1
|
Li X, Ding L, Nie H, Deng DYB. Calcium Signaling in Astrocytes and Its Role in the Central Nervous System Injury. Mol Neurobiol 2025:10.1007/s12035-025-05055-5. [PMID: 40419752 DOI: 10.1007/s12035-025-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS). Due to their extensive processes, they can interconnect with many neighboring cells and play critical roles in regulating synaptic plasticity, integrating neuronal signals, and maintaining the stability of the extracellular environment. These functions are largely dependent on calcium (Ca2+) signaling. In light of these considerations, the powerful functions of Ca2+ signaling in astrocytes have been actively studied in recent years. This review summarizes the mechanisms related to Ca2+ waves in astrocytes as well as their physiological and pathological functions mediated by various calcium signaling, the characteristics of calcium waves, and the role of Ca2+ in astrocytes in the CNS injuries of spinal cord injury (SCI) and traumatic brain injury (TBI) recently. However, inhibited L-type voltage-gated Ca2+ channels (LTCCs) activity and reduced Ca2+ concentration result in an opposite phenomenon that promoting or reducing astrogliosis. This highlights the importance of focusing not only on Ca2⁺ concentration but also on the downstream signaling pathways initiated by Ca2⁺. Therefore, we summarize diverse signaling pathways in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Xinyue Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Taha S, Aljishi M, Sultan A, Bakhiet M. Calcium Homeostasis Disrupted-How Store-Operated Calcium Entry Factor SARAF Silencing Impacts HepG2 Liver Cancer Cells. Int J Mol Sci 2025; 26:4426. [PMID: 40362663 PMCID: PMC12072481 DOI: 10.3390/ijms26094426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a highly aggressive liver malignancy, is often associated with disrupted calcium homeostasis. Store-operated calcium entry (SOCE), involving components such as STIM1, Orai1, and SARAF, plays a critical role in calcium signaling and cancer progression. While STIM1 and Orai1 have been extensively studied, SARAF's role as a negative regulator of SOCE in HCC remains poorly understood. This preliminary study investigated SARAF's effects on calcium homeostasis, proliferation, and migration in HepG2 liver cancer cells, providing initial evidence of its tumor-suppressive role. SARAF expression was modulated using siRNA knockdown and overexpression plasmids, with validation by qRT-PCR. Functional assays demonstrated that SARAF silencing increased proliferation by 50% and migration by 40% (p < 0.05), while SARAF overexpression reduced proliferation by 50% and migration by 45% (p < 0.01), highlighting its tumor-suppressive role. Intracellular calcium levels, elevated in HepG2 cells, were partially restored by SARAF overexpression, though SARAF silencing did not further disrupt calcium regulation. These findings suggest that SARAF negatively regulates proliferation and migration in HCC, potentially through its role in maintaining calcium homeostasis. SARAF represents a promising therapeutic target in HCC. Future studies should explore the downstream molecular mechanisms governing SARAF's effects, investigate its role in other cancers, and assess its clinical potential for liver cancer therapy.
Collapse
Affiliation(s)
- Safa Taha
- Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain; (M.A.); (A.S.); (M.B.)
| | | | | | | |
Collapse
|
3
|
Verkhratsky A, Semyanov A. Physiology of neuroglia of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:69-91. [PMID: 40122632 DOI: 10.1016/b978-0-443-19104-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
4
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
5
|
Endo HM, Bandeca SCS, Olchanheski LR, Schemczssen-Graeff Z, Pileggi M. Probiotics and the reduction of SARS-CoV-2 infection through regulation of host cell calcium dynamics. Life Sci 2024; 350:122784. [PMID: 38848939 DOI: 10.1016/j.lfs.2024.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.
Collapse
Affiliation(s)
- Hugo Massami Endo
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | | | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
6
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 PMCID: PMC11963908 DOI: 10.1113/jp283826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
9
|
Coulter OR, Walker CD, Risher ML. Astrocyte-specific Ca 2+ activity: Mechanisms of action, experimental tools, and roles in ethanol-induced dysfunction. Biochem Cell Biol 2023; 101:410-421. [PMID: 36989534 DOI: 10.1139/bcb-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Astrocytes are a subtype of non-neuronal glial cells that reside in the central nervous system. Astrocytes have extensive peripheral astrocytic processes that ensheathe synapses to form the tripartite synapse. Through a multitude of pathways, astrocytes can influence synaptic development and structural maturation, respond to neuronal signals, and modulate synaptic transmission. Over the last decade, strong evidence has emerged demonstrating that astrocytes can influence behavioral outcomes in various animal models of cognition. However, the full extent of how astrocytes influence brain function is still being revealed. Astrocyte calcium (Ca2+) signaling has emerged as an important driver of astrocyte-neuronal communication allowing intricate crosstalk through mechanisms that are still not fully understood. Here, we will review the field's current understanding of astrocyte Ca2+ signaling and discuss the sophisticated state-of-the-art tools and approaches used to continue unraveling astrocytes' interesting role in brain function. Using the field of pre-clinical ethanol (EtOH) studies in the context of alcohol use disorder, we focus on how these novel approaches have helped to reveal an important role for astrocyte Ca2+ function in regulating EtOH consumption and how astrocyte Ca2+ dysfunction contributes to the cognitive deficits that emerge after EtOH exposure in a rodent model.
