxidant defense against cold stress in a wide range of organisms isolated from the Antarctic. Data on representatives of microscopic fungi, however, are rarely found. There is scarce information on the characterization of catalase synthesized by adapted to cold stress organisms. Overall, this study aimed to observe the role of catalase in the survival strategy of filamentous fungi in extremely cold habitats and to identify the gene encoded catalase enzyme. Our results clearly showed that catalase is the main part of antioxidant enzyme defense in fungal cells against oxidative stress caused by low temperature exposure.
Collapse
Affiliation(s)
- Vladislava Dishliyska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Galina Stoyancheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Boriana Spasova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Maria Angelova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
van der Merwe NA, Phakalatsane T, Wilken PM. The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa. Genes (Basel) 2023; 14:1158. [PMID: 37372338 DOI: 10.3390/genes14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems.
Collapse
Affiliation(s)
- Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Tshiamo Phakalatsane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Maseko NN, Steenkamp ET, Wingfield BD, Wilken PM. An in Silico Approach to Identifying TF Binding Sites: Analysis of the Regulatory Regions of BUSCO Genes from Fungal Species in the Ceratocystidaceae Family. Genes (Basel) 2023; 14:848. [PMID: 37107606 PMCID: PMC10137650 DOI: 10.3390/genes14040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation controls gene expression through regulatory promoter regions that contain conserved sequence motifs. These motifs, also known as regulatory elements, are critically important to expression, which is driving research efforts to identify and characterize them. Yeasts have been the focus of such studies in fungi, including in several in silico approaches. This study aimed to determine whether in silico approaches could be used to identify motifs in the Ceratocystidaceae family, and if present, to evaluate whether these correspond to known transcription factors. This study targeted the 1000 base-pair region upstream of the start codon of 20 single-copy genes from the BUSCO dataset for motif discovery. Using the MEME and Tomtom analysis tools, conserved motifs at the family level were identified. The results show that such in silico approaches could identify known regulatory motifs in the Ceratocystidaceae and other unrelated species. This study provides support to ongoing efforts to use in silico analyses for motif discovery.
Collapse
Affiliation(s)
| | | | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa (E.T.S.); (P.M.W.)
| | | |
Collapse
|
7
|
Wingfield BD, Berger DK, Coetzee MPA, Duong TA, Martin A, Pham NQ, van den Berg N, Wilken PM, Arun-Chinnappa KS, Barnes I, Buthelezi S, Dahanayaka BA, Durán A, Engelbrecht J, Feurtey A, Fourie A, Fourie G, Hartley J, Kabwe ENK, Maphosa M, Narh Mensah DL, Nsibo DL, Potgieter L, Poudel B, Stukenbrock EH, Thomas C, Vaghefi N, Welgemoed T, Wingfield MJ. IMA genome‑F17 : Draft genome sequences of an Armillaria species from Zimbabwe, Ceratocystis colombiana, Elsinoë necatrix, Rosellinia necatrix, two genomes of Sclerotinia minor, short‑read genome assemblies and annotations of four Pyrenophora teres isolates from barley grass, and a long-read genome assembly of Cercospora zeina. IMA Fungus 2022; 13:19. [PMID: 36411457 PMCID: PMC9677705 DOI: 10.1186/s43008-022-00104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brenda D. Wingfield
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Martin P. A. Coetzee
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Anke Martin
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Nam Q. Pham
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Noelani van den Berg
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kiruba Shankari Arun-Chinnappa
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,PerkinElmer Pty Ltd., Level 2, Building 5, Brandon Business Park, 530‑540, Springvale Road, Glen Waverley, VIC 3150 Australia
| | - Irene Barnes
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sikelela Buthelezi
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau 28300 Indonesia
| | - Juanita Engelbrecht
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alice Feurtey
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Arista Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gerda Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jesse Hartley
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Eugene N. K. Kabwe
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mkhululi Maphosa
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Deborah L. Narh Mensah
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa ,grid.423756.10000 0004 1764 1672CSIR, Food Research Institute, Accra, Ghana
| | - David L. Nsibo
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Lizel Potgieter
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Barsha Poudel
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Eva H. Stukenbrock
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Chanel Thomas
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Niloofar Vaghefi
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,grid.1008.90000 0001 2179 088XSchool of Agriculture and Food, University of Melbourne, Parkville, VIC 3010 Australia
| | - Tanya Welgemoed
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
8
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
9
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
10
|
Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr Genet 2022; 68:505-514. [PMID: 35314878 DOI: 10.1007/s00294-022-01235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.
Collapse
|
11
|
Soal NC, Coetzee MPA, van der Nest MA, Hammerbacher A, Wingfield BD. Phenolic degradation by catechol dioxygenases is associated with pathogenic fungi with a necrotrophic lifestyle in the Ceratocystidaceae. G3 (BETHESDA, MD.) 2022; 12:jkac008. [PMID: 35077565 PMCID: PMC8896014 DOI: 10.1093/g3journal/jkac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022]
Abstract
Fungal species of the Ceratocystidaceae grow on their host plants using a variety of different lifestyles, from saprophytic to highly pathogenic. Although many genomes of fungi in the Ceratocystidaceae are publicly available, it is not known how the genes that encode catechol dioxygenases (CDOs), enzymes involved in the degradation of phenolic plant defense compounds, differ among members of the Ceratocystidaceae. The aim of this study was therefore to identify and characterize the genes encoding CDOs in the genomes of Ceratocystidaceae representatives. We found that genes encoding CDOs are more abundant in pathogenic necrotrophic species of the Ceratocystidaceae and less abundant in saprophytic species. The loss of the CDO genes and the associated 3-oxoadipate catabolic pathway appears to have occurred in a lineage-specific manner. Taken together, this study revealed a positive association between CDO gene copy number and fungal lifestyle in Ceratocystidaceae representatives.
