1
|
Liu J, Yang X, Musmar B, Hasan DM. Trans-arterial approach for neural recording and stimulation: Present and future. J Clin Neurosci 2025; 135:111180. [PMID: 40153908 DOI: 10.1016/j.jocn.2025.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Neural recording and stimulation are fundamental techniques used for brain computer interfaces (BCIs). BCIs have significant potential for use in a range of brain disorders. However, for most BCIs, electrode implantation requires invasive craniotomy procedures, which have a risk of infection, hematoma, and immune responses. Such drawbacks may limit the extensive application of BCIs. There has been a rapid increase in the development of endovascular technologies and devices. Indeed, in a clinical trial, stent electrodes have been endovascularly implanted via a venous approach and provided an effective endovascular BCI to help disabled patients. Several authors have reviewed the use of endovascular recordings or endovascular BCIs. However, there is limited information on the use of trans-arterial BCIs. Herein, we reviewed the literature on the use of trans-arterial neural recording and stimulation for BCIs, and discuss their potential in terms of anatomical features, device innovations, and clinical applications. Although the use of trans-arterial recording and stimulation in the brain remains challenging, we believe it has high potential for both scientists and physicians.
Collapse
Affiliation(s)
- Jian Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Xinjian Yang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, PR China
| | - Basel Musmar
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - David M Hasan
- Department of Neurosurgery, Duke University, Durham, NC, United States.
| |
Collapse
|
2
|
King BJ, Read GJM, Salmon PM. Prospectively identifying risks and controls for advanced brain-computer interfaces: A Networked Hazard Analysis and Risk Management System (Net-HARMS) approach. APPLIED ERGONOMICS 2025; 122:104382. [PMID: 39265503 DOI: 10.1016/j.apergo.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The introduction of advanced digital technologies continues to increase system complexity and introduce risks, which must be proactively identified and managed to support system resilience. Brain-computer interfaces (BCIs) are one such technology; however, the risks arising from broad societal use of the technology have yet to be identified and controlled. This study applied a structured systems thinking-based risk assessment method to prospectively identify risks and risk controls for a hypothetical future BCI system lifecycle. The application of the Networked Hazard Analysis and Risk Management System (Net-HARMS) method identified over 800 risks throughout the BCI system lifecycle, from BCI development and regulation through to BCI use, maintenance, and decommissioning. High-criticality risk themes include the implantation and degradation of unsafe BCIs, unsolicited brain stimulation, incorrect signals being sent to safety-critical technologies, and insufficiently supported BCI users. Over 600 risk controls were identified that could be implemented to support system safety and performance resilience. Overall, many highly-impactful BCI system safety and performance risks may arise throughout the BCI system lifecycle and will require collaborative efforts from a wide range of BCI stakeholders to adequately control. Whilst some of the identified controls are practical, work is required to develop a more systematic set of controls to best support the design of a resilient sociotechnical BCI system.
Collapse
Affiliation(s)
- Brandon J King
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, ML 47, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia; Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia.
| | - Gemma J M Read
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia; School of Health, University of the Sunshine Coast, Australia. https://twitter.com/gemma_read
| | - Paul M Salmon
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia. https://twitter.com/DrPaulSalmon
| |
Collapse
|
3
|
Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N. Nanostructured Photonics Probes: A Transformative Approach in Neurotherapeutics and Brain Circuitry. Neuroscience 2024; 562:106-124. [PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Iraq
| | - Ali Q Saeed
- Computer Center / Northern Technical University, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq.