Collapse
Affiliation(s)
- O R Coulter
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - C D Walker
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - M-L Risher
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| |
Collapse
|
10
|
Novakovic MM, Korshunov KS, Grant RA, Martin ME, Valencia HA, Budinger GRS, Radulovic J, Prakriya M. Astrocyte reactivity and inflammation-induced depression-like behaviors are regulated by Orai1 calcium channels. Nat Commun 2023; 14:5500. [PMID: 37679321 PMCID: PMC10485021 DOI: 10.1038/s41467-023-40968-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Astrocytes contribute to brain inflammation in neurological disorders but the molecular mechanisms controlling astrocyte reactivity and their relationship to neuroinflammatory endpoints are complex and poorly understood. In this study, we assessed the role of the calcium channel, Orai1, for astrocyte reactivity and inflammation-evoked depression behaviors in mice. Transcriptomics and metabolomics analysis indicated that deletion of Orai1 in astrocytes downregulates genes in inflammation and immunity, metabolism, and cell cycle pathways, and reduces cellular metabolites and ATP production. Systemic inflammation by peripheral lipopolysaccharide (LPS) increases hippocampal inflammatory markers in WT but not in astrocyte Orai1 knockout mice. Loss of Orai1 also blunts inflammation-induced astrocyte Ca2+ signaling and inhibitory neurotransmission in the hippocampus. In line with these cellular changes, Orai1 knockout mice showed amelioration of LPS-evoked depression-like behaviors including anhedonia and helplessness. These findings identify Orai1 as an important signaling hub controlling astrocyte reactivity and astrocyte-mediated brain inflammation that is commonly observed in many neurological disorders.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kirill S Korshunov
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rogan A Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan E Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hiam A Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jelena Radulovic
- Department of Neuroscience, Albert Einstein School of Medicine, Bronx, NY, 10461, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Fan J, Miao Y, Zhao Y, Guan Y, Zhang L, Pan L, Feng Q, Yao J, Sun C. Icaritin inhibits oxidative stress in murine astrocytes by binding to Orai1 to block store-operated calcium channel. Chem Biol Drug Des 2023; 101:873-882. [PMID: 36527176 DOI: 10.1111/cbdd.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous study has shown that icaritin (ICT) has meaningful protective effect on cerebral ischemic stroke, and this study aimed to investigate its mechanism from the aspect of protecting astrocytes from oxidative stress. Murine primary astrocytes were pretreated by ICT and exposed to H2 O2 to induce oxidative stress. The results indicated that ICT inhibited H2 O2 -induced astrocytes apoptosis, decreased Bax and cleaved caspase-3, and increased Bcl-2. In addition, ICT inhibited H2 O2 -induced oxidative stress, increased mitochondrial membrane potential (ΔΨm ), and maintained mitochondrial morphology. ICT decreased the synthesis of malondialdehyde and increased the activity of glutathione peroxidase, catalase, and superoxide dismutase. Moreover, ICT suppressed the transient and resting intracellular Ca2+ overload. Further investigation revealed that ICT could target the combination with Orai1 to block store-operated calcium channel induced by H2 O2 . However, ICT did not enhance the protective effect of RO2959, a selective blocker of Orai1. These results indicate that ICT can play a neuroprotective role against oxidative stress injury by binding to Orai1 to block SOCC.
Collapse
Affiliation(s)
- Jianwei Fan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yu Miao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yun Zhao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yongxia Guan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Li Zhang
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lihong Pan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Qun Feng
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Chenghong Sun
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| |
Collapse
|
12
|
Pregnancy-Specific Glycoprotein 9 Enhances Store-Operated Calcium Entry and Nitric Oxide Release in Human Umbilical Vein Endothelial Cells. Diagnostics (Basel) 2023; 13:diagnostics13061134. [PMID: 36980442 PMCID: PMC10047280 DOI: 10.3390/diagnostics13061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
We explored changes in pregnancy-specific glycoprotein 9 (PSG9) levels in the serum of patients with preeclampsia and the effects and underlying mechanisms of PSG9 effects on calcium (Ca2+) homeostasis and nitric oxide (NO) release in human umbilical vein endothelial cells (HUVECs). Western blotting was used to detect protein expression levels, and an NO fluorescence probe was used to examine NO production. Intracellular Ca2+ concentrations were measured using a Ca2+-sensitive fluorescent dye under a fluorescence microscope. Compared with those in healthy pregnant women, serum PSG9 levels were significantly decreased in patients with preeclampsia. PSG9 (0.1 μg/mL) treatment of HUVECs significantly enhanced the expression levels of store-operated calcium entry (SOCE) channel proteins Orai1 and Orai2, but not Orai3, and of endothelial nitric oxide synthase (eNOS) and NO production. Pretreatment with an inhibitor of SOCE (BTP2) abolished PSG9-enhanced Orai1, Orai2, and eNOS expression levels and NO production in HUVECs. The mechanisms underlying SOCE that were PSG9 enhanced in HUVECs appear to involve the Ca2+/eNOS/NO signaling pathway. These findings suggest that serum PSG9 levels may be a potential biomarker for monitoring the occurrence or development of preeclampsia in pregnancy and that PSG9 may be a potential therapeutic target for the treatment of preeclampsia.