Collapse
Affiliation(s)
- Nicole C Soal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- Biotechnology Platform, Agricultural Research Council (ARC), Pretoria 0110, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
12
|
Morgan T, Tavares MP, Ladeira-Ázar RI, de Oliveira Mendes TA, Guimarães VM. The lytic polysaccharide monooxigenases secreted by the fungus Chrysoporthe cubensis: Genomic analysis and impact on sugarcane bagasse saccharification. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Wingfield BD, De Vos L, Wilson AM, Duong TA, Vaghefi N, Botes A, Kharwar RN, Chand R, Poudel B, Aliyu H, Barbetti MJ, Chen S, de Maayer P, Liu F, Navathe S, Sinha S, Steenkamp ET, Suzuki H, Tshisekedi KA, van der Nest MA, Wingfield MJ. IMA Genome - F16 : Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta. IMA Fungus 2022; 13:3. [PMID: 35197126 PMCID: PMC8867778 DOI: 10.1186/s43008-022-00089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ravindra Nath Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | - Pieter de Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - FeiFei Liu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | | | - Shagun Sinha
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Kalonji A Tshisekedi
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
14
|
Stoyancheva G, Dishliyska V, Miteva‐Staleva J, Kostadinova N, Abrashev R, Angelova M, Krumova E. Sequencing and gene expression analysis of catalase genes in Antarctic fungal strain Penicillium griseofulvum P29. Polar Biol 2022. [DOI: 10.1007/s00300-021-03001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Duong TA, Aylward J, Ametrano CG, Poudel B, Santana QC, Wilken PM, Martin A, Arun-Chinnappa KS, de Vos L, DiStefano I, Grewe F, Huhndorf S, Lumbsch HT, Rakoma JR, Poudel B, Steenkamp ET, Sun Y, van der Nest MA, Wingfield MJ, Yilmaz N, Wingfield BD. IMA Genome - F15 : Draft genome assembly of Fusarium pilosicola, Meredithiella fracta, Niebla homalea, Pyrenophora teres hybrid WAC10721, and Teratosphaeria viscida. IMA Fungus 2021; 12:30. [PMID: 34645521 PMCID: PMC8513234 DOI: 10.1186/s43008-021-00077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tuan Anh Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Claudio Gennaro Ametrano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Quentin Carlo Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Pieter Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Kiruba Shankari Arun-Chinnappa
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- PerkinElmer Pty LTD., Level 2, Building 5, Brandon Business Park 530-540, Springvale Road, Glen Waverley, VIC, 3150, Australia
| | - Lieschen de Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Isabel DiStefano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Felix Grewe
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Sabine Huhndorf
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Helge Thorsten Lumbsch
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Jostina Raesetsa Rakoma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Emma Theodora Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Yukun Sun
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Michael John Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Brenda Diana Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
16
|
Nel WJ, de Beer ZW, Wingfield MJ, Poulsen M, Aanen DK, Wingfield BD, Duong TA. Phylogenetic and phylogenomic analyses reveal two new genera and three new species of ophiostomatalean fungi from termite fungus combs. Mycologia 2021; 113:1199-1217. [PMID: 34477494 DOI: 10.1080/00275514.2021.1950455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Ophiostomatales (Ascomycota) accommodates more than 300 species characterized by similar morphological adaptations to arthropod dispersal. Most species in this order are wood-inhabiting fungi associated with bark or ambrosia beetles. However, a smaller group of species occur in other niches such as in soil and Protea infructescences. Recent surveys of Termitomyces fungus gardens (fungus combs) of fungus-growing termites led to the discovery of characteristic ophiostomatalean-like fruiting structures. In this study, these ophiostomatalean-like fungi were identified using morphological characteristics, conventional molecular markers, and whole genome sequencing. In addition, the influence of the extracts derived from various parts of Termitomyces combs on the growth of these fungi in culture was considered. Based on phylogenomic analyses, two new genera (Intubia and Chrysosphaeria) were introduced to accommodate these ophiostomatalean species. Phylogenetic analyses revealed that the isolates resided in three well-supported lineages, and these were described as three new species (Intubia macrotermitinarum, I. oerlemansii, and Chrysosphaeria jan-nelii). Culture-based studies showed that these species do not depend on the Termitomyces comb material for growth.
Collapse
Affiliation(s)
- Wilma J Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Duur K Aanen
- Laboratory of Genetics, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
17
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
18
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
19
|
Sayari M, van der Nest MA, Steenkamp ET, Rahimlou S, Hammerbacher A, Wingfield BD. Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae. J Fungi (Basel) 2021; 7:237. [PMID: 33809900 PMCID: PMC8004197 DOI: 10.3390/jof7030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Magrieta A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
- Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| | - Saleh Rahimlou
- Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia;
| | - Almuth Hammerbacher
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| |
Collapse
|
20
|
van der Nest MA, Chávez R, De Vos L, Duong TA, Gil-Durán C, Ferreira MA, Lane FA, Levicán G, Santana QC, Steenkamp ET, Suzuki H, Tello M, Rakoma JR, Vaca I, Valdés N, Wilken PM, Wingfield MJ, Wingfield BD. IMA genome - F14 : Draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi. IMA Fungus 2021; 12:5. [PMID: 33673862 PMCID: PMC7934431 DOI: 10.1186/s43008-021-00055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented. Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both the pathogenicity and biotechnological potential of these species.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Maria Alves Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras/UFLA, Lavras, MG, 37200-000, Brazil
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Mario Tello
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Jostina R Rakoma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalia Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
21
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Wit M, Leng Y, Du Y, Cegiełko M, Jabłońska E, Wakuliński W, Zhong S. Genome Sequence Resources for the Maize Pathogen Fusarium temperatum Isolated in Poland. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:214-217. [PMID: 33064593 DOI: 10.1094/mpmi-09-20-0266-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium temperatum (Scaufl. & Munaut) is one of the most important fungal pathogens that cause ear and stalk rots in maize. In this study, we sequenced genomes of two F. temperatum isolates (KFI615 and KFI660) isolated from corn ears in Poland. A total of 110.3 and 116.3 million 100-nucleotide paired-end clean reads were obtained for KFI615 and KFI660, which were assembled into 20 and 18 scaffolds with an estimated genome size of 45.21 and 45.00 Mb, respectively. These genome sequences provide important resources for understanding pathogenicity and biology of the pathogens within the Fusarium fujikuroi complex.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marcin Wit
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Yang Du
- Department of Computer Systems and Software Engineering, Valley City State University, Valley City, ND 58072, U.S.A
| | | | - Emilia Jabłońska
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Wojciech Wakuliński
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