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401 India
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| |
Collapse
|
4
|
Sitaram R, Sanchez-Corzo A, Vargas G, Cortese A, El-Deredy W, Jackson A, Fetz E. Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230093. [PMID: 39428875 PMCID: PMC11491850 DOI: 10.1098/rstb.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/22/2024] [Accepted: 06/26/2024] [Indexed: 10/22/2024] Open
Abstract
While neurofeedback represents a promising tool for neuroscience and a brain self-regulation approach to psychological rehabilitation, the field faces several problems and challenges. Current research has shown great variability and even failure among human participants in learning to self-regulate target features of brain activity with neurofeedback. A better understanding of cognitive mechanisms, psychological factors and neural substrates underlying self-regulation might help improve neurofeedback's scientific and clinical practices. This article reviews the current understanding of the neural mechanisms of brain self-regulation by drawing on findings from human and animal studies in neurofeedback, brain-computer/machine interfaces and neuroprosthetics. In this article, we look closer at the following topics: cognitive processes and psychophysiological factors affecting self-regulation, theoretical models and neural substrates underlying self-regulation, and finally, we provide an outlook on the outstanding gaps in knowledge and technical challenges. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Ranganatha Sitaram
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, Saint Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN38105, USA
| | - Andrea Sanchez-Corzo
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, Saint Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN38105, USA
| | - Gabriela Vargas
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago de Chile8330074, Chile
| | - Aurelio Cortese
- Department of Decoded Neurofeedback, ATR Computational Neuroscience Laboratories, Kyoto619-0288, Japan
| | - Wael El-Deredy
- Brain Dynamics Lab, Universidad de Valparaíso, Valparaiso, Chile
- ValgrAI: Valencian Graduate School and Research Network of Artificial Intelligence – University of Valencia, Spain, Spain
| | - Andrew Jackson
- Biosciences Institute, Newcastle University, NewcastleNE2 4HH, UK
| | - Eberhard Fetz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
6
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
7
|
Song SS, Druschel LN, Kasthuri NM, Wang JJ, Conard JH, Chan ER, Acharya AP, Capadona JR. Comprehensive proteomic analysis of the differential expression of 62 proteins following intracortical microelectrode implantation. Sci Rep 2024; 14:17596. [PMID: 39080300 PMCID: PMC11289480 DOI: 10.1038/s41598-024-68017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Intracortical microelectrodes (IMEs) are devices designed to be implanted into the cerebral cortex for various neuroscience and neuro-engineering applications. A critical feature of IMEs is their ability to detect neural activity from individual neurons. Currently, IMEs are limited by chronic failure, largely considered to be caused by the prolonged neuroinflammatory response to the implanted devices. Over the past few years, the characterization of the neuroinflammatory response has grown in sophistication, with the most recent advances focusing on mRNA expression following IME implantation. While gene expression studies increase our broad understanding of the relationship between IMEs and cortical tissue, advanced proteomic techniques have not been reported. Proteomic evaluation is necessary to describe the diverse changes in protein expression specific to neuroinflammation, neurodegeneration, or tissue and cellular viability, which could lead to the further development of targeted intervention strategies designed to improve IME functionality. In this study, we have characterized the expression of 62 proteins within 180 μm of the IME implant site at 4-, 8-, and 16-weeks post-implantation. We identified potential targets for immunotherapies, as well as key pathways that contribute to neuronal dieback around the IME implant.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Wan Y, Wang C, Zhang B, Liu Y, Yang H, Liu F, Xu J, Xu S. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3799. [PMID: 38931581 PMCID: PMC11207811 DOI: 10.3390/s24123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Implantable bioelectronics hold tremendous potential in the field of healthcare, yet the performance of these systems heavily relies on the interfaces between artificial machines and living tissues. In this paper, we discuss the recent developments of tethered interfaces, as well as those of non-tethered interfaces. Among them, systems that study neural activity receive significant attention due to their innovative developments and high relevance in contemporary research, but other functional types of interface systems are also explored to provide a comprehensive overview of the field. We also analyze the key considerations, including perforation site selection, fixing strategies, long-term retention, and wireless communication, highlighting the challenges and opportunities with stable, effective, and biocompatible interfaces. Furthermore, we propose a primitive model of biocompatible electrical and optical interfaces for implantable systems, which simultaneously possesses biocompatibility, stability, and convenience. Finally, we point out the future directions of interfacing strategies.