Collapse
|
13
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
14
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
ORAI1-Regulated Gene Expression in Breast Cancer Cells: Roles for STIM1 Binding, Calcium Influx and Transcription Factor Translocation. Int J Mol Sci 2022; 23:ijms23115867. [PMID: 35682546 PMCID: PMC9180186 DOI: 10.3390/ijms23115867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
A remodeling of calcium homeostasis, including calcium influx via store-operated calcium entry (SOCE), is a feature of breast cancers. SOCE is critical to maintain calcium balance in the endoplasmic reticulum calcium store and is an important mechanism for calcium signaling in a variety of cell types, including breast cancer cells. The canonical mechanism of SOCE is stromal interacting molecule 1 (STIM1)-mediated activation of ORAI. Elevated ORAI1 expression is a feature of basal breast cancer cells. However, the role of ORAI1 in the regulation of transcription in breast cancer cells of the basal molecular subtype is still unclear. Using CRISPR-Cas9 gene editing, ORAI1 protein expression was disrupted in MDA-MB-231 and MDA-MB-468 basal breast cancer cells. The ORAI1 wild-type and mutants were reintroduced into ORAI1 knockout cells to study the role of ORAI1 in gene transcriptional regulation. In the absence of calcium store depletion, ORAI1 regulated PTGS2 in MDA-MB-231 cells, and this was dependent on ORAI1 pore function and STIM1 binding. The activation of SOCE by thapsigargin resulted in ORAI1-dependent increases in IL6 transcription in MDA-MB-468 cells; this was also dependent on ORAI1 pore function and STIM1 binding and was associated with the translocation of NFAT1. Given the upregulation of ORAI1 in basal breast cancer cells, our results provide further evidence that ORAI1 may contribute to cancer progression through regulation of gene expression.
Collapse
|
16
|
Nakajima H, Fujita S, Kakae M, Nagayasu K, Oh-Hora M, Shirakawa H, Kaneko S. Orai2 channel regulates prostaglandin E 2 production in TNFα/IL1α-stimulated astrocytes. Glia 2022; 70:1666-1680. [PMID: 35506586 DOI: 10.1002/glia.24188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Astrocytes are glial cells that serve homeostatic functions in the central nervous system (CNS). Recent research, however, suggests that under pathological conditions, astrocytes are stimulated by various factors and actively participate in CNS inflammation. In the present study, we found that astrocytes upregulate various inflammatory factors including prostaglandin E2 (PGE2 ) by co-stimulation with tumor necrosis factor-alpha (TNFα) and interleukin-1alpha (IL1α). These TNFα/IL1α-stimulated astrocytes also showed increased Ca2+ release from the endoplasmic reticulum (ER) and increased expression of Orai2, a member of the store-operated calcium channel (SOCC) family. To reveal the role of Orai2, we used astrocytes in which Orai2 was knocked-down (KD) or knocked-out (KO). The expression of the prostaglandin E synthase Ptges and the production of PGE2 were higher in Orai2-KD astrocytes than in WT astrocytes when stimulated with TNFα and IL1α. Orai2-KO astrocytes also showed increased expression of Ptges and increased PGE2 production. The expression of Ptgs2, another PGE2 synthetic enzyme, was also upregulated in Orai2-KO astrocytes. Moreover, Orai2-KO astrocytes showed increased store-operated calcium entry (SOCE) and increased Orai1 expression. These results suggest that Orai2 is upregulated in TNFα/IL1α-stimulated astrocytes and reduces PGE2 production to some extent, modulating CNS inflammation. Our findings may aid in understanding how astrocytes are associated with inflammatory responses, and the identification of new targets that modulate astrocytic reactivity.
Collapse
Affiliation(s)
- Hiroki Nakajima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sayaka Fujita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol 2022; 13:814285. [PMID: 35222082 PMCID: PMC8864228 DOI: 10.3389/fphys.2022.814285] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Kaige Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
18
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
19
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
21
|
Dynes JL, Yeromin AV, Cahalan MD. Cell-wide mapping of Orai1 channel activity reveals functional heterogeneity in STIM1-Orai1 puncta. J Gen Physiol 2021; 152:151900. [PMID: 32589186 PMCID: PMC7478869 DOI: 10.1085/jgp.201812239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Upon Ca2+ store depletion, Orai1 channels cluster and open at endoplasmic reticulum–plasma membrane (ER–PM) junctions in signaling complexes called puncta. Little is known about whether and how Orai1 channel activity may vary between individual puncta. Previously, we developed and validated optical recording of Orai channel activity, using genetically encoded Ca2+ indicators fused to Orai1 or Orai3 N or C termini. We have now combined total internal reflection fluorescence microscopy with whole-cell recording to map functional properties of channels at individual puncta. After Ca2+ store depletion in HEK cells cotransfected with mCherry-STIM1 and Orai1-GCaMP6f, Orai1-GCaMP6f fluorescence increased progressively with increasingly negative test potentials and robust responses could be recorded from individual puncta. Cell-wide fluorescence half-rise and -fall times during steps to −100 mV test potential indicated probe response times of <50 ms. The in situ Orai1-GCaMP6f affinity for Ca2+ was 620 nM, assessed by monitoring fluorescence using buffered Ca2+ solutions in “unroofed” cells. Channel activity and temporal activation profile were tracked in individual puncta using image maps and automated puncta identification and recording. Simultaneous measurement of mCherry-STIM1 fluorescence uncovered an unexpected gradient in STIM1/Orai1 ratio that extends across the cell surface. Orai1-GCaMP6f channel activity was found to vary across the cell, with inactive channels occurring in the corners of cells where the STIM1/Orai1 ratio was lowest; low-activity channels typically at edges displayed a slow activation phase lasting hundreds of milliseconds. Puncta with high STIM1/Orai1 ratios exhibited a range of channel activity that appeared unrelated to the stoichiometric requirements for gating. These findings demonstrate functional heterogeneity of Orai1 channel activity between individual puncta and establish a new experimental platform that facilitates systematic comparisons between puncta composition and activity.