23
|
Tavares MP, Morgan T, Gomes RF, Rodrigues MQRB, Castro-Borges W, de Rezende ST, de Oliveira Mendes TA, Guimarães VM. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis. J Proteomics 2021; 236:104121. [PMID: 33540065 DOI: 10.1016/j.jprot.2021.104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
The phytopathogenic fungus Chrysoporthe cubensis has a great capacity to produce highly efficient enzymes for the hydrolysis of lignocellulosic biomass. The bioinfosecretome of C. cubensis was identified by computational predictions of secreted proteins combined with protein analysis using 1D-LC-MS/MS. The in silico secretome predicted 562 putative genes capable of encoding secreted proteins, including 273 CAZymes. Proteomics analysis confirmed the existence of 313 proteins, including 137 CAZymes classified as Glycosyl Hydrolases (GH), Polysaccharide Lyases (PL), Carbohydrate Esterases (CE) and Auxiliary Activities enzymes (AA), which indicates the presence of classical and oxidative cellulolytic mechanisms. The enzymes diversity in the extract shows fungal versatility to act in complex biomasses. This study provides an insight into the lignocellulose-degradation mechanisms by C. cubensis and allows the identification of the enzymes that are potentially useful in improving industrial process of bioconversion of lignocellulose. SIGNIFICANCE: Chrysoporthe cubensis is an important deadly canker pathogen of commercially cultivated Eucalyptus species. The effective depolymerisation of the recalcitrant plant cell wall performed by this fungus is closely related to its high potential of lignocellulolytic enzymes secretion. Since the degradation of biomass occurs in nature almost exclusively by enzyme secretion systems, it is reasonable to suggest that the identification of C. cubensis lignocellulolytic enzymes is relevant in contributing to new sustainable alternatives for industrial solutions. As far as we know, this work is the first accurate proteomic evaluation of the enzymes secreted by this species of fungus. The integration of the gel-based proteomic approach, the bioinformatic prediction of the secretome and the analyses of enzymatic activity are powerful tools in the evaluation of biotechnological potential of C. cubensis in producing carbohydrate-active enzymes. In addition, analysis of the C. cubensis secretome grown in wheat bran draws attention to this plant pathogen and its extracellular enzymatic machinery, especially regarding the identification of promising new enzymes for industrial applications. The results from this work allowed for explanation and reinforce previous research that revealed C. cubensis as a strong candidate to produce enzymes to hydrolyse sugarcane bagasse and similar substrates.
Collapse
Affiliation(s)
- Murillo Peterlini Tavares
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Túlio Morgan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Riziane Ferreira Gomes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | | - William Castro-Borges
- Department of Biological Science, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - Sebastião Tavares de Rezende
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Valéria Monteze Guimarães
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
24
|
Fumero MV, Yue W, Chiotta ML, Chulze SN, Leslie JF, Toomajian C. Divergence and Gene Flow Between Fusarium subglutinans and F. temperatum Isolated from Maize in Argentina. PHYTOPATHOLOGY 2021; 111:170-183. [PMID: 33079019 DOI: 10.1094/phyto-09-20-0434-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium subglutinans and F. temperatum are two important fungal pathogens of maize whose distinctness as separate species has been difficult to assess. We isolated strains of these species from commercial and native maize varieties in Argentina and sequenced >28,000 loci to estimate genetic variation in the sample. Our objectives were to measure genetic divergence between the species, infer demographic parameters related to their split, and describe the population structure of the sample. When analyzed together, over 30% of each species' polymorphic sites (>2,500 sites) segregate as polymorphisms in the other. Demographic modeling confirmed the species split predated maize domestication, but subsequent between-species gene flow has occurred, with gene flow from F. subglutinans into F. temperatum greater than gene flow in the reverse direction. In F. subglutinans, little evidence exists for substructure or recent selective sweeps, but there is evidence for limited sexual reproduction. In F. temperatum, there is clear evidence for population substructure and signals of abundant recent selective sweeps, with sexual reproduction probably less common than in F. subglutinans. Both genetic variation and the relative number of polymorphisms shared between species increase near the telomeres of all 12 chromosomes, where genes related to plant-pathogen interactions often are located. Our results suggest that species boundaries between closely related Fusarium species can be semipermeable and merit further study. Such semipermeability could facilitate unanticipated genetic exchange between species and enable quicker permanent responses to changes in the agro-ecosystem, e.g., pathogen-resistant host varieties, new chemical and biological control agents, and agronomic practices.
Collapse
Affiliation(s)
- M Veronica Fumero
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - María L Chiotta
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Sofía N Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | | |
Collapse
|
25
|
Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere 2020; 5:5/5/e00737-20. [PMID: 33055257 PMCID: PMC7565894 DOI: 10.1128/msphere.00737-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. Emerging fungal pathogens are a threat to forest and agroecosystems, as well as animal and human health. How pathogens evolve from nonpathogenic ancestors is still poorly understood, making the prediction of future outbreaks challenging. Most pathogens have evolved lifestyle adaptations, which were enabled by specific changes in the gene content of the species. Hence, understanding transitions in the functions encoded by genomes gives valuable insight into the evolution of pathogenicity. Here, we studied lifestyle evolution in the genus Cryphonectria, including the prominent invasive pathogen Cryphonectria parasitica, the causal agent of chestnut blight on Castanea species. We assembled and compared the genomes of pathogenic and putatively nonpathogenic Cryphonectria species, as well as sister group pathogens in the family Cryphonectriaceae (Diaporthales, Ascomycetes), to investigate the evolution of genome size and gene content. We found a striking loss of genes associated with carbohydrate metabolism (CAZymes) in C. parasitica compared to other Cryphonectriaceae. Despite substantial CAZyme gene loss, experimental data suggest that C. parasitica has retained wood colonization abilities shared with other Cryphonectria species. Putative effectors substantially varied in number, cysteine content, and protein length among species. In contrast, secondary metabolite gene clusters show a high degree of conservation within the genus. Overall, our results underpin the recent lifestyle transition of C. parasitica toward a more pathogenic lifestyle. Our findings suggest that a CAZyme loss may have promoted pathogenicity of C. parasitica on Castanea species. Analyzing gene complements underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. IMPORTANCE Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens.
Collapse
|
26
|
Wu G, Schuelke TA, Iriarte G, Broders K. The genome of the butternut canker pathogen, Ophiognomonia clavigignenti-juglandacearum shows an elevated number of genes associated with secondary metabolism and protection from host resistance responses. PeerJ 2020; 8:e9265. [PMID: 32655988 PMCID: PMC7331620 DOI: 10.7717/peerj.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Ophiognomonia clavigignenti-juglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.