Collapse
Affiliation(s)
- Yuxin Wan
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Caiyi Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yixuan Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Hailong Yang
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Fengyu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Wang S, Yan X, Jiao X, Yang H. Experimental Study of the Implantation Process for Array Electrodes into Highly Transparent Agarose Gel. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2334. [PMID: 38793401 PMCID: PMC11123045 DOI: 10.3390/ma17102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Brain-computer interface (BCI) technology is currently a cutting-edge exploratory problem in the field of human-computer interaction. However, in experiments involving the implantation of electrodes into brain tissue, particularly high-speed or array implants, existing technologies find it challenging to observe the damage in real time. Considering the difficulties in obtaining biological brain tissue and the challenges associated with real-time observation of damage during the implantation process, we have prepared a transparent agarose gel that closely mimics the mechanical properties of biological brain tissue for use in electrode implantation experiments. Subsequently, we developed an experimental setup for synchronized observation of the electrode implantation process, utilizing the Digital Gradient Sensing (DGS) method. In the single electrode implantation experiments, with the increase in implantation speed, the implantation load increases progressively, and the tissue damage region around the electrode tip gradually diminishes. In the array electrode implantation experiments, compared to a single electrode, the degree of tissue indentation is more severe due to the coupling effect between adjacent electrodes. As the array spacing increases, the coupling effect gradually diminishes. The experimental results indicate that appropriately increasing the velocity and array spacing of the electrodes can enhance the likelihood of successful implantation. The research findings of this article provide valuable guidance for the damage assessment and selection of implantation parameters during the process of electrode implantation into real brain tissue.
Collapse
Affiliation(s)
| | - Xuan Yan
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (X.J.)
| | | | - Heng Yang
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (X.J.)
| |
Collapse
|
10
|
Pimenta S, Freitas JR, Correia JH. Flexible neural probes: a review of the current advantages, drawbacks, and future demands. J Zhejiang Univ Sci B 2024; 25:153-167. [PMID: 38303498 PMCID: PMC10835206 DOI: 10.1631/jzus.b2300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 02/03/2024]
Abstract
Brain diseases affect millions of people and have a huge social and economic impact. The use of neural probes for studies in animals has been the main approach to increasing knowledge about neural network functioning. Ultimately, neuroscientists are trying to develop new and more effective therapeutic approaches to treating neurological disorders. The implementation of neural probes with multifunctionalities (electrical, optical, and fluidic interactions) has been increasing in the last few years, leading to the creation of devices with high temporal and spatial resolution. Increasing the applicability of, and elements integrated into, neural probes has also led to the necessity to create flexible interfaces, reducing neural tissue damage during probe implantation and increasing the quality of neural acquisition data. In this paper, we review the fabrication, characterization, and validation of several types of flexible neural probes, exploring the main advantages and drawbacks of these devices. Finally, future developments and applications are covered. Overall, this review aims to present the currently available flexible devices and future appropriate avenues for development as possible guidance for future engineered devices.
Collapse
Affiliation(s)
- Sara Pimenta
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal.
- LABBELS-Associate Laboratory, Braga/Guimares, Portugal.
| | - Joo R Freitas
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal
| | - Jos H Correia
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga/Guimares, Portugal
| |
Collapse
|
11
|
Uguz I, Ohayon D, Arslan V, Sheelamanthula R, Griggs S, Hama A, Stanton JW, McCulloch I, Inal S, Shepard KL. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat Commun 2024; 15:533. [PMID: 38225257 PMCID: PMC10789794 DOI: 10.1038/s41467-023-44024-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-μm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 μs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-μm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].
Collapse
Affiliation(s)
- Ilke Uguz
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA.
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Volkan Arslan
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | | | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - John William Stanton
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kenneth L Shepard
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
12
|
Ramesh B, R J A, Arun V, Singla A, Chandra PK, Sethi VA, Abood AS. A Review on Biomaterials for Neural Interfaces: Enhancing Brain-Machine Interfaces. E3S WEB OF CONFERENCES 2024; 505:01005. [DOI: 10.1051/e3sconf/202450501005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biomaterials are essential to the development of neural interfaces, including brainmachine interfaces. Biomaterial methods improve neural interface functionality, compatibility, and longevity, enabling brain-device communication. An extensive investigation of biomaterials utilized in brain electrode arrays, neural probes, & implantable devices rely on how materials affect neural signals recording, stimulation, & tissue contact. It also investigates how biomaterials, bioelectronics and 3D printing could improve neural interfaces. Biomaterials modulate neuroinflammatory responses, enhance brain tissue regeneration, and promote neural interface longevity. This study shows the potential for change of biomaterial-based neural interfaces in neuroprosthetics, neurological rehabilitation, and fundamental neuroscience research, addressing the need for brain-machine relationship and neurotechnology innovation. These findings suggest expanding biomaterials research and development to advance and sustain neural interface technologies for future use.