Collapse
Affiliation(s)
- Joseph L Dynes
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA.,Institute for Immunology, University of California, Irvine, Irvine, CA
| |
Collapse
|
22
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
23
|
Shalygin A, Kolesnikov D, Glushankova L, Gusev K, Skopin A, Skobeleva K, Kaznacheyeva EV. Role of STIM2 and Orai proteins in regulating TRPC1 channel activity upon calcium store depletion. Cell Calcium 2021; 97:102432. [PMID: 34157631 DOI: 10.1016/j.ceca.2021.102432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Store-operated calcium channels are the major player in calcium signaling in non-excitable cells. Store-operated calcium entry is associated with the Orai, stromal interaction molecule (STIM), and transient receptor potential canonical (TRPC) protein families. Researchers have provided conflicting data about TRPC1 channel regulation by Orai and STIM. To determine how Orai and STIM influence endogenous TRPC1 pore properties and regulation, we used single channel patch-clamp recordings. Here we showed that knockout or knockdown of Orai1 or Orai3 or overexpression of the dominant-negative mutant Orai1 E106Q did not change the conductance or selectivity of single TRPC1 channels. In addition, these TRPC1 channel properties did not depend on the amount of STIM1 and STIM2 proteins. To study STIM2-mediated regulation of TRPC1 channels, we utilized partial calcium store depletion induced by application of 10 nM thapsigargin (Tg). TRPC1 activation by endogenous STIM2 was greatly decreased in acute extracellular calcium-free experiments. STIM2 overexpression increased both the basal activity and number of silent TRPC1 channels in the plasma membrane. After calcium store depletion, overexpressed STIM2 directly activated TRPC1 in the plasma membrane even without calcium entry in acute experiments. However, this effect was abrogated by co-expression with the non-permeable Orai1 E106Q mutant protein. Taken together, our single-channel patch clamp experiments clearly demonstrated that endogenous TRPC1 forms a channel pore without involving Orai proteins. Calcium entry through Orai triggered TRPC1 channel activation in the plasma membrane, while subsequent STIM2-mediated TRPC1 activity regulation was not dependent on calcium entry.
Collapse
Affiliation(s)
- A Shalygin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | - D Kolesnikov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - L Glushankova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - K Gusev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - A Skopin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - K Skobeleva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - E V Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| |
Collapse
|
24
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
25
|
Denisov P, Popov A, Brazhe A, Lazareva N, Verkhratsky A, Semyanov A. Caloric restriction modifies spatiotemporal calcium dynamics in mouse hippocampal astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119034. [PMID: 33836176 DOI: 10.1016/j.bbamcr.2021.119034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
We analysed spatiotemporal properties of Ca2+ signals in protoplasmic astrocytes in the CA1 stratum radiatum of hippocampal slices from young (2-3 months old) mice housed in control conditions or exposed to a caloric restriction (CR) diet for one month. The astrocytic Ca2+ events became shorter in duration and smaller in size; they also demonstrated reduced velocity of expansion and shrinkage following CR. At the same time, Ca2+ signals in the astrocytes from the CR animals demonstrated higher amplitude and the faster rise and decay rates. These changes can be attributed to CR-induced morphological remodelling and uncoupling of astrocytes described in our previous study. CR-induced changes in the parameters of Ca2+ activity were partially reversed by inhibition of gap junctions/hemichannels with carbenoxolone (CBX). The effect of CBX on Ca2+ activity in CR-animals was unexpected because the diet already decreases gap junctional coupling in astrocytic syncytia. It may reflect the blockade of hemichannels also sensitive to this drug. Thus, CR-induced morphological remodelling of astrocytes is at least partly responsible for changes in the pattern of Ca2+ activity in the astrocytic network. How such changes in spatiotemporal Ca2+ landscape can translate into astrocytic physiology and neuron-glia interactions remains a matter for future studies.