Collapse
Affiliation(s)
- Guangxi Wu
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Taruna A Schuelke
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gloria Iriarte
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Kirk Broders
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
27
|
Fumero MV, Villani A, Susca A, Haidukowski M, Cimmarusti MT, Toomajian C, Leslie JF, Chulze SN, Moretti A. Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species Fusarium subglutinans and Fusarium temperatum. Appl Environ Microbiol 2020; 86:e00133-20. [PMID: 32358011 PMCID: PMC7301838 DOI: 10.1128/aem.00133-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
Fusarium subglutinans and Fusarium temperatum are common maize pathogens that produce mycotoxins and cause plant disease. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant. Our objective was to clarify this situation by determining both the chemotypes and genotypes for strains from both species. We analyzed 25 strains from Argentina, 13 F. subglutinans and 12 F. temperatum strains, for toxin production by ultraperformance liquid chromatography mass spectrometry (UPLC-MS). We used new genome sequences from two strains of F. subglutinans and one strain of F. temperatum, plus genomes of other Fusarium species, to determine the presence of functional gene clusters for the synthesis of these toxins. None of the strains examined from either species produced fumonisins. These strains also lack Fum biosynthetic genes but retain homologs of some genes that flank the Fum cluster in Fusarium verticillioides None of the F. subglutinans strains we examined produced beauvericin although 9 of 12 F. temperatum strains did. A complete beauvericin (Bea) gene cluster was present in all three new genome sequences. The Bea1 gene was presumably functional in F. temperatum but was not functional in F. subglutinans due to a large insertion and multiple mutations that resulted in premature stop codons. The accumulation of only a few mutations expected to disrupt Bea1 suggests that the process of its inactivation is relatively recent. Thus, none of the strains of F. subglutinans or F. temperatum we examined produce fumonisins, and the strains of F. subglutinans examined also cannot produce beauvericin. Variation in the ability of strains of F. temperatum to produce beauvericin requires further study and could reflect the recent shared ancestry of these two species.IMPORTANCEFusarium subglutinans and F. temperatum are sister species and maize pathogens commonly isolated worldwide that can produce several mycotoxins and cause seedling disease, stalk rot, and ear rot. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant at the species level. Our results are consistent with previous reports that strains of F. subglutinans produce neither fumonisins nor beauvericin. The status of toxin production by F. temperatum needs further work. Our strains of F. temperatum did not produce fumonisins, while some strains produced beauvericin and others did not. These results enable more accurate risk assessments of potential mycotoxin contamination if strains of these species are present. The nature of the genetic inactivation of BEA1 is consistent with its relatively recent occurrence and the close phylogenetic relationship of the two sister species.
Collapse
Affiliation(s)
- M Veronica Fumero
- Research Institute on Mycology and Mycotoxicology, National Research Council of Argentina, National University of Rio Cuarto, Rio Cuarto, Cordoba, Argentina
| | | | - Antonia Susca
- Institute of Sciences of Food Production, CNR, Bari, Italy
| | | | | | | | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Sofia N Chulze
- Research Institute on Mycology and Mycotoxicology, National Research Council of Argentina, National University of Rio Cuarto, Rio Cuarto, Cordoba, Argentina
| | | |
Collapse
|
28
|
Kanzi AM, Trollip C, Wingfield MJ, Barnes I, Van der Nest MA, Wingfield BD. Phylogenomic incongruence in Ceratocystis: a clue to speciation? BMC Genomics 2020; 21:362. [PMID: 32408859 PMCID: PMC7222570 DOI: 10.1186/s12864-020-6772-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
Background The taxonomic history of Ceratocystis, a genus in the Ceratocystidaceae, has been beset with questions and debate. This is due to many of the commonly used species recognition concepts (e.g., morphological and biological species concepts) providing different bases for interpretation of taxonomic boundaries. Species delineation in Ceratocystis primarily relied on genealogical concordance phylogenetic species recognition (GCPSR) using multiple standard molecular markers. Results Questions have arisen regarding the utility of these markers e.g., ITS, BT and TEF1-α due to evidence of intragenomic variation in the ITS, as well as genealogical incongruence, especially for isolates residing in a group referred to as the Latin-American clade (LAC) of the species. This study applied a phylogenomics approach to investigate the extent of phylogenetic incongruence in Ceratocystis. Phylogenomic analyses of a total of 1121 shared BUSCO genes revealed widespread incongruence within Ceratocystis, particularly within the LAC, which was typified by three equally represented topologies. Comparative analyses of the individual gene trees revealed evolutionary patterns indicative of hybridization. The maximum likelihood phylogenetic tree generated from the concatenated dataset comprised of 1069 shared BUSCO genes provided improved phylogenetic resolution suggesting the need for multiple gene markers in the phylogeny of Ceratocystis. Conclusion The incongruence observed among single gene phylogenies in this study call into question the utility of single or a few molecular markers for species delineation. Although this study provides evidence of interspecific hybridization, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage. This study also highlights the utility of BUSCO genes as a set of multiple orthologous genes for phylogenomic studies.
Collapse
Affiliation(s)
- Aquillah M Kanzi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Conrad Trollip
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.,Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, Australia
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Magriet A Van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.,Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Santos SA, Vidigal PMP, Thrimawithana A, Betancourth BML, Guimarães LMS, Templeton MD, Alfenas AC. Comparative genomic and transcriptomic analyses reveal different pathogenicity-related genes among three eucalyptus fungal pathogens. Fungal Genet Biol 2020; 137:103332. [PMID: 31926322 DOI: 10.1016/j.fgb.2019.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/30/2019] [Accepted: 12/27/2019] [Indexed: 01/26/2023]
Abstract
Ceratocystis fimbriata is an important plant pathogen known to cause Ceratocystis Wilt (CW), a prevalent fungal disease known to affect Eucalyptus spp. plantations in Brazil. To better understand the molecular mechanisms related to pathogenicity in eucalyptus, we generated a high-quality assembly and annotation of the Ce. fimbriata LPF1912 isolate (LPF1912) genome, as well as the first transcriptome of LPF1912 from 16 eucalyptus clones at three infection incubation periods (12, 18, and 24 h). The LPF1912 genome assembly contains 805 scaffolds, totaling 31.8 Mb, with 43% of the genome estimated to be coding sequence comprised of 7,390 protein-coding genes of which 626 (8.5%) were classified as secreted proteins, 120 ribosomal RNAs, and 532 transfer RNAs. Comparative genomic analysis among three eucalyptus fungal pathogens (Ce. fimbriata, Ce. eucalypticola, and Calonectria pseudoreteaudii), showed high similarity in the proteome (21.81%) and secretome (52.01%) of LPF1912 and Ce. eucalypticola. GO annotation of pathogenicity-related genes of LPF1912 and Ce. eucalypticola, revealed enrichment in cell wall degrading enzymes (CWDEs), and lipid/cutin metabolism for Ca. pseudoreteaudii. Additionally, a transcriptome analysis between resistant and susceptible eucalyptus clones to CW infection indicated that a majority (11) of LPF1912 differentially expressed genes had GO terms associated with enzymatic functions, such as the polygalacturonase gene family, confirming the crucial role of CWDEs for Ce. fimbriata pathogenicity. Finally, our genomic and transcriptomic analysis approach provides a better understanding of the mechanisms involved in Ce. fimbriata pathogenesis, as well as a framework for further studies.
