1
|
Xue Y, Wang Y, Chen T, Peng L, Wang C, Xue G, Yu S. DJ-1 regulates astrocyte activation through miR-155/SHP-1 signaling in cerebral ischemia/reperfusion injury. J Neurochem 2025; 169:e16230. [PMID: 39323054 DOI: 10.1111/jnc.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Reactive astrocyte activation in the context of cerebral ischemia/reperfusion (I/R) injury gives rise to two distinct subtypes: the neurotoxic A1 type and the neuroprotective A2 type. DJ-1 (Parkinson disease protein 7, PARK7), originally identified as a Parkinson's disease-associated protein, is a multifunctional anti-oxidative stress protein with molecular chaperone and signaling functions. SHP-1 (Src homology 2 domain-containing phosphatase-1) is a protein tyrosine phosphatase closely associated with cellular signal transduction. miR-155 is a microRNA that participates in cellular functions by regulating gene expression. Recent studies have uncovered the relationship between DJ-1 and astrocyte-mediated neuroprotection, which may be related to its antioxidant properties and regulation of signaling molecules such as SHP-1. Furthermore, miR-155 may exert its effects by influencing SHP-1, providing a potential perspective for understanding the molecular mechanisms of stroke. A middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reperfusion (OGD/R) model were established to simulate focal cerebral I/R injury in vivo and in vitro, respectively. The in vivo interaction between DJ-1 and SHP-1 has been experimentally validated through immunoprecipitation. Overexpression of DJ-1 attenuates I/R injury and suppresses miR-155 expression. In addition, inhibition of miR-155 upregulates SHP-1 expression and modulates astrocyte activation phenotype. These findings suggest that DJ-1 mediates astrocyte activation via the miR-155/SHP-1 pathway, playing a pivotal role in the pathogenesis of cerebral ischemia-reperfusion injury. Our results provide a potential way for exploring the pathogenesis of ischemic stroke and present promising targets for pharmacological intervention.
Collapse
Affiliation(s)
- Ying Xue
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Department of Dermatology, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Yuan Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyi Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Peng
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenglong Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guijun Xue
- West China Hospital of Sichuan University, Chengdu, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Xu K, Li Y, Zhou Y, Zhang Y, Shi Y, Zhang C, Bai Y, Wang S. Neuroinflammation in Parkinson's disease: focus on the relationship between miRNAs and microglia. Front Cell Neurosci 2024; 18:1429977. [PMID: 39131043 PMCID: PMC11310010 DOI: 10.3389/fncel.2024.1429977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects the central nervous system (CNS). Neuroinflammation is a crucial factor in the pathological advancement of PD. PD is characterized by the presence of activated microglia and increased levels of proinflammatory factors, which play a crucial role in its pathology. During the immune response of PD, microglia regulation is significantly influenced by microRNA (miRNA). The excessive activation of microglia, persistent neuroinflammation, and abnormal polarization of macrophages in the brain can be attributed to the dysregulation of certain miRNAs. Additionally, there are miRNAs that possess the ability to inhibit neuroinflammation. miRNAs, which are small non-coding epigenetic regulators, have the ability to modulate microglial activity in both normal and abnormal conditions. They also have a significant impact on promoting communication between neurons and microglia.
Collapse
Affiliation(s)
- Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhou
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yu Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue Shi
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengguang Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shun Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol 2023; 43:455-467. [PMID: 35107690 PMCID: PMC11415209 DOI: 10.1007/s10571-022-01200-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the development and progression of neurological disorders. MicroRNA-155 (miR-155), a miR is known to play in inflammatory responses, is associated with susceptibility to inflammatory neurological disorders and neurodegeneration, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis as well as epilepsy, stroke, and brain malignancies. MiR-155 damages the central nervous system (CNS) by enhancing the expression of pro-inflammatory cytokines, like IL-1β, IL-6, TNF-α, and IRF3. It also disturbs the blood-brain barrier by decreasing junctional complex molecules such as claudin-1, annexin-2, syntenin-1, and dedicator of cytokinesis 1 (DOCK-1), a hallmark of many neurological disorders. This review discusses the molecular pathways which involve miR-155 as a critical component in the progression of neurological disorders, representing miR-155 as a viable therapeutic target.