Collapse
|
13
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Carbajal-Franco G, Márquez-Quintana MF, Rojas-Chávez H, Miralrio A. Study of the Electronic Interaction between NiO and Short Polythiophene Chains towards Solar Photon Harvesting. Int J Mol Sci 2023; 24:ijms24119109. [PMID: 37298061 DOI: 10.3390/ijms24119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
The sustainable production of energy is a field of interest to which a new requirement is now imposed: the need to be respectful of the environment. New materials and techniques are being developed, but environmental concerns impose the necessity of keeping research active towards the development of green energy. For this reason, we present the study of short polythiophene (PTh) chains (three and five monomers) and their interaction with nickel oxide, looking for properties related to solar photon harvesting in order to produce electricity. The models of the molecules were developed, and the calculations were performed with an M11-L meta-GGA functional, specially developed for electronic structure calculations. The theoretical explorations demonstrated that the geometry of the PTh molecules suffer little distortion when interacting with the NiO molecule. The calculated value of Eg lies between 2.500 and 0.412 eV for a three-ring PTh chain and between 1.944 and 0.556 eV for a five-ring PTh chain. The chemical parameters indicated that, depending on the geometry of the system, the chemical potential varies from 81.27 to 102.38 kcal/mol and the highest amount of electronic charge varies from -2.94 to 21.56 a.u. for three-monomer systems. For five-monomer systems, the values lie within similar ranges as those of the three-monomer systems. The Partial Density of States (PDOS) showed that the valence and conduction electronic bands were composed of states in the NiO and PTh rings, except for a system where there was a non-bonding interaction.
Collapse
Affiliation(s)
- Guillermo Carbajal-Franco
- Tecnológico Nacional de México, Instituto Tecnológico de Toluca, Division of Graduate Studies and Research, Av. Tecnológico s.n., Metepec Estado de México 52149, Mexico
| | - María Fernanda Márquez-Quintana
- Tecnológico Nacional de México, Instituto Tecnológico de Chilpancingo, Av. José Francisco Ruiz Massieu No. 5, Colonia Villa Moderna, Chilpancingo de los Bravo 39090, Mexico
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Col. Jardines del Llano, San Juan Ixtayopan, Alcaldía Tláhuac, Mexico City 13550, Mexico
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
15
|
King BJ, Read GJM, Salmon PM. Identifying risk controls for future advanced brain-computer interfaces: A prospective risk assessment approach using work domain analysis. APPLIED ERGONOMICS 2023; 111:104028. [PMID: 37148587 DOI: 10.1016/j.apergo.2023.104028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
Brain-computer interface (BCI) technologies are progressing rapidly and may eventually be implemented widely within society, yet their risks have arguably not yet been comprehensively identified, nor understood. This study analysed an anticipated invasive BCI system lifecycle to identify the individual, organisational, and societal risks associated with BCIs, and controls that could be used to mitigate or eliminate these risks. A BCI system lifecycle work domain analysis model was developed and validated with 10 subject matter experts. The model was subsequently used to undertake a systems thinking-based risk assessment approach to identify risks that could emerge when functions are either undertaken sub-optimally or not undertaken at all. Eighteen broad risk themes were identified that could negatively impact the BCI system lifecycle in a variety of unique ways, while a larger number of controls for these risks were also identified. The most concerning risks included inadequate regulation of BCI technologies and inadequate training of BCI stakeholders, such as users and clinicians. In addition to specifying a practical set of risk controls to inform BCI device design, manufacture, adoption, and utilisation, the results demonstrate the complexity involved in managing BCI risks and suggests that a system-wide coordinated response is required. Future research is required to evaluate the comprehensiveness of the identified risks and the practicality of implementing the risk controls.