Collapse
Affiliation(s)
- Samuel A Santos
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, Brazil; The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Pedro M P Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências Biológicas, Universidade Federal de Viçosa, Minas Gerais State, Brazil
| | - Amali Thrimawithana
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Blanca M L Betancourth
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, Brazil
| | - Lúcio M S Guimarães
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, Brazil
| | - Matthew D Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Acelino C Alfenas
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, Brazil.
| |
Collapse
|
30
|
Liu F, Chen S, Ferreira MA, Chang R, Sayari M, Kanzi AM, Wingfield BD, Wingfield MJ, Pizarro D, Crespo A, Divakar PK, de Beer ZW, Duong TA. Draft genome sequences of five Calonectria species from Eucalyptus plantations in China, Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa. IMA Fungus 2019; 10:22. [PMID: 32647626 PMCID: PMC7325655 DOI: 10.1186/s43008-019-0023-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Draft genome sequences of five Calonectria species [including Calonectria aciculata, C. crousiana, C. fujianensis, C. honghensis and C. pseudoturangicola], Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa are presented. Species of Calonectria are the causal agents of Eucalyptus leaf blight disease, threatening the growth and sustainability of Eucalyptus plantations in China. Celoporthe dispersa is the causal agent of stem canker in native Syzygium cordatum and exotic Tibouchina granulosa in South Africa. Sporothrix phasma was first discovered in the infructescences of Protea laurifolia and Protea neriifolia in South Africa. Alectoria sarmentosa is fruticose lichen belongs to the alectorioid clade of the family Parmeliaceae. The availability of these genome sequences will facilitate future studies on the systematics, population genetics, and genomics of these fungi.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Shuaifei Chen
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Maria A Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras (Federal University of Lavras), Postal Box 3037, Lavras, 37200-000 Brazil
| | - Runlei Chang
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Mohammad Sayari
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Aquillah M Kanzi
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
31
|
Wingfield BD, Fourie A, Simpson MC, Bushula-Njah VS, Aylward J, Barnes I, Coetzee MPA, Dreyer LL, Duong TA, Geiser DM, Roets F, Steenkamp ET, van der Nest MA, van Heerden CJ, Wingfield MJ. IMA Genome-F 11: Draft genome sequences of Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis and genome annotation for Ceratocystis fimbriata. IMA Fungus 2019; 10:13. [PMID: 32355613 PMCID: PMC7184890 DOI: 10.1186/s43008-019-0013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023] Open
Abstract
Draft genomes of the fungal species Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis are presented. In addition an annotation of the genome of Ceratocystis fimbriata is presented. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity and potential management strategies of these economically important fungi.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Arista Fourie
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Melissa C. Simpson
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Vuyiswa S. Bushula-Njah
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Léanne L. Dreyer
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - David M. Geiser
- Fusarium Research Center, Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Lab, University Park, State College, PA 16802 USA
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - E. T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - Magriet A. van der Nest
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
- Biotechnology Platform, Agricultural Research Council, Private Bag X05, Onderstepoort, 0002 South Africa
| | - Carel J. van Heerden
- Central Analytical Facilities, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| |
Collapse
|
32
|
van der Nest MA, Steenkamp ET, Roodt D, Soal NC, Palmer M, Chan WY, Wilken PM, Duong TA, Naidoo K, Santana QC, Trollip C, De Vos L, van Wyk S, McTaggart AR, Wingfield MJ, Wingfield BD. Genomic analysis of the aggressive tree pathogen Ceratocystis albifundus. Fungal Biol 2019; 123:351-363. [PMID: 31053324 DOI: 10.1016/j.funbio.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The overall goal of this study was to determine whether the genome of an important plant pathogen in Africa, Ceratocystis albifundus, is structured into subgenomic compartments, and if so, to establish how these compartments are distributed across the genome. For this purpose, the publicly available genome of C. albifundus was complemented with the genome sequences for four additional isolates using the Illumina HiSeq platform. In addition, a reference genome for one of the individuals was assembled using both PacBio and Illumina HiSeq technologies. Our results showed a high degree of synteny between the five genomes, although several regions lacked detectable long-range synteny. These regions were associated with the presence of accessory genes, lower genetic similarity, variation in read-map depth, as well as transposable elements and genes associated with host-pathogen interactions (e.g. effectors and CAZymes). Such patterns are regarded as hallmarks of accelerated evolution, particularly of accessory subgenomic compartments in fungal pathogens. Our findings thus showed that the genome of C. albifundus is made-up of core and accessory subgenomic compartments, which is an important step towards characterizing its pangenome. This study also highlights the value of comparative genomics for understanding mechanisms that may underly and influence the biology and evolution of pathogens.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicole C Soal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Conrad Trollip
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Stephanie van Wyk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
The mating system of the Eucalyptus canker pathogen Chrysoporthe austroafricana and closely related species. Fungal Genet Biol 2019; 123:41-52. [DOI: 10.1016/j.fgb.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022]
|
34
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
35
|
Alshannaq AF, Gibbons JG, Lee MK, Han KH, Hong SB, Yu JH. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci Rep 2018; 8:16871. [PMID: 30442975 PMCID: PMC6237848 DOI: 10.1038/s41598-018-35246-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Aflatoxins (AFs) are a group of carcinogenic and immunosuppressive mycotoxins that threaten global food safety. Globally, over 4.5 billion people are exposed to unmonitored levels of AFs. Aspergillus flavus is the major source of AF contamination in agricultural crops. One approach to reduce levels of AFs in agricultural commodities is to apply a non-aflatoxigenic competitor, e.g., Afla-Guard, to crop fields. In this study, we demonstrate that the food fermenting Aspergillus oryzae M2040 strain, isolated from Korean Meju (a brick of dry-fermented soybeans), can inhibit aflatoxin B1 (AFB1) production and proliferation of toxigenic A. flavus in lab culture conditions and peanuts. In peanuts, 1% inoculation level of A. oryzae M2040 could effectively displace the toxigenic A. flavus and inhibit AFB1 production. Moreover, cell-free culture filtrate of A. oryzae M2040 effectively inhibited AFB1 production and A. flavus growth, suggesting A. oryzae M2040 secretes inhibitory compounds. Whole genome-based comparative analyses indicate that the A. oryzae M2040 and Afla-Guard genomes are 37.9 and 36.4 Mbp, respectively, with each genome containing ~100 lineage specific genes. Our study establishes the idea of using A. oryzae and/or its cell-free culture fermentate as a potent biocontrol agent to control A. flavus propagation and AF contamination.