Collapse
Affiliation(s)
- Pavel Denisov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia
| | | | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
26
|
Shiratori-Hayashi M, Yamaguchi C, Eguchi K, Shiraishi Y, Kohno K, Mikoshiba K, Inoue K, Nishida M, Tsuda M. Astrocytic STAT3 activation and chronic itch require IP 3R1/TRPC-dependent Ca 2+ signals in mice. J Allergy Clin Immunol 2021; 147:1341-1353. [PMID: 32781002 DOI: 10.1016/j.jaci.2020.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chronic itch is a debilitating symptom of inflammatory skin diseases, but the underlying mechanism is poorly understood. We have recently demonstrated that astrocytes in the spinal dorsal horn become reactive in models of atopic and contact dermatitis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) and critically contribute to chronic itch. In general, STAT3 is transiently activated; however, STAT3 activation in reactive astrocytes of chronic itch model mice persistently occurs via an unknown mechanism. OBJECTIVE We aimed to determine the mechanisms of persistent activation of astrocytic STAT3 in chronic itch conditions. METHODS To determine the factors that are required for persistent activation of astrocytic STAT3, Western blotting and calcium imaging with cultured astrocytes or spinal cord slices were performed. Thereafter, chronic itch model mice were used for genetic and behavioral experiments to confirm the role of the factors determined to mediate persistent STAT3 activation from in vitro and ex vivo experiments in chronic itch. RESULTS IP3 receptor type 1 (IP3R1) knockdown in astrocytes suppressed IL-6-induced persistent STAT3 activation and expression of lipocalin-2 (LCN2), an astrocytic STAT3-dependent inflammatory factor that is required for chronic itch. IP3R1-dependent astrocytic Ca2+ responses involved Ca2+ influx through the cation channel transient receptor potential canonical (TRPC), which was required for persistent STAT3 activation evoked by IL-6. IL-6 expression was upregulated in dorsal root ganglion neurons in a mouse model of chronic itch. Dorsal root ganglion neuron-specific IL-6 knockdown, spinal astrocyte-specific IP3R1 knockdown, and pharmacologic spinal TRPC inhibition attenuated LCN2 expression and chronic itch. CONCLUSION Our findings suggest that IP3R1/TRPC channel-mediated Ca2+ signals elicited by IL-6 in astrocytes are necessary for persistent STAT3 activation, LCN2 expression, and chronic itch, and they may also provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiharu Yamaguchi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazushi Eguchi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuto Shiraishi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Mikoshiba
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan; Faculty of Science, Toho University, Chiba, Japan; Shanghai Institute of Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Nishida
- Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
27
|
Ye Z, Shen Y, Jin K, Qiu J, Hu B, Jadhav RR, Sheth K, Weyand CM, Goronzy JJ. Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nat Commun 2021; 12:907. [PMID: 33568645 PMCID: PMC7875984 DOI: 10.1038/s41467-021-21242-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are two distinct autoimmune diseases that manifest with chronic synovial inflammation. Here, we show that CD4+ T cells from patients with RA and PsA have increased expression of the pore-forming calcium channel component ORAI3, thereby increasing the activity of the arachidonic acid-regulated calcium-selective (ARC) channel and making T cells sensitive to arachidonic acid. A similar increase does not occur in T cells from patients with systemic lupus erythematosus. Increased ORAI3 transcription in RA and PsA T cells is caused by reduced IKAROS expression, a transcriptional repressor of the ORAI3 promoter. Stimulation of the ARC channel with arachidonic acid induces not only a calcium influx, but also the phosphorylation of components of the T cell receptor signaling cascade. In a human synovium chimeric mouse model, silencing ORAI3 expression in adoptively transferred T cells from patients with RA attenuates tissue inflammation, while adoptive transfer of T cells from healthy individuals with reduced expression of IKAROS induces synovitis. We propose that increased ARC activity due to reduced IKAROS expression makes T cells more responsive and contributes to chronic inflammation in RA and PsA. ORAI3 is part of pore forming calcium channels involved in T cell activation. Here the authors show that there is increased expression of ORAI3 in T cells from patients with rheumatoid arthritis and that the transcription factor IKAROS negatively regulates the ORAI3 promoter, indicating a regulatory loop that can control auto-reactivity of T cells in these patients.
Collapse
Affiliation(s)
- Zhongde Ye
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yi Shen
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ke Jin
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jingtao Qiu
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Bin Hu
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Khushboo Sheth
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA. .,Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
29
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Clarke D, Beros J, Bates KA, Harvey AR, Tang AD, Rodger J. Low intensity repetitive magnetic stimulation reduces expression of genes related to inflammation and calcium signalling in cultured mouse cortical astrocytes. Brain Stimul 2020; 14:183-191. [PMID: 33359601 DOI: 10.1016/j.brs.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive brain stimulation frequently used to induce neuroplasticity in the brain. Even at low intensities, rTMS has been shown to modulate aspects of neuronal plasticity such as motor learning and structural reorganisation of neural tissue. However, the impact of low intensity rTMS on glial cells such as astrocytes remains largely unknown. This study investigated changes in RNA (qPCR array: 125 selected genes) and protein levels (immunofluorescence) in cultured mouse astrocytes following a single session of low intensity repetitive magnetic stimulation (LI-rMS - 18 mT). Purified neonatal cortical astrocyte cultures were stimulated with either 1Hz (600 pulses), 10Hz (600 or 6000 pulses) or sham (0 pulses) LI-rMS, followed by RNA extraction at 5 h post-stimulation, or fixation at either 5 or 24-h post-stimulation. LI-rMS resulted in a two-to-four-fold downregulation of mRNA transcripts related to calcium signalling (Stim1 and Orai3), inflammatory molecules (Icam1) and neural plasticity (Ncam1). 10Hz reduced expression of Stim1, Orai3, Kcnmb4, and Ncam1 mRNA, whereas 1Hz reduced expression of Icam1 mRNA and signalling-related genes. Protein levels followed a similar pattern for 10Hz rMS, with a significant reduction of STIM1, ORAI3, KCNMB4, and NCAM1 protein compared to sham, but 1Hz increased STIM1 and ORAI3 protein levels relative to sham. These findings demonstrate the ability of 1Hz and 10Hz LI-rMS to modulate specific aspects of astrocytic phenotype, potentially contributing to the known effects of low intensity rTMS on excitability and neuroplasticity.
Collapse
Affiliation(s)
- Darren Clarke
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Jamie Beros
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia; School of Human Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| |
Collapse
|
31
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
32
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
33
|
Sun Y, Nascimento Da Conceicao V, Ahamad N, Madesh M, Singh BB. Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 Down-Regulation Potentiates SOCE and Decreases Aβ42 Accumulation in Human Neuroglioma Cells. Int J Mol Sci 2020; 21:ijms21155288. [PMID: 32722509 PMCID: PMC7432374 DOI: 10.3390/ijms21155288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aβ), the proteolytic product of amyloid precursor protein (APP), by β and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aβ accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aβ production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aβ-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aβ42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.