Collapse
Affiliation(s)
- Brandon J King
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia.
| | - Gemma J M Read
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia; School of Health, University of the Sunshine Coast, Australia. https://twitter.com/gemma_read
| | - Paul M Salmon
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Australia. https://twitter.com/DrPaulSalmon
| |
Collapse
|
16
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Mintz Hemed N, Melosh NA. An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view. Adv Drug Deliv Rev 2023; 194:114723. [PMID: 36746077 DOI: 10.1016/j.addr.2023.114723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
de Bougrenet de la Tocnaye JL. Restored vision-augmented vision: arguments for a cybernetic vision. C R Biol 2022; 345:135-156. [PMID: 36847468 DOI: 10.5802/crbiol.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
In this paper, we present some thoughts about the recent developments, made possible by technological advances and miniaturisation of connected visual prostheses, linked to the visual system, operating at different level of this one, on the retina as well as in the visual cortex. While these objects represent a great hope for people with impaired vision to recover partial vision, we show how this technology could also act on the functional vision of well sighted persons to improve or increase their visual performance. In addition to the impact on our cognitive and attentional mechanisms, such an operation when it originates outside the natural real visual field (e.g. cybernetics) raises a number of questions about the development and use of such implants or prostheses in the future.
Collapse
|
20
|
Bibliometric analysis on Brain-computer interfaces in a 30-year period. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Vansteensel MJ, Branco MP, Leinders S, Freudenburg ZF, Schippers A, Geukes SH, Gaytant MA, Gosselaar PH, Aarnoutse EJ, Ramsey NF. Methodological Recommendations for Studies on the Daily Life Implementation of Implantable Communication-Brain-Computer Interfaces for Individuals With Locked-in Syndrome. Neurorehabil Neural Repair 2022; 36:666-677. [PMID: 36124975 PMCID: PMC11986352 DOI: 10.1177/15459683221125788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana P Branco
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Leinders
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zac F Freudenburg
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anouck Schippers
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon H Geukes
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael A Gaytant
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H Gosselaar
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nick F Ramsey
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Zhang B, Deng C, Cai C, Li X. In Vivo Neural Interfaces—From Small- to Large-Scale Recording. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain functions arise from the coordinated activation of neuronal assemblies distributed across multiple brain regions. The electrical potential from the neuron captured by the electrode can be processed to extract brain information. A large number of densely and simultaneously recorded neuronal potential signals from neurons spanning multiple brain regions contribute to the insight of specific behaviors encoded by the neural ensembles. In this review, we focused on the neural interfaces developed for small- to large-scale recordings and discussed the developmental challenges and strategies in microsystem, electrode device, and interface material levels for the future larger-scale neural ensemble recordings.
Collapse
|
23
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
24
|
Chung JE, Sellers KK, Leonard MK, Gwilliams L, Xu D, Dougherty ME, Kharazia V, Metzger SL, Welkenhuysen M, Dutta B, Chang EF. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 2022; 110:2409-2421.e3. [PMID: 35679860 DOI: 10.1016/j.neuron.2022.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
The action potential is a fundamental unit of neural computation. Even though significant advances have been made in recording large numbers of individual neurons in animal models, translation of these methodologies to humans has been limited because of clinical constraints and electrode reliability. Here, we present a reliable method for intraoperative recording of dozens of neurons in humans using the Neuropixels probe, yielding up to ∼100 simultaneously recorded single units. Most single units were active within 1 min of reaching target depth. The motion of the electrode array had a strong inverse correlation with yield, identifying a major challenge and opportunity to further increase the probe utility. Cell pairs active close in time were spatially closer in most recordings, demonstrating the power to resolve complex cortical dynamics. Altogether, this approach provides access to population single-unit activity across the depth of human neocortex at scales previously only accessible in animal models.
Collapse
Affiliation(s)
- Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura Gwilliams
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Duo Xu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maximilian E Dougherty
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Viktor Kharazia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean L Metzger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; University of California Berkeley, University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | | | | | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method. Sci Rep 2022; 12:4245. [PMID: 35273310 PMCID: PMC8913630 DOI: 10.1038/s41598-022-07992-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Brain-computer interfaces (BCIs) enable communication between humans and machines by translating brain activity into control commands. Electroencephalography (EEG) signals are one of the most used brain signals in non-invasive BCI applications but are often contaminated with noise. Therefore, it is possible that meaningful patterns for classifying EEG signals are deeply hidden. State-of-the-art deep-learning algorithms are successful in learning hidden, meaningful patterns. However, the quality and the quantity of the presented inputs are pivotal. Here, we propose a feature extraction method called anchored Short Time Fourier Transform (anchored-STFT), which is an advanced version of STFT, as it minimizes the trade-off between temporal and spectral resolution presented by STFT. In addition, we propose a data augmentation method derived from l2-norm fast gradient sign method (FGSM), called gradient norm adversarial augmentation (GNAA). GNAA is not only an augmentation method but is also used to harness adversarial inputs in EEG data, which not only improves the classification accuracy but also enhances the robustness of the classifier. In addition, we also propose a CNN architecture, namely Skip-Net, for the classification of EEG signals. The proposed pipeline outperforms the current state-of-the-art methods and yields classification accuracies of 90.7% on BCI competition II dataset III and 89.5%, 81.8%, 76.0% and 85.4%, 69.1%, 80.9% on different data distributions of BCI Competition IV dataset 2b and 2a, respectively.