Collapse
Affiliation(s)
- Ahmad F Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI, 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Mi-Kyung Lee
- Biological resource center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, 55338, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, NAS, RDA, Wanju, Republic of Korea
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Heterothallism revealed in the root rot fungi Berkeleyomyces basicola and B. rouxiae. Fungal Biol 2018; 122:1031-1040. [PMID: 30342619 DOI: 10.1016/j.funbio.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022]
Abstract
Berkeleyomyces basicola and Berkeleyomyces rouxiae, two sister species previously treated collectively as Thielaviopsis basicola, reside in the Ceratocystidaceae (Microascales, Ascomycota). Both species are important root pathogens of many important agricultural crops and ornamental plants. Although T. basicola has been known for more than 150y, a sexual state has never been found and it has been assumed to be an asexual pathogen. The aim of this study was to determine the mating strategy of the two Berkeleyomyces species. Investigation of the genome sequences of two B. basicola isolates allowed for the complete characterization of the MATlocus, revealing that it has a typical heterothallic mating system with the MAT1-1andMAT1-2 idiomorphs occurring in different isolates. PCR amplification using mating type primers developed in this study, showed that the MAT1-1-1andMAT1-2-1 genes were also present in different isolates of B. rouxiae. Pairing of isolates representing the two mating types of both species,using a variety of techniques failed to produce sexual structures. Although we have found no direct evidence that they reproduce sexually, these fungi are clearly heterothallic with both mating types occurring in some countries suggesting that a cryptic sexual cycle could exist for them.
Collapse
|
37
|
Wingfield BD, Liu M, Nguyen HDT, Lane FA, Morgan SW, De Vos L, Wilken PM, Duong TA, Aylward J, Coetzee MPA, Dadej K, De Beer ZW, Findlay W, Havenga M, Kolařík M, Menzies JG, Naidoo K, Pochopski O, Shoukouhi P, Santana QC, Seifert KA, Soal N, Steenkamp ET, Tatham CT, van der Nest MA, Wingfield MJ. Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans. IMA Fungus 2018; 9:401-418. [PMID: 30622889 PMCID: PMC6317589 DOI: 10.5598/imafungus.2018.09.02.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.
Collapse
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Miao Liu
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Hai D T Nguyen
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Seamus W Morgan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Kasia Dadej
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Z Wilhelm De Beer
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Wendy Findlay
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Minette Havenga
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jim G Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba R6M 1Y5, Canada
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Olivia Pochopski
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Parivash Shoukouhi
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Keith A Seifert
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Nicole Soal
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Catherine T Tatham
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Margriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
38
|
Wingfield BD, Bills GF, Dong Y, Huang W, Nel WJ, Swalarsk-Parry BS, Vaghefi N, Wilken PM, An Z, de Beer ZW, De Vos L, Chen L, Duong TA, Gao Y, Hammerbacher A, Kikkert JR, Li Y, Li H, Li K, Li Q, Liu X, Ma X, Naidoo K, Pethybridge SJ, Sun J, Steenkamp ET, van der Nest MA, van Wyk S, Wingfield MJ, Xiong C, Yue Q, Zhang X. IMA Genome-F 9: Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf . hyalina, and Morchella septimelata. IMA Fungus 2018; 9:199-223. [PMID: 30018880 PMCID: PMC6048567 DOI: 10.5598/imafungus.2018.09.01.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 11/05/2022] Open
Abstract
Draft genomes of the species Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina and Morchella septimelata are presented. Both mating types (MAT1-1 and MAT1-2) of Cercospora beticola are included. Two strains of Coleophoma cylindrospora that produce sulfated homotyrosine echinocandin variants, FR209602, FR220897 and FR220899 are presented. The sequencing of Aspergillus mulundensis, Coleophoma cylindrospora and Phialophora cf. hyalina has enabled mapping of the gene clusters encoding the chemical diversity from the echinocandin pathways, providing data that reveals the complexity of secondary metabolism in these different species. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity (in some cases), biology and toxin production of these economically important fungi.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Gerald F. Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- College of Biological Big Data, Yunnan Agriculture University, Kunming 650504, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610065, Sichuan, China
| | - Wilma J. Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Benedicta S. Swalarsk-Parry
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Niloofar Vaghefi
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Li Chen
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Yun Gao
- Nowbio Biotechnology Company, Kunming, 650201,Yunnan, China
| | - Almuth Hammerbacher
- Department of Zoology Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | | | - Yan Li
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Li
- Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610065, Sichuan, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Ma
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, Yunnan, China
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Sarah J. Pethybridge
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Jingzu Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Magriet A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Stephanie van Wyk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610065, Sichuan, China
| | - Qun Yue
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Diversity and evolution of polyketide biosynthesis gene clusters in the Ceratocystidaceae. Fungal Biol 2018; 122:856-866. [PMID: 30115319 DOI: 10.1016/j.funbio.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/30/2018] [Accepted: 04/25/2018] [Indexed: 01/26/2023]
Abstract
Polyketides are secondary metabolites with diverse biological activities. Polyketide synthases (PKS) are often encoded from genes clustered in the same genomic region. Functional analyses and genomic studies show that most fungi are capable of producing a repertoire of polyketides. We considered the potential of Ceratocystidaceae for producing polyketides using a comparative genomics approach. Our aims were to identify the putative polyketide biosynthesis gene clusters, to characterize them and predict the types of polyketide compounds they might produce. We used sequences from nineteen species in the genera, Ceratocystis, Endoconidiophora, Davidsoniella, Huntiella, Thielaviopsis and Bretziella, to identify and characterize PKS gene clusters, by employing a range of bioinformatics and phylogenetic tools. We showed that the genomes contained putative clusters containing a non-reducing type I PKS and a type III PKS. Phylogenetic analyses suggested that these genes were already present in the ancestor of the Ceratocystidaceae. By contrast, the various reducing type I PKS-containing clusters identified in these genomes appeared to have distinct evolutionary origins. Although one of the identified clusters potentially allows for the production of melanin, their functional characterization will undoubtedly reveal many novel and important compounds implicated in the biology of the Ceratocystidaceae.