Collapse
Affiliation(s)
- Seyed Hamidreza Rastegar-Moghaddam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.
| |
Collapse
|
7
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Shinonaga M, Kubo A, Fujii S, Ishizuka Y, Tanaka M, Ichihashi M, Murata H. SOCS7-Derived BC-Box Motif Peptide Mediated Cholinergic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24032786. [PMID: 36769102 PMCID: PMC9917589 DOI: 10.3390/ijms24032786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are a type of pluripotent somatic stem cells that differentiate into various cell types such as osteoblast, chondrocyte, and neuronal cells. ADMSCs as donor cells are used to produce regenerative medicines at hospitals and clinics. However, it has not been reported that ADMSCs were differentiated to a specific type of neuron with a peptide. Here, we report that ADMSCs differentiate to the cholinergic phenotype of neurons by the SOCS7-derived BC-box motif peptide. At operations for patients with neurological disorders, a small amount of subcutaneous fat was obtained. Two weeks later, adipose-derived mesenchymal stem cells (ADMSCs) were isolated and cultured for a further 1 to 2 weeks. Flow cytometry analysis for characterization of ADMSCs was performed with CD73, CD90, and CD105 as positive markers, and CD14, CD31, and CD56 as negative markers. The results showed that cultured cells were compatible with ADMSCs. Immunocytochemical studies showed naïve ADMSCs immunopositive for p75NTR, RET, nestin, keratin, neurofilament-M, and smooth muscle actin. ADMSCs were suggested to be pluripotent stem cells. A peptide corresponding to the amino-acid sequence of BC-box motif derived from SOCS7 protein was added to the medium at a concentration of 2 μM. Three days later, immunocytochemistry analysis, Western blot analysis, ubiquitination assay, and electrophysiological analysis with patch cramp were performed. Immunostaining revealed the expression of neurofilament H (NFH), choline acetyltransferase (ChAT), and tyrosine hydroxylase (TH). In addition, Western blot analysis showed an increase in the expression of NFH, ChAT, and TH, and the expression of ChAT was more distinct than TH. Immunoprecipitation with JAK2 showed an increase in the expression of ubiquitin. Electrophysiological analysis showed a large holding potential at the recorded cells through path electrodes. The BC-box motif peptide derived from SOCS7 promoted the cholinergic differentiation of ADMSCs. This novel method will contribute to research as well as regenerative medicine for cholinergic neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Correspondence: ; Tel.: +81-3-5243-5800; Fax: +81-3-5242-5826
| | - Shutaro Matsumoto
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | - Masamichi Shinonaga
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | | | - Satoshi Fujii
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | | | | | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
8
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
9
|
Bu Shen Yi Sui Capsule Promotes Myelin Repair by Modulating the Transformation of A1/A2 Reactive Astrocytes In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3800004. [PMID: 36092158 PMCID: PMC9458373 DOI: 10.1155/2022/3800004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
Background/Aims. Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) primarily hallmarked by neuroinflammation and demyelination. The activation of astrocytes exerts double-edged sword effects, which perform an integral function in demyelination and remyelination. In this research, we examined the therapeutic effects of the Bu Shen Yi Sui capsule (BSYS), a traditional Chinese medicine prescription, in a cuprizone- (CPZ-) triggered demyelination model of MS (CPZ mice). This research intended to evaluate if BSYS might promote remyelination by shifting A1 astrocytes to A2 astrocytes. Methods. The effects of BSYS on astrocyte polarization and the potential mechanisms were explored in vitro and in vivo utilizing real-time quantitative reverse transcription PCR, immunofluorescence, and Western blotting. Histopathology, expression of inflammatory cytokines (IL-10, IL-1β, and IL-6), growth factors (TGF-β, BDNF), and motor coordination were assessed to verify the effects of BSYS (3.02 g/kg/d) on CPZ mice. In vitro, A1 astrocytes were induced by TNF-α (30 ng/mL), IL-1α (3 ng/mL), and C1q (400 ng/mL), following which the effect of BSYS-containing serum (concentration of 15%) on the transformation of A1/A2 reactive astrocytes was also evaluated. Results and Conclusions. BSYS treatment improved motor function in CPZ mice as assessed by rotarod tests. Intragastric administration of BSYS considerably lowered the proportion of A1 astrocytes, but the number of A2 astrocytes, MOG+, PLP+, CNPase+, and MBP+ cells was upregulated. Meanwhile, dysregulation of glutathione peroxidase, malondialdehyde, and superoxide dismutase was reversed in CPZ mice after treatment with BSYS. In addition, the lesion area and expression of proinflammatory cytokines were decreased and neuronal protection factors and anti-inflammatory cytokines were increased. In vitro, BSYS-containing serum suppressed the A1 astrocytic markers' expression and elevated the expression levels of A2 markers in primary astrocytes triggered by C1q, TNF-α, and IL-1α. Importantly, the miR-155/SOCS1 signaling pathway was involved in the modulation of the A1/A2 phenotype shift. Overall, this study demonstrated that BSYS has neuroprotective effects in myelin repair by modulating astrocyte polarization via the miR-155/SOCS1 pathway.