Collapse
Affiliation(s)
- Elena Scremin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Mario Agostini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Correspondence: (E.G.); (C.F.)
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Correspondence: (E.G.); (C.F.)
| |
Collapse
|
35
|
La Russa D, Frisina M, Secondo A, Bagetta G, Amantea D. Modulation of Cerebral Store-operated Calcium Entry-regulatory Factor (SARAF) and Peripheral Orai1 Following Focal Cerebral Ischemia and Preconditioning in Mice. Neuroscience 2020; 441:8-21. [PMID: 32569806 DOI: 10.1016/j.neuroscience.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Store-operated Ca2+ entry (SOCE) contributes to Ca2+ refilling of endoplasmic reticulum (ER), but also provides Ca2+ influx involved in physiological and pathological signalling functions. Upon depletion of Ca2+ store, the sensor protein stromal interaction molecule (STIM) activates Orai1, forming an ion-conducting pore highly selective for Ca2+. SOCE-associated regulatory factor (SARAF) associates with STIM1 to facilitate a slow form of Ca2+-dependent inactivation of SOCE or interacts with Orai1 to stimulate SOCE in STIM1-independent manner. We have investigated whether cerebral ischemic damage and neuroprotection conferred by ischemic preconditioning (PC) in mouse are associated with changes in the expression of the molecular components of SOCE. Ischemic PC induced by 15-min occlusion of the middle cerebral artery (MCAo) resulted in significant amelioration of histological and functional outcomes produced, 72 h later, by a more severe ischemia (1 h MCAo). Neither ischemia, nor PC affected the expression of Orai1 in the frontoparietal cortex. However, the number of Orai1-immunopositive cells, mostly corresponding to Ly-6G+ neutrophils, was significantly elevated in the blood after the ischemic insult, regardless of previous PC. The expression of Stim1 and SARAF, mainly localised in NeuN-immunopositive neurons, was reduced in the ischemic cortex. Interestingly, neuroprotection by ischemic PC prevented the reduction of SARAF expression in the lesioned cortex and this could be interpreted as a compensatory mechanism to restore ER Ca2+ refilling in neurons in the absence of STIM1. Thus, preventing SARAF downregulation may represent a pivotal mechanism implicated in neuroprotection provided by ischemic PC and should be exploited as an original target for novel stroke therapies.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Marialaura Frisina
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy.
| |
Collapse
|
36
|
Jaudon F, Chiacchiaretta M, Albini M, Ferroni S, Benfenati F, Cesca F. Kidins220/ARMS controls astrocyte calcium signaling and neuron-astrocyte communication. Cell Death Differ 2020; 27:1505-1519. [PMID: 31624352 PMCID: PMC7206051 DOI: 10.1038/s41418-019-0431-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Through their ability to modulate synaptic transmission, glial cells are key regulators of neuronal circuit formation and activity. Kidins220/ARMS (kinase-D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning) is one of the key effectors of the neurotrophin pathways in neurons where it is required for differentiation, survival, and plasticity. However, its role in glial cells remains largely unknown. Here, we show that ablation of Kidins220 in primary cultured astrocytes induced defects in calcium (Ca2+) signaling that were linked to altered store-operated Ca2+ entry and strong overexpression of the transient receptor potential channel TRPV4. Moreover, Kidins220-/- astrocytes were more sensitive to genotoxic stress. We also show that Kidins220 expression in astrocytes is required for the establishment of proper connectivity of cocultured wild-type neurons. Altogether, our data reveal a previously unidentified role for astrocyte-expressed Kidins220 in the control of glial Ca2+ dynamics, survival/death pathways and astrocyte-neuron communication.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Martina Albini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy.
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
37
|
Kappel S, Kilch T, Baur R, Lochner M, Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca 2+ Channels Alter the Pharmacology of I CRAC. Int J Mol Sci 2020; 21:ijms21072458. [PMID: 32252254 PMCID: PMC7178029 DOI: 10.3390/ijms21072458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | | | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
- Correspondence: ; Tel.: +41-31-631-3415
| |
Collapse
|
38
|
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M, Zhou Y. Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 2019; 21:806-814. [PMID: 31974621 PMCID: PMC6947876 DOI: 10.3892/mmr.2019.10877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) is an important bioactive peptide in the renin-angiotensin system, and it can contribute to cell proliferation and cardiac hypertrophy. Dysfunctions in transient receptor potential canonical (TRPC) channels are involved in many types of cardiovascular diseases. The aim of the present study was to investigate the role of the TRPC channel inhibitor SKF-96365 in cardiomyocyte hypertrophy induced by Ang II and the potential mechanisms of SKF-96365. H9c2 cells were treated with different concentrations of Ang II. The expression levels of cardiomyocyte hypertrophy markers and TRPC channel-related proteins were also determined. The morphology and surface area of the H9c2 cells, the expression of hypertrophic markers and TRPC channel-related proteins and the [3H] leucine incorporation rate were detected in the Ang II-treated H9c2 cells following treatment with the TRPC channel inhibitor SKF-96365. The intracellular Ca2+ concentration was tested by flow cytometry. The present results suggested that the