Collapse
|
40
|
Wilken PM, Steenkamp ET, van der Nest MA, Wingfield MJ, de Beer ZW, Wingfield BD. Unexpected placement of the MAT1-1-2 gene in the MAT1-2 idiomorph of Thielaviopsis. Fungal Genet Biol 2018; 113:32-41. [PMID: 29409964 DOI: 10.1016/j.fgb.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 01/24/2023]
Abstract
Sexual reproduction in the Ascomycota is controlled by genes encoded at the mating-type or MAT1 locus. The two allelic versions of this locus in heterothallic species, referred to as idiomorphs, are defined by the MAT1-1-1 (for the MAT1-1 idiomorph) and MAT1-2-1 (for the MAT1-2 idiomorph) genes. Both idiomorphs can contain additional genes, although the contents of each is typically specific to and conserved within particular Pezizomycotina lineages. Using full genome sequences, complemented with conventional PCR and Sanger sequencing, we compared the mating-type idiomorphs in heterothallic species of Thielaviopsis (Ceratocystidaceae). The analyses showed that the MAT1-1 idiomorph of T. punctulata, T. paradoxa, T. euricoi, T. ethacetica and T. musarum harboured only the expected MAT1-1-1 gene. In contrast, the MAT1-2 idiomorph of T. punctulata, T. paradoxa and T. euricoi encoded the MAT1-2-1, MAT1-2-7 and MAT1-1-2 genes. Of these, MAT1-2-1 and MAT1-2-7 are genes previously reported in this idiomorph, while MAT1-1-2 is known only in the MAT1-1 idiomorph. Phylogenetic analysis showed that the Thielaviopsis MAT1-1-2 groups with the known homologues of this gene in other Microascales, thus confirming its annotation. Previous work suggests that MAT1-1-2 is involved in fruiting body development, a role that would be unaffected by its idiomorphic position. This notion is supported by our findings for the MAT1 locus structure in Thielaviopsis species. This also serves as the first example of a MAT1-1-specific gene restricted to only the MAT1-2 idiomorph.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
41
|
Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Gregoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Boberg J, Gonthier P, Pautasso M. Pest categorisation of Davidsoniella virescens. EFSA J 2017; 15:e05104. [PMID: 32625386 PMCID: PMC7009948 DOI: 10.2903/j.efsa.2017.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health (PLH) performed a pest categorisation of Davidsoniella virescens, a well‐defined and distinguishable fungal species of the family Ceratocystidaceae. The species was moved from the genus Ceratocystis to the genus Davidsoniella following a revision of the family. The former species name Ceratocystis virescens is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IIAI as a harmful organism whose introduction into the EU is banned on plants (other than fruit and seeds) and wood (including wood which has not kept its natural round surface) of Acer saccharum, originating in the USA and Canada. The fungus is native to eastern North America and causes symptoms mainly on A. saccharum, but also on Liriodendron tulipifera. The fungus is also reported as a saprotroph on various hardwood species. The pest could enter the EU via wood, plants for planting and cut branches. Hosts and favourable climatic conditions are widespread in the EU. The pest would be able to spread following establishment through sap‐feeding insects, root grafts and movement of infected wood and plants for planting. The pest introduction could have impacts on Acer spp. and L. tulipifera trees in the EU, by causing wilting, yellowing and the development of small leaves, as well as dieback of branches and, eventually, the death of trees. Avoiding damaging trees (as wounding facilitates infection of the fungus) and maintaining healthy trees (as tree stress facilitates the disease) are available measures to reduce impacts. The main knowledge gaps concern (i) the biology and epidemiology of the pathogen (including the saprotrophic form), (ii) the role of insect vectors for entry and spread, and (iii) the susceptibility of Acer spp. either native to or more recently established in Europe. The criteria assessed by the Panel for consideration as potential quarantine pest are met. For regulated non‐quarantine pests, the criterion on the pest presence in the EU is not met.
Collapse
|
42
|
Wingfield BD, Berger DK, Steenkamp ET, Lim HJ, Duong TA, Bluhm BH, de Beer ZW, De Vos L, Fourie G, Naidoo K, Olivier N, Lin YC, Van de Peer Y, Joubert F, Crampton BG, Swart V, Soal N, Tatham C, van der Nest MA, van der Merwe NA, van Wyk S, Wilken PM, Wingfield MJ. IMA Genome-F 8: Draft genome of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens and Ophiostoma ips. IMA Fungus 2017; 8:385-396. [PMID: 29242781 PMCID: PMC5729718 DOI: 10.5598/imafungus.2017.08.02.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 11/29/2022] Open
Abstract
The genomes of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens, and Ophiostoma ips are presented in this genome announcement. Three of these genomes are from plant pathogens and otherwise economically important fungal species. Fusarium pininemorale and H. decipiens are not known to cause significant disease but are closely related to species of economic importance. The genome sizes range from 25.99 Mb in the case of O. ips to 4.82 Mb for H. lignivorus. These genomes include the first reports of a genome from the genus Hawksworthiomyces. The availability of these genome data will allow the resolution of longstanding questions regarding the taxonomy of these species. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these species or close relatives cause disease.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Dave K. Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Hye-Jin Lim
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Burton H. Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, USA
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Lieschen De Vos
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - G. Fourie
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Nicky Olivier
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Yao-Cheng Lin
- VIB Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- VIB Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Bridget G. Crampton
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicole Soal
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Catherine Tatham
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Stephanie van Wyk
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
43
|
Vanderpool D, Bracewell RR, McCutcheon JP. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol Ecol 2017; 27:2077-2094. [PMID: 29087025 DOI: 10.1111/mec.14394] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Bark and ambrosia beetles are highly specialized weevils (Curculionidae) that have established diverse symbioses with fungi, most often from the order Ophiostomatales (Ascomycota, Sordariomycetes). The two types of beetles are distinguished by their feeding habits and intimacy of interactions with their symbiotic fungi. The tree tissue diet of bark beetles is facilitated by fungi, while ambrosia beetles feed solely on fungi that they farm. The farming life history strategy requires domestication of a fungus, which the beetles consume as their sole food source. Ambrosia beetles in the subfamily Platypodinae originated in the mid-Cretaceous (119-88 Ma) and are the oldest known group of farming insects. However, attempts to resolve phylogenetic relationships and the timing of domestication events for fungal cultivars have been largely inconclusive. We sequenced the genomes of 12 ambrosia beetle fungal cultivars and bark beetle associates, including the devastating laurel wilt pathogen, Raffaelea lauricola, to estimate a robust phylogeny of the Ophiostomatales. We find evidence for contemporaneous diversification of the beetles and their associated fungi, followed by three independent domestication events of the ambrosia fungi genus Raffaelea. We estimate the first domestication of an Ophiostomatales fungus occurred ~86 Ma, 25 million years earlier than prior estimates and in close agreement with the estimated age of farming in the Platypodinae (96 Ma). Comparisons of the timing of fungal domestication events with the timing of beetle radiations support the hypothesis that the first large beetle radiations may have spread domesticated "ambrosia" fungi to other fungi-associated beetle groups, perhaps facilitating the evolution of new farming lineages.