Collapse
|
10
|
Chu AJ, Williams JM. Astrocytic MicroRNA in Ageing, Inflammation, and Neurodegenerative Disease. Front Physiol 2022; 12:826697. [PMID: 35222067 PMCID: PMC8867065 DOI: 10.3389/fphys.2021.826697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes actively regulate numerous cell types both within and outside of the central nervous system in health and disease. Indeed, astrocyte morphology, gene expression and function, alongside the content of astrocyte-derived extracellular vesicles (ADEVs), is significantly altered by ageing, inflammatory processes and in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Here, we review the relevant emerging literature focussed on perturbation in expression of microRNA (miRNA), small non-coding RNAs that potently regulate gene expression. Synthesis of this literature shows that ageing-related processes, neurodegenerative disease-associated mutations or peptides and cytokines induce dysregulated expression of miRNA in astrocytes and in some cases can lead to selective incorporation of miRNA into ADEVs. Analysis of the miRNA targets shows that the resulting downstream consequences of alterations to levels of miRNA include release of cytokines, chronic activation of the immune response, increased apoptosis, and compromised cellular functioning of both astrocytes and ADEV-ingesting cells. We conclude that perturbation of these functions likely exacerbates mechanisms leading to neuropathology and ultimately contributes to the cognitive or motor symptoms of neurodegenerative diseases. This field requires comprehensive miRNA expression profiling of both astrocytes and ADEVs to fully understand the effect of perturbed astrocytic miRNA expression in ageing and neurodegenerative disease.
Collapse
|
11
|
Zingale VD, Gugliandolo A, Mazzon E. MiR-155: An Important Regulator of Neuroinflammation. Int J Mol Sci 2021; 23:90. [PMID: 35008513 PMCID: PMC8745074 DOI: 10.3390/ijms23010090] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level and that play an important role in many cellular processes, including modulation of inflammation. MiRNAs are present in high concentrations in the central nervous system (CNS) and are spatially and temporally expressed in a specific way. Therefore, an imbalance in the expression pattern of these small molecules can be involved in the development of neurological diseases. Generally, CNS responds to damage or disease through the activation of an inflammatory response, but many neurological disorders are characterized by uncontrolled neuroinflammation. Many studies support the involvement of miRNAs in the activation or inhibition of inflammatory signaling and in the promotion of uncontrolled neuroinflammation with pathological consequences. MiR-155 is a pro-inflammatory mediator of the CNS and plays an important regulatory role. The purpose of this review is to summarize how miR-155 is regulated and the pathological consequences of its deregulation during neuroinflammatory disorders, including multiple sclerosis, Alzheimer's disease and other neuroinflammatory disorders. Modulation of miRNAs' expression could be used as a therapeutic strategy in the treatment of pathological neuroinflammation.
Collapse
Affiliation(s)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (V.D.Z.); (E.M.)