surface area of H9c2 cells treated with Ang II was significantly increased compared with untreated H9c2 cells. The fluorescence intensity of α-actinin, the expression of hypertrophic markers and TRPC-related proteins, the [3H] leucine incorporation rate and the intracellular Ca2+ concentration were all markedly increased in the Ang II-treated H9c2 cells but decreased following SKF-96365 treatment. The present results suggested that Ang II induced cardiomyocyte hypertrophy in H9c2 cells and that the TRPC pathway may be involved in this process. Therefore, SKF-96365 can inhibit cardiomyocyte hypertrophy induced by Ang II by suppressing the TRPC pathway. The present results indicated that TRPC may be a therapeutic target for the development of novel drugs to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Huijun Cheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Jiaoxia Li
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiyan Wu
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Xiaodong Zheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yongqiang Gao
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiaofen Yang
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Ningxi Sun
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Meiqiong He
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Youjun Zhou
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
39
|
Okubo Y, Iino M, Hirose K. Store-operated Ca 2+ entry-dependent Ca 2+ refilling in the endoplasmic reticulum in astrocytes. Biochem Biophys Res Commun 2019; 522:1003-1008. [PMID: 31812243 DOI: 10.1016/j.bbrc.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Astrocytes regulate various brain functions, for which Ca2+ release from the endoplasmic reticulum (ER) often play crucial roles. Because astrocytic ER Ca2+ release is robust and frequent, the ER Ca2+ refilling mechanism should be critical for ongoing Ca2+ signaling in astrocytes. In this study, we focused on the putative functional significance of store-operated Ca2+ entry (SOCE) in ER Ca2+ refilling. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in astrocytes in acute cortical slices to directly monitor the decrease and recovery of ER Ca2+ concentration upon spontaneous or norepinephrine-induced Ca2+ release. Inhibition of SOCE significantly slowed the recovery of ER Ca2+ concentration after Ca2+ release in astrocytes. This delayed recovery resulted in a prolonged decrease in the ER Ca2+ content in astrocytes with periodic spontaneous Ca2+ release, followed by the attenuation of cytosolic Ca2+ responses upon Ca2+ release. Therefore, our results provide direct evidence for the physiological significance of SOCE in ER Ca2+ refilling after ER Ca2+ release.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| |
Collapse
|
40
|
Norante RP, Peggion C, Rossi D, Martorana F, De Mario A, Lia A, Massimino ML, Bertoli A. ALS-Associated SOD1(G93A) Decreases SERCA Pump Levels and Increases Store-Operated Ca 2+ Entry in Primary Spinal Cord Astrocytes from a Transgenic Mouse Model. Int J Mol Sci 2019; 20:E5151. [PMID: 31627428 PMCID: PMC6829245 DOI: 10.3390/ijms20205151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.
Collapse
Affiliation(s)
- Rosa Pia Norante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB-IRCCS, 27100 Pavia, Italy.
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB-IRCCS, 27100 Pavia, Italy.
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- CNR-Neuroscience Institute, University of Padova, 35131 Padova, Italy.
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
41
|
TRPP2 associates with STIM1 to regulate cerebral vasoconstriction and enhance high salt intake-induced hypertensive cerebrovascular spasm. Hypertens Res 2019; 42:1894-1904. [PMID: 31541223 DOI: 10.1038/s41440-019-0324-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
Cerebrovascular spasm is a life-threatening event in salt-sensitive hypertension. The relationship between store-operated calcium entry (SOCE) and vasoconstriction in hypertension has not been fully clarified. This study investigated the changes in cerebrovascular contractile responses in high salt intake-induced hypertension and the functional roles of the main components of SOCE, namely, polycystin-2 (TRPP2), stromal interaction molecule 1 (STIM1), and Orai3. Polycystic kidney disease 2 (which encodes TRPP2) knockout mice displayed decreased cerebrovascular SOCE-induced contraction. The blood pressure of age-matched rats fed a normal or high-salt diet for 4 weeks was monitored weekly using noninvasive tail-cuff plethysmography. The systolic blood pressure of the rats fed a high-salt diet was significantly higher than that of controls. Western blotting and immunohistochemical results showed that these hypertensive rats expressed higher levels of cerebrovascular TRPP2, STIM1, and Orai3 than controls. Cerebrovascular tension measurements of the basilar artery indicated that SOCE-mediated contraction was significantly increased in hypertensive rats compared with control rats. In addition, SOCE-mediated contraction was decreased in the basilar arteries of rats pretreated with the SOCE inhibitor BTP-2 (10 μM) or transfected with TRPP2-specific or STIM1-specific small interfering RNA. Staining with 2,3,5-triphenyltetrazolium chloride (TTC) was used to quantify the infarcted brain area 24 h after middle cerebral artery occlusion, a model of ischemic stroke, in rodents. The infarcted brain area was significantly greater in hypertensive rats and significantly lower in BTP-2-treated rats than in controls. Taken together, these findings indicate that SOCE-induced contraction may be overactive in the basilar arteries of salt-sensitive hypertensive rats, suggesting the dysregulation of TRPP2 and SOCE and its other components.