Collapse
Affiliation(s)
- Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ryan R Bracewell
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
44
|
Sbaraini N, Andreis FC, Thompson CE, Guedes RLM, Junges Â, Campos T, Staats CC, Vainstein MH, Ribeiro de Vasconcelos AT, Schrank A. Genome-Wide Analysis of Secondary Metabolite Gene Clusters in O phiostoma ulmi and Ophiostoma novo-ulmi Reveals a Fujikurin-Like Gene Cluster with a Putative Role in Infection. Front Microbiol 2017; 8:1063. [PMID: 28659888 PMCID: PMC5468452 DOI: 10.3389/fmicb.2017.01063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp.) in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi), along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs) have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8) was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus’ lifestyle.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Fábio C Andreis
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Claudia E Thompson
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Rafael L M Guedes
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Ângela Junges
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Thais Campos
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Charley C Staats
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilene H Vainstein
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ana T Ribeiro de Vasconcelos
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Laboratório Nacional de Computação CientíficaPetrópolis, Brazil
| | - Augusto Schrank
- Rede Avançada em Biologia ComputacionalPetrópolis, Brazil.,Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
45
|
Marin-Felix Y, Groenewald J, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer Z, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde K, Jayawardena R, Lombard L, Luangsa-ard J, McTaggart A, Rossman A, Sandoval-Denis M, Shen M, Shivas R, Tan Y, van der Linde E, Wingfield M, Wood A, Zhang J, Zhang Y, Crous P. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 2017; 86:99-216. [PMID: 28663602 PMCID: PMC5486355 DOI: 10.1016/j.simyco.2017.04.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - S. Marincowitz
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - I. Barnes
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany
| | - U. Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany
| | - E. Camporesi
- A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy
- A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy
- Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Z.W. de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Dissanayake
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - J. Edwards
- AgriBio Centre for AgriBiosciences, Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road, LaTrobe University, Bundoora, Victoria 3083, Australia
| | - A. Giraldo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K.D. Hyde
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R.S. Jayawardena
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113 Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - A.R. McTaggart
- Department of Plant and Soil Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A.Y. Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - M. Shen
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - R.G. Shivas
- Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y.P. Tan
- Department of Agriculture & Fisheries, Biosecurity Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
| | - E.J. van der Linde
- ARC – Plant Protection Research Institute, Biosystematics Division – Mycology, P. Bag X134, Queenswood 0121, South Africa
| | - M.J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, P. Bag X5017, Stellenbosch 7599, South Africa
| | - J.Q. Zhang
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - Y. Zhang
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Wingfield BD, Duong TA, Hammerbacher A, van der Nest MA, Wilson A, Chang R, Wilhelm de Beer Z, Steenkamp ET, Wilken PM, Naidoo K, Wingfield MJ. IMA Genome-F 7: Draft genome sequences for Ceratocystis fagacearum, C. harringtonii, Grosmannia penicillata, and Huntiella bhutanensis. IMA Fungus 2016; 7:317-323. [PMID: 27990338 PMCID: PMC5159602 DOI: 10.5598/imafungus.2016.07.02.11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022] Open
Abstract
Draft genomes for the fungi Ceratocystis fagacearum, C. harringtonii, Grosmannia penicillata, and Huntiella bhutanensis are presented. Ceratocystis fagacearum is a major causal agent of vascular wilt of oaks and other trees in the family Fagaceae. Ceratocystis harringtonii, previously known as C. populicola, causes disease in Populus species in the USA and Canada. Grosmannia penicillata is the causal agent of bluestain of sapwood on various conifers, including Picea spp. and Pinus spp. in Europe. Huntiella bhutanensis is a fungus in Ceratocystidaceae and known only in association with the bark beetle Ips schmutzenhorferi that infests Picea spinulosa in Bhutan. The availability of these genomes will facilitate further studies on these fungi.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andi Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Runlei Chang
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
47
|
Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species. PLoS One 2016; 11:e0156104. [PMID: 27272523 PMCID: PMC4894602 DOI: 10.1371/journal.pone.0156104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.
Collapse
|
48
|
Wingfield BD, Ambler JM, Coetzee MP, de Beer ZW, Duong TA, Joubert F, Hammerbacher A, McTaggart AR, Naidoo K, Nguyen HD, Ponomareva E, Santana QS, Seifert KA, Steenkamp ET, Trollip C, van der Nest MA, Visagie CM, Wilken PM, Wingfield MJ, Yilmaz N. IMA Genome-F 6: Draft genome sequences of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica and Penicillium freii DAOMC 242723. IMA Fungus 2016; 7:217-27. [PMID: 27433447 PMCID: PMC4941685 DOI: 10.5598/imafungus.2016.07.01.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 10/25/2022] Open
Abstract
The genomes of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica, and Penicillium freii DAOMC 242723 are presented in this genome announcement. These six genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 21 Mb in the case of Ceratocystiopsis minuta to 58 Mb for the basidiomycete Armillaria fuscipes. These genomes include the first reports of genomes for the genus Endoconidiophora. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these pathogens cause disease.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Jon M. Ambler
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Martin P.A. Coetzee
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry and Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alistair R. McTaggart
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Hai D.T. Nguyen
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, K1N6N5, Canada
| | - Ekaterina Ponomareva
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Quentin S. Santana
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Conrad Trollip
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Cobus M. Visagie
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Neriman Yilmaz
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|