Collapse
|
26
|
Garg R, Roman DS, Wang Y, Cohen-Karni D, Cohen-Karni T. Graphene nanostructures for input-output bioelectronics. BIOPHYSICS REVIEWS 2021; 2:041304. [PMID: 35005709 PMCID: PMC8717360 DOI: 10.1063/5.0073870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023]
Abstract
The ability to manipulate the electrophysiology of electrically active cells and tissues has enabled a deeper understanding of healthy and diseased tissue states. This has primarily been achieved via input/output (I/O) bioelectronics that interface engineered materials with biological entities. Stable long-term application of conventional I/O bioelectronics advances as materials and processing techniques develop. Recent advancements have facilitated the development of graphene-based I/O bioelectronics with a wide variety of functional characteristics. Engineering the structural, physical, and chemical properties of graphene nanostructures and integration with modern microelectronics have enabled breakthrough high-density electrophysiological investigations. Here, we review recent advancements in 2D and 3D graphene-based I/O bioelectronics and highlight electrophysiological studies facilitated by these emerging platforms. Challenges and present potential breakthroughs that can be addressed via graphene bioelectronics are discussed. We emphasize the need for a multidisciplinary approach across materials science, micro-fabrication, and bioengineering to develop the next generation of I/O bioelectronics.
Collapse
Affiliation(s)
- Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Daniel San Roman
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Devora Cohen-Karni
- Preclinical education biochemistry, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, USA
| | | |
Collapse
|
27
|
Richter B, Mace Z, Hays ME, Adhikari S, Pham HQ, Sclabassi RJ, Kolber B, Yerneni SS, Campbell P, Cheng B, Tomycz N, Whiting DM, Le TQ, Nelson TL, Averick S. Development and Characterization of Novel Conductive Sensing Fibers for In Vivo Nerve Stimulation. SENSORS (BASEL, SWITZERLAND) 2021; 21:7581. [PMID: 34833660 PMCID: PMC8619502 DOI: 10.3390/s21227581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022]
Abstract
Advancements in electrode technologies to both stimulate and record the central nervous system's electrical activities are enabling significant improvements in both the understanding and treatment of different neurological diseases. However, the current neural recording and stimulating electrodes are metallic, requiring invasive and damaging methods to interface with neural tissue. These electrodes may also degrade, resulting in additional invasive procedures. Furthermore, metal electrodes may cause nerve damage due to their inherent rigidity. This paper demonstrates that novel electrically conductive organic fibers (ECFs) can be used for direct nerve stimulation. The ECFs were prepared using a standard polyester material as the structural base, with a carbon nanotube ink applied to the surface as the electrical conductor. We report on three experiments: the first one to characterize the conductive properties of the ECFs; the second one to investigate the fiber cytotoxic properties in vitro; and the third one to demonstrate the utility of the ECF for direct nerve stimulation in an in vivo rodent model.