| | | |
Collapse
|
12
|
Ye L, Morse LR, Falci SP, Olson JK, Shrivastava M, Nguyen N, Linnman C, Troy KL, Battaglino RA. hsa-MiR-19a-3p and hsa-MiR-19b-3p Are Associated with Spinal Cord Injury-Induced Neuropathic Pain: Findings from a Genome-Wide MicroRNA Expression Profiling Screen. Neurotrauma Rep 2021; 2:424-439. [PMID: 34755149 PMCID: PMC8570675 DOI: 10.1089/neur.2021.0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain in spinal cord injury (SCI) is associated with inflammation in both the peripheral and central nervous system (CNS), which may contribute to the initiation and maintenance of persistent pain. An understanding of factors contributing to neuroinflammation may lead to new therapeutic targets for neuropathic pain. Moreover, novel circulating biomarkers of neuropathic pain may facilitate earlier and more effective treatment. MicroRNAs (miRNAs) are short, non-coding single-stranded RNA that have emerged as important biomarkers and molecular mediators in physiological and pathological conditions. Using a genome-wide miRNA screening approach, we studied differential miRNA expression in plasma from 68 healthy, community-dwelling adults with and without SCI enrolled in ongoing clinical studies. We detected 2367 distinct miRNAs. Of these, 383 miRNAs were differentially expressed in acute SCI or chronic SCI versus no SCI and 71 were differentially expressed in chronic neuropathic pain versus no neuropathic pain. We selected homo sapiens (hsa)-miR-19a-3p and hsa-miR-19b-3p for additional analysis based on p-value, fold change, and their known role as regulators of neuropathic pain and neuroinflammation. Both hsa-miR-19a-3p and hsa-miR-19b-3p levels were significantly higher in those with chronic SCI and severe neuropathic pain versus those with chronic SCI and no neuropathic pain. In confirmatory studies, both hsa-miR-19a-3p and hsa-miR-19b-3p have moderate to strong discriminative ability to distinguish between those with and without pain. After adjusting for opioid use, hsa-miR-19b-3p levels were positively associated with pain interference with mood. Because hsa-miR-19 levels have been shown to change in response to exercise, folic acid, and resveratrol, these studies suggest that miRNAs are potential targets of therapeutic interventions.
Collapse
Affiliation(s)
- Liang Ye
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Scott P Falci
- Department of Neurological Surgery, Swedish Medical Center, Englewood, Colorado, USA
| | - Julie K Olson
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Mayank Shrivastava
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Clas Linnman
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021; 10:39. [PMID: 34657636 PMCID: PMC8522040 DOI: 10.1186/s40035-021-00265-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that primarily affects the elderly. While the etiology of PD is likely multifactorial with the involvement of genetic, environmental, aging and other factors, α-synuclein (α-syn) pathology is a pivotal mechanism underlying the development of PD. In recent years, astrocytes have attracted considerable attention in the field. Although astrocytes perform a variety of physiological functions in the brain, they are pivotal mediators of α-syn toxicity since they internalize α-syn released from damaged neurons, and this triggers an inflammatory response, protein degradation dysfunction, mitochondrial dysfunction and endoplasmic reticulum stress. Astrocytes are indispensable coordinators in the background of several genetic mutations, including PARK7, GBA1, LRRK2, ATP13A2, PINK1, PRKN and PLA2G6. As the most abundant glial cells in the brain, functional astrocytes can be replenished and even converted to functional neurons. In this review, we discuss astrocyte dysfunction in PD with an emphasis on α-syn toxicity and genetic modulation and conclude that astrocyte replenishment is a valuable therapeutic approach in PD.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tongtong Yang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
14
|
Zhang J, Zhu L, Shi H, Zheng H. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells. Exp Ther Med 2021; 22:882. [PMID: 34194560 PMCID: PMC8237265 DOI: 10.3892/etm.2021.10314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs/miRs) serve a vital role in the pathogenesis of Sjögren's syndrome (SS). The present study aimed to investigate the role of miR-155-5p in SS and determine its underlying molecular mechanism. An inflammatory lesion model was established by stimulating salivary gland epithelial cells (SGECs) with interferon-γ (IFN-γ). The apoptosis of SGECs was measured by using flow cytometry. Levels of proinflammatory factors were detected by reverse transcription-quantitative PCR and ELISA, respectively. Immunofluorescence was used for p65 staining. Dual-luciferase reporter assay was performed to verify the interaction between miR-155-5p and arrestin β2 (ARRB2). The protein levels in the NF-κB signaling pathway were assessed by western blotting. The results of the present study demonstrated that treatment with IFN-γ increased miR-155-5p expression, in addition to inducing apoptosis and inflammation in SGECs. Furthermore, overexpression of miR-155-5p promoted IFN-γ-induced apoptosis and inflammation in SGECs. Overexpression of miR-155-5p also increased Bax protein expression, enzyme activities of caspase 3 and caspase 9, release of inflammatory cytokines interleukin-6 and tumor necrosis factor-α, and decreased Bcl-2 protein expression in IFN-γ-treated SGECs. By contrast, all of the effects aforementioned were reversed following miR-155-5p knockdown. These results demonstrated that miR-155-5p activated the NF-κB signaling pathway, where treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, reversed the effects of miR-155-5p overexpression on the inflammatory factors in IFN-γ-induced SGECs. miR-155-5p was demonstrated to target ARRB2 and negatively regulated its expression levels, such that overexpression of ARRB2 reversed the effects of miR-155-5p overexpression on the inflammatory response, apoptosis and the NF-κB signaling pathway in IFN-γ-treated SGECs. Collectively, results from the present study suggest that miR-155-5p may activate the NF-κB signaling pathway by negatively regulating ARRB2 to promote salivary gland damage during SS pathogenesis. This suggests that miR-155-5p may serve to be a potential target for the treatment of SS.
Collapse
Affiliation(s)
- Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingling Zhu
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hong Shi
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
15
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
16
|
Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4956. [PMID: 34066949 PMCID: PMC8125491 DOI: 10.3390/ijms22094956] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson's disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This review examined the core epigenetic mechanisms involved in the activation and phenotypic transformation of glial cells mediated neuroinflammation in PD. We found that epigenetic mechanisms do not work independently, despite being coordinated with each other to activate neuroinflammatory pathways. In this regard, we attempted to find the synergic correlation and contribution of these epigenetic modifications with various neuroinflammatory pathways to broaden the canvas of underlying pathological mechanisms involved in PD development. Moreover, this study highlighted the dual characteristics (neuroprotective/neurotoxic) of these epigenetic marks, which may counteract PD pathogenesis and make them potential candidates for devising future PD diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (J.L.); (C.W.); (Y.D.)
| |
Collapse
|
17
|
Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL. MicroRNA Dysregulation in Parkinson's Disease: A Narrative Review. Front Neurosci 2021; 15:660379. [PMID: 33994934 PMCID: PMC8121453 DOI: 10.3389/fnins.2021.660379] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
Collapse
Affiliation(s)
- Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Haliza Mohamad Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Zhou X, Zhang J, Liu J, Guo J, Wei Y, Li J, He P, Lan T, Peng L, Li H. MicroRNA miR-155-5p knockdown attenuates Angiostrongylus cantonensis-induced eosinophilic meningitis by downregulating MMP9 and TSLP proteins. Int J Parasitol 2020; 51:13-22. [PMID: 32966836 DOI: 10.1016/j.ijpara.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Angiostrongylus cantonensis infection is a major cause of eosinophilic meningitis (EM). Severe cases or cases that involve infants and children present poor prognoses. MicroRNAs (miRNAs), which are important regulators of gene expression in many biological processes, were recently found to be regulators of the host response to infection by parasites; however, their roles in brain inflammation caused by A. cantonensis are still unclear. The current study confirmed that miR-155-5p peaked at 21 days after A. cantonensis infection, and its expression was positively correlated with the concentration of excretory and secretory products (ESPs). We found that miR-155-5p knockdown lentivirus successfully ameliorated brain injury and downregulated the expression of major basic protein (MBP) in vivo, and the number of eosinophils in CSF (and the percentage of eosinophils in peripheral blood were also decreased in the miR-155-5p knockdown group. Moreover, the expression of several eosinophilic inflammation cytokines such as CCL6/C10, ICAM-1, and MMP9, declined after the miR-155-5p knockdown. SOCS1 protein, which is an important negative regulator of inflammation activation, was identified as a direct miR-155-5p target. We further detected the effect of miR-155-5p knockdown on phosphorylated-STAT3 and phosphorylated-p65 proteins, which were found to be negatively regulated by SOCS1 and play an important role in regulating the inflammatory response. We found that miR-155-5p knockdown decreased the activity of p-STAT3 and p-p65, thereby leading to lower expression of MMP9 and TSLP proteins, which were closely related to the chemotaxis and infiltration of eosinophils. Interestingly, the inhibition of p-STAT3 or p-p65 was found to induce the downregulation of miR-155-5p in an opposite manner. These observations suggest that a positive feedback loop was formed between miR-155-5p, STAT3, and NF-κB in A. cantonensis infection and that miR-155-5p inhibition might provide a novel strategy to attenuate eosinophilic meningitis.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jinming Zhang
- Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jumei Liu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jianyu Guo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yong Wei
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Tian Lan
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
20
|
Yoshizumi T, Kubo A, Murata H, Shinonaga M, Kanno H. BC-Box Motif in SOCS6 Induces Differentiation of Epidermal Stem Cells into GABAnergic Neurons. Int J Mol Sci 2020; 21:ijms21144947. [PMID: 32668737 PMCID: PMC7403999 DOI: 10.3390/ijms21144947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
The BC-box motif in suppressor of cytokine signaling 6 (SOCS6) promotes the neuronal differentiation of somatic stem cells, including epidermal stem cells. SOCS6 protein belongs to the group of SOCS proteins and inhibits cytokine signaling. Here we showed that epidermal stem cells were induced to differentiate into GABAnergic neurons by the intracellular delivery of a peptide composed of the amino-acid sequences encoded by the BC-box motif in SOCS6 protein. The BC-box motif (SLQYLCRFVI) in SOCS6 corresponded to the binding site of elongin BC. GABAnergic differentiation mediated by the BC-box motif in SOCS6 protein was caused by ubiquitination of JAK2 and inhibition of the JAK2-STAT3 pathway. Furthermore, GABAnergic neuron-like cells generated from epidermal stem cells were transplanted into the brain of a rodent ischemic model. Then, we demonstrated that these transplanted cells were GAD positive and that the cognitive function of the ischemic model rodents with the transplanted cells was improved. This study could contribute to not only elucidating the mechanism of GABAnergic neuronal differentiation but also to neuronal regenerative medicine utilizing GABAnergic neurons.
Collapse
Affiliation(s)
- Tetsuya Yoshizumi
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
| | - Atsuhiko Kubo
- Nerve Care Clinic, Yokosuka 238-0012, Japan;
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Masamichi Shinonaga
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
| | - Hiroshi Kanno
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-557-81-9171; Fax: +81-557-83-6632
| |
Collapse
|
21
|
A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression. Neurobiol Dis 2019; 127:482-491. [DOI: 10.1016/j.nbd.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023] Open
|
22
|
A Parkinson’s disease gene, DJ-1, regulates astrogliosis through STAT3. Neurosci Lett 2018; 685:144-149. [DOI: 10.1016/j.neulet.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022]
|
23
|
Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, Microglia, and Parkinson's Disease. Exp Neurobiol 2018; 27:77-87. [PMID: 29731673 PMCID: PMC5934545 DOI: 10.5607/en.2018.27.2.77] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and microglia support well-being and well-function of the brain through diverse functions in both intact and injured brain. For example, astrocytes maintain homeostasis of microenvironment of the brain through up-taking ions and neurotransmitters, and provide growth factors and metabolites for neurons, etc. Microglia keep surveying surroundings, and remove abnormal synapses or respond to injury by isolating injury sites and expressing inflammatory cytokines. Therefore, their loss and/or functional alteration may be directly linked to brain diseases. Since Parkinson's disease (PD)-related genes are expressed in astrocytes and microglia, mutations of these genes may alter the functions of these cells, thereby contributing to disease onset and progression. Here, we review the roles of astrocytes and microglia in intact and injured brain, and discuss how PD genes regulate their functions.
Collapse
Affiliation(s)
- Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Dong-Joo Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jiawei An
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jin-Hwa Eun
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Sangmyun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| |
Collapse
|
24
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
25
|
Zhang S, Gao L, Liu X, Lu T, Xie C, Jia J. Resveratrol Attenuates Microglial Activation via SIRT1-SOCS1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8791832. [PMID: 28781601 PMCID: PMC5525071 DOI: 10.1155/2017/8791832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023]
Abstract
Microglial activation is involved in a variety of neurological disorders, and overactivated microglial cells can secrete large amount of proinflammatory factors and induce neuron death. Therefore, reducing microglial activation is believed to be useful in treating the disorders. In this study, we used 10 ng/ml lipopolysaccharide plus 10 U/ml interferon γ (LPS/IFNγ) to induce N9 microglial activation and explored resveratrol- (RSV-) induced effects on microglial activation and the underlying mechanism. We found that LPS/IFNγ exposure for 24 h increased inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) p65 subunit expressions in the cells and enhanced tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) releases from the cells. RSV of 25 μM reduced the iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases; the knockdown of silent information regulator factor 2-related enzyme 1 (SIRT1) or suppressor of cytokine signaling 1 (SOCS1) by using the small interfering RNA, however, significantly abolished the RSV-induced effects on iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases. These findings showed that microglial SIRT1-SOCS1 pathway may mediate the RSV-induced inhibition of microglial activation in the LPS/IFNγ-treated N9 microglia.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Lu Gao
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xiuying Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510045, China
| | - Tao Lu
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Chuangbo Xie
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Ji Jia
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
- *Ji Jia:
| |
Collapse
|
26
|
Kim JM, Cha SH, Choi YR, Jou I, Joe EH, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep 2016; 6:28823. [PMID: 27346864 PMCID: PMC4922019 DOI: 10.1038/srep28823] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD.
Collapse
Affiliation(s)
- Jin-Mo Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Seon-Heui Cha
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
27
|
Choi I, Woo JH, Jou I, Joe EH. PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation. Exp Neurobiol 2016; 25:14-23. [PMID: 26924929 PMCID: PMC4766110 DOI: 10.5607/en.2016.25.1.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.
Collapse
Affiliation(s)
- Insup Choi
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Joo Hong Woo
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ilo Jou
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea.; Brain Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
28
|
Differential effect of DJ-1/PARK7 on development of natural and induced regulatory T cells. Sci Rep 2015; 5:17723. [PMID: 26634899 PMCID: PMC4669505 DOI: 10.1038/srep17723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining an effective immune tolerance and a homeostatic balance of various other immune cells. To manipulate the immune response during infections and autoimmune disorders, it is essential to know which genes or key molecules are involved in the development of Tregs. Transcription factor Foxp3 is required for the development of Tregs and governs most of the suppressive functions of these cells. Inhibited PI3K/AKT/mTOR signalling is critical for Foxp3 stability. Previous studies have suggested that DJ-1 or PARK7 protein is a positive regulator of the PI3K/AKT/mTOR pathway by negatively regulating the activity of PTEN. Thus, we hypothesised that a lack of DJ-1 could promote the development of Tregs. As a result, loss of DJ-1 decreased the total CD4(+) T cell numbers but increased the fraction of thymic and peripheral nTregs. In contrast, Foxp3 generation was not augmented following differentiation of DJ-1-deficient naïve CD4(+) T cells. DJ-1-deficient-iTregs were imperfect in replication, proliferation and more prone to cell death. Furthermore, DJ-1 deficient iTregs were less sensitive to pSmad2 and pStat5 signalling but had activated AKT/mTOR signalling. These observations reveal an unexpected differential role of DJ-1 in the development of nTregs and iTregs.
Collapse
|
29
|
Saghazadeh A, Rezaei N. MicroRNA machinery in Parkinson's disease: a platform for neurodegenerative diseases. Expert Rev Neurother 2015; 22:427-453. [PMID: 26574782 DOI: 10.1586/14737175.2015.1114886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that recognize their protein-coding target genes and whereby subjugate them after transcription. Despite the infancy of this field of science, the role of miRNAs in neurodegeneration is well-acknowledged. This review was conducted to indicate that Parkinson's disease (PD) is not excluded from this rule. To this end, we evaluated the existing literature and arranged PD-associated miRNAs according to their mechanism of action, particularly apoptosis, autophagy, inflammation, mitochondrial dysfunction and oxidative stress. According to this arrangement, a majority of PD-associated miRNAs were indicated to influence autophagic/apoptotic pathways. We also categorized PD-associated miRNAs according to that they could exert detrimental or beneficial or both into three sets, activator, inhibitor, and double-edged, correspondingly. Considering this criterion, a majority of PD-associated miRNAs were included in the activator category. In addition, evidences from genetic association studies investigating genetic variants of or related to miRNAs in PD patients are presented. Finally, possible applications of the miRNA machinery in PD, including mechanistic networks, diagnostic, prognostic and therapeutic potentials, are discussed. But there may be additional miRNAs involved in the pathogenesis of PD which have hitherto remained unknown and thus further studies are needed to explore the issue and to extend this platform.
Collapse
Affiliation(s)
- Amene Saghazadeh
- a Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
30
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
31
|
Choi I, Kim B, Byun JW, Baik SH, Huh YH, Kim JH, Mook-Jung I, Song WK, Shin JH, Seo H, Suh YH, Jou I, Park SM, Kang HC, Joe EH. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun 2015; 6:8255. [PMID: 26365310 PMCID: PMC4647842 DOI: 10.1038/ncomms9255] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/03/2015] [Indexed: 01/20/2023] Open
Abstract
In response to brain injury, microglia rapidly extend processes that isolate lesion sites and protect the brain from further injury. Here we report that microglia carrying a pathogenic mutation in the Parkinson's disease (PD)-associated gene, G2019S-LRRK2 (GS-Tg microglia), show retarded ADP-induced motility and delayed isolation of injury, compared with non-Tg microglia. Conversely, LRRK2 knockdown microglia are highly motile compared with control cells. In our functional assays, LRRK2 binds to focal adhesion kinase (FAK) and phosphorylates its Thr–X–Arg/Lys (TXR/K) motif(s), eventually attenuating FAK activity marked by decreased pY397 phosphorylation (pY397). GS-LRRK2 decreases the levels of pY397 in the brain, microglia and HEK cells. In addition, treatment with an inhibitor of LRRK2 kinase restores pY397 levels, decreased pTXR levels and rescued motility of GS-Tg microglia. These results collectively suggest that G2019S mutation of LRRK2 may contribute to the development of PD by inhibiting microglial response to brain injury. In response to brain injury, microglia extend processes to isolate the lesion. Here Choi et al. show that microglia expressing a pathogenic mutation in the Parkinson's disease-associated LRRK2 gene show reduced motility and delayed lesion isolation in vitro and in vivo due to attenuated focal adhesion kinase activity.