Collapse
|
42
|
Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. CRAC channels regulate astrocyte Ca 2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci Signal 2019; 12:12/582/eaaw5450. [PMID: 31113852 DOI: 10.1126/scisignal.aaw5450] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Astrocytes are the major glial subtype in the brain and mediate numerous functions ranging from metabolic support to gliotransmitter release through signaling mechanisms controlled by Ca2+ Despite intense interest, the Ca2+ influx pathways in astrocytes remain obscure, hindering mechanistic insights into how Ca2+ signaling is coupled to downstream astrocyte-mediated effector functions. Here, we identified store-operated Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1 as a major route of Ca2+ entry for driving sustained and oscillatory Ca2+ signals in astrocytes after stimulation of metabotropic purinergic and protease-activated receptors. Using synaptopHluorin as an optical reporter, we showed that the opening of astrocyte CRAC channels stimulated vesicular exocytosis to mediate the release of gliotransmitters, including ATP. Furthermore, slice electrophysiological recordings showed that activation of astrocytes by protease-activated receptors stimulated interneurons in the CA1 hippocampus to increase inhibitory postsynaptic currents on CA1 pyramidal cells. These results reveal a central role for CRAC channels as regulators of astrocyte Ca2+ signaling, gliotransmitter release, and astrocyte-mediated tonic inhibition of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalie G Bernstein
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laurie Lambot
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Souza LAC, Worker CJ, Li W, Trebak F, Watkins T, Gayban AJB, Yamasaki E, Cooper SG, Drumm BT, Feng Y. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT 1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol 2019; 316:H1389-H1405. [PMID: 30925093 DOI: 10.1152/ajpheart.00780.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined. In this study, we investigated the involvement and mechanisms of the PVN-PRR in DOCA-salt-induced hypertension, a mouse model of hypertension. Using nanoinjection of adeno-associated virus-mediated Cre recombinase expression to knock down the PRR specifically in the PVN, we report here that PVN-PRR knockdown attenuated the enhanced blood pressure and sympathetic tone associated with hypertension. Mechanistically, we found that PVN-PRR knockdown was associated with reduced activation of ERK (extracellular signal-regulated kinase)-1/2 in the PVN and rostral ventrolateral medulla during hypertension. In addition, using the genetically encoded Ca2+ biosensor GCaMP6 to monitor Ca2+-signaling events in the neurons of PVN brain slices, we identified a reduction in angiotensin II type 1 receptor-mediated Ca2+ activity as part of the mechanism by which PVN-PRR knockdown attenuates hypertension. Our study demonstrates an essential role of the PRR in PVN neurons in hypertension through regulation of ERK1/2 activation and angiotensin II type 1 receptor-mediated Ca2+ activity. NEW & NOTEWORTHY PRR knockdown in PVN neurons attenuates the development of DOCA-salt hypertension and autonomic dysfunction through a decrease in ERK1/2 activation in the PVN and RVLM during hypertension. In addition, PRR knockdown reduced AT1aR expression and AT1R-mediated calcium activity during hypertension. Furthermore, we characterized the neuronal targeting specificity of AAV serotype 2 in the mouse PVN and validated the advantages of the genetically encoded calcium biosensor GCaMP6 in visualizing neuronal calcium activity in the PVN.
Collapse
Affiliation(s)
- Lucas A C Souza
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University , Winston-Salem, North Carolina
| | - Fatima Trebak
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Trevor Watkins
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Yumei Feng
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
44
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
45
|
Mei Y, Barrett JE, Hu H. Calcium release-activated calcium channels and pain. Cell Calcium 2018; 74:180-185. [PMID: 30096536 DOI: 10.1016/j.ceca.2018.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.
Collapse
Affiliation(s)
- Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA 19102, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
46
|
Zuccolo E, Laforenza U, Ferulli F, Pellavio G, Scarpellino G, Tanzi M, Turin I, Faris P, Lucariello A, Maestri M, Kheder DA, Guerra G, Pedrazzoli P, Montagna D, Moccia F. Stim and Orai mediate constitutive Ca 2+ entry and control endoplasmic reticulum Ca 2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget 2018; 9:31098-31119. [PMID: 30123430 PMCID: PMC6089563 DOI: 10.18632/oncotarget.25785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) provides a major Ca2+ entry route in cancer cells. SOCE is mediated by the assembly of Stim and Orai proteins at endoplasmic reticulum (ER)-plasma membrane junctions upon depletion of the ER Ca2+ store. Additionally, Stim and Orai proteins underpin constitutive Ca2+ entry in a growing number of cancer cell types due to the partial depletion of their ER Ca2+ reservoir. Herein, we investigated for the first time the structure and function of SOCE in primary cultures of colorectal carcinoma (CRC) established from primary tumor (pCRC) and metastatic lesions (mCRC) of human subjects. Stim1-2 and Orai1-3 transcripts were equally expressed in pCRC and mCRC cells, although Stim1 and Orai3 proteins were up-regulated in mCRC cells. The Mn2+-quenching technique revealed that constitutive Ca2+ entry was significantly enhanced in pCRC cells and was inhibited by the pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3. The larger resting Ca2+ influx in pCRC was associated to their lower ER Ca2+ content as compared to mCRC cells. Pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 prevented ER-dependent Ca2+ release, thereby suggesting that constitutive SOCE maintains ER Ca2+ levels. Nevertheless, pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 did not affect CRC cell proliferation and migration. These data provide the first evidence that Stim and Orai proteins mediate constitutive Ca2+ entry and replenish ER with Ca2+ in primary cultures of CRC cells. However, SOCE is not a promising target to design alternative therapies for CRC.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Turin
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Angela Lucariello
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dlzar Ali Kheder
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Zakho, Kurdistan-Region of Iraq, Iraq
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 2018; 293:7108-7116. [PMID: 29572349 DOI: 10.1074/jbc.r117.803239] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K+ and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
48
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca 2+ entry. Am J Physiol Heart Circ Physiol 2017; 314:H359-H369. [PMID: 29101179 DOI: 10.1152/ajpheart.00540.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|