Collapse
Affiliation(s)
- Bertram Richter
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Zachary Mace
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
- Computational Diagnostics, Inc., Pittsburgh, PA 15213, USA
| | - Megan E. Hays
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Huy Q. Pham
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA;
| | - Robert J. Sclabassi
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
- Computational Diagnostics, Inc., Pittsburgh, PA 15213, USA
| | - Benedict Kolber
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Saigopalakrishna S. Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA; (S.S.Y.); (P.C.)
| | - Phil Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA; (S.S.Y.); (P.C.)
| | - Boyle Cheng
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Nestor Tomycz
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Donald M. Whiting
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Trung Q. Le
- Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Saadyah Averick
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| |
Collapse
|
28
|
Zeng Q, Li X, Zhang S, Deng C, Wu T. Think big, see small—A review of nanomaterials for neural interfaces. NANO SELECT 2021. [DOI: 10.1002/nano.202100256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Qi Zeng
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen P.R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen P.R. China
| | - Xiaojian Li
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen P.R. China
- Key Laboratory of Brain Connectome and Manipulation Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen P.R. China
| | - Shiyun Zhang
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen P.R. China
| | - Chunshan Deng
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen P.R. China
- Key Laboratory of Brain Connectome and Manipulation Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen P.R. China
| | - Tianzhun Wu
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen P.R. China
- Key Laboratory of Health Bioinformatics Chinese Academy of Sciences Shenzhen P.R. China
| |
Collapse
|
29
|
Kang YN, Chou N, Jang JW, Choe HK, Kim S. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. MICROSYSTEMS & NANOENGINEERING 2021; 7:66. [PMID: 34567778 PMCID: PMC8433186 DOI: 10.1038/s41378-021-00295-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 05/23/2023]
Abstract
The demand for multifunctional neural interfaces has grown due to the need to provide a better understanding of biological mechanisms related to neurological diseases and neural networks. Direct intracerebral drug injection using microfluidic neural interfaces is an effective way to deliver drugs to the brain, and it expands the utility of drugs by bypassing the blood-brain barrier (BBB). In addition, uses of implantable neural interfacing devices have been challenging due to inevitable acute and chronic tissue responses around the electrodes, pointing to a critical issue still to be overcome. Although neural interfaces comprised of a collection of microneedles in an array have been used for various applications, it has been challenging to integrate microfluidic channels with them due to their characteristic three-dimensional structures, which differ from two-dimensionally fabricated shank-type neural probes. Here we present a method to provide such three-dimensional needle-type arrays with chemical delivery functionality. We fabricated a microfluidic interconnection cable (µFIC) and integrated it with a flexible penetrating microelectrode array (FPMA) that has a 3-dimensional structure comprised of silicon microneedle electrodes supported by a flexible array base. We successfully demonstrated chemical delivery through the developed device by recording neural signals acutely from in vivo brains before and after KCl injection. This suggests the potential of the developed microfluidic neural interface to contribute to neuroscience research by providing simultaneous signal recording and chemical delivery capabilities.
Collapse
Affiliation(s)
- Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery & Materials (KIMM), Daegu, Republic of Korea
| | - Namsun Chou
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
30
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
31
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Tanskanen JM, Ahtiainen A, Hyttinen JA. Toward Closed-Loop Electrical Stimulation of Neuronal Systems: A Review. Bioelectricity 2020; 2:328-347. [PMID: 34471853 PMCID: PMC8370352 DOI: 10.1089/bioe.2020.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biological neuronal cells communicate using neurochemistry and electrical signals. The same phenomena also allow us to probe and manipulate neuronal systems and communicate with them. Neuronal system malfunctions cause a multitude of symptoms and functional deficiencies that can be assessed and sometimes alleviated by electrical stimulation. Our working hypothesis is that real-time closed-loop full-duplex measurement and stimulation paradigms can provide more in-depth insight into neuronal networks and enhance our capability to control diseases of the nervous system. In this study, we review extracellular electrical stimulation methods used in in vivo, in vitro, and in silico neuroscience research and in the clinic (excluding methods mainly aimed at neuronal growth and other similar effects) and highlight the potential of closed-loop measurement and stimulation systems. A multitude of electrical stimulation and measurement-based methods are widely used in research and the clinic. Closed-loop methods have been proposed, and some are used in the clinic. However, closed-loop systems utilizing more complex measurement analysis and adaptive stimulation systems, such as artificial intelligence systems connected to biological neuronal systems, do not yet exist. Our review promotes the research and development of intelligent paradigms aimed at meaningful communications between neuronal and information and communications technology systems, "dialogical paradigms," which have the potential to take neuroscience and clinical methods to a new level.