Collapse
Affiliation(s)
- Insup Choi
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Beomsue Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Ji-Won Byun
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Yun Hyun Huh
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Jong-Hyeon Kim
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan 426-791, Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Ilo Jou
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Sang Myun Park
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| | - Eun-Hye Joe
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea.,Brain Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 443-380, Korea
| |
Collapse
|
32
|
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138:1138-59. [PMID: 25823474 DOI: 10.1093/brain/awv066] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hanane Touil
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luke M Healy
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David R Owen
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Bryce A Durafourt
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Craig S Moore
- 3 Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
33
|
Liscovitch N, French L. Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson's Disease. PLoS One 2014; 9:e115029. [PMID: 25493648 PMCID: PMC4262449 DOI: 10.1371/journal.pone.0115029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
Expression patterns of the alpha-synuclein gene (SNCA) were studied across anatomy, development, and disease to better characterize its role in the brain. In this postmortem study, negative spatial co-expression between SNCA and 73 interferon-γ (IFN-γ) signaling genes was observed across many brain regions. Recent animal studies have demonstrated that IFN-γ induces loss of dopamine neurons and nigrostriatal degeneration. This opposing pattern between SNCA and IFN-γ signaling genes increases with age (rho = −0.78). In contrast, a meta-analysis of four microarray experiments representing 126 substantia nigra samples reveals a switch to positive co-expression in Parkinson’s disease (p<0.005). Use of genome-wide testing demonstrates this relationship is specific to SNCA (p<0.002). This change in co-expression suggests an immunomodulatory role of SNCA that may provide insight into neurodegeneration. Genes showing similar co-expression patterns have been previously linked to Alzheimer’s (ANK1) and Parkinson’s disease (UBE2E2, PCMT1, HPRT1 and RIT2).
Collapse
Affiliation(s)
- Noa Liscovitch
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Leon French
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Tan Y, Yang J, Xiang K, Tan Q, Guo Q. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 2014; 40:550-60. [PMID: 25488154 DOI: 10.1007/s11064-014-1500-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022]
Abstract
Chronic neuropathic pain is an unfavourable pathological pain characterised by allodynia and hyperalgesia which has brought considerable trouble to people's physical and mental health, but effective therapeutics are still lacking. MicroRNAs (miRNAs) have been widely studied in the development of neuropathic pain and neuronal inflammation. Among various miRNAs, miR-155 has been widely studied. It is intensively involved in regulating inflammation-associated diseases. However, the role of miR-155 in regulating neuropathic pain development is poorly understood. In the present study, we aimed to investigate whether miR-155 is associated with neuropathic pain and delineate the underlying mechanism. Using a neuropathic pain model of chronic constriction injury (CCI), miR-155 expression levels were markedly increased in the spinal cord. Inhibition of miR-155 significantly attenuated mechanical allodynia, thermal hyperalgesia and proinflammatory cytokine expression. We also demonstrated that miR-155 directly bound with the 3'-untranslated region of the suppressor of cytokine signalling 1 (SOCS1). The expression of SOCS1 significantly decreased in the CCI rat model, but this effect could be reversed by miR-155 inhibition. Furthermore, knockdown of SOCS1 abrogated the inhibitory effects of miR-155 inhibition on neuropathic development and neuronal inflammation. Finally, we demonstrated that inhibition of miR-155 resulted in the suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation by mediating SOCS1. Our data demonstrate the critical role of miR-155 in regulating neuropathic pain through SOCS1, and suggest that miR-155 may be an important and potential target in preventing neuropathic pain development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Anesthesiology, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|