Collapse
Affiliation(s)
- Jarno M.A. Tanskanen
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annika Ahtiainen
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jari A.K. Hyttinen
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
33
|
Paek AY, Kilicarslan A, Korenko B, Gerginov V, Knappe S, Contreras-Vidal JL. Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3420-3423. [PMID: 33018738 DOI: 10.1109/embc44109.2020.9176159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain Computer Interfaces (BCIs) allow individuals to control devices, machines and prostheses with their thoughts. Most feasibility studies with BCIs have utilized scalp electroencephalography (EEG), due to it being accessible, noninvasive, and portable. While BCIs have been studied with magnetoencephalography (MEG), the modality has limited applications due to the large immobile hardware. Here we propose that room-temperature, optically-pumped magnetometers (OPMs) can potentially serve a portable modality that can be used for BCIs. OPMs have the added advantage that low-frequency neuromagnetic fields are not affected by volume conduction, which is known to distort EEG signals. In this feasibility study, we tested an OPM system with a real-time BCI where able bodied participants controlled a cursor to reach two targets. This BCI system used alpha and beta-band power modulations associated with hand movements. Our preliminary results show significant alpha and beta-band desynchronization due to movement, as found in previous literature.
Collapse
|
34
|
Boehler C, Vieira DM, Egert U, Asplund M. NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14855-14865. [PMID: 32162910 DOI: 10.1021/acsami.9b22798] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioelectronic devices, interfacing neural tissue for therapeutic, diagnostic, or rehabilitation purposes, rely on small electrode contacts in order to achieve highly sophisticated communication at the neural interface. Reliable recording and safe stimulation with small electrodes, however, are limited when conventional electrode metallizations are used, demanding the development of new materials to enable future progress within bioelectronics. In this study, we present a versatile process for the realization of nanostructured platinum (nanoPt) coatings with a high electrochemically active surface area, showing promising biocompatibility and providing low impedance, high charge injection capacity, and outstanding long-term stability both for recording and stimulation. The proposed electrochemical fabrication process offers exceptional control over the nanoPt deposition, allowing the realization of specific coating morphologies such as small grains, pyramids, or nanoflakes, and can moreover be scaled up to wafer level or batch fabrication under economic process conditions. The suitability of nanoPt as a coating for neural interfaces is here demonstrated, in vitro and in vivo, revealing superior stimulation performance under chronic conditions. Thus, nanoPt offers promising qualities as an advanced neural interface coating which moreover extends to the numerous application fields where a large (electro)chemically active surface area contributes to increased efficiency.
Collapse
Affiliation(s)
- Christian Boehler
- Department of Microsystems Engineering (IMTEK)-ElectroActive Coatings Group, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| | - Diego M Vieira
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Microsystems Engineering (IMTEK)-Laboratory for Biomicrotechnology, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- Bernstein Center Freiburg (BCF), University of Freiburg, 79110 Freiburg, Germany
| | - Ulrich Egert
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Microsystems Engineering (IMTEK)-Laboratory for Biomicrotechnology, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- Bernstein Center Freiburg (BCF), University of Freiburg, 79110 Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)-ElectroActive Coatings Group, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
35
|
Davidoff EJ. Agency and Accountability: Ethical Considerations for Brain-Computer Interfaces. THE RUTGERS JOURNAL OF BIOETHICS 2020; 11:9-20. [PMID: 33178903 PMCID: PMC7654969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brain-computer interfaces (BCIs) are systems in which a user's real-time brain activity is used to control an external device, such as a prosthetic limb. BCIs have great potential for restoring lost motor functions in a wide range of patients. However, this futuristic technology raises several ethical questions, especially concerning the degree of agency a BCI affords its user and the extent to which a BCI user ought to be accountable for actions undertaken via the device. This paper examines these and other ethical concerns found at each of the three major parts of the BCI system: the sensor that records neural activity, the decoder that converts raw data into usable signals, and the translator that uses these signals to control the movement of an external device.
Collapse
|
36
|
Kunori N, Takashima I. An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging. MICROMACHINES 2019; 10:E789. [PMID: 31752106 PMCID: PMC6915684 DOI: 10.3390/mi10110789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
Incorporating optical methods into implantable neural sensing devices is a challenging approach for brain-machine interfacing. Specifically, voltage-sensitive dye (VSD) imaging is a powerful tool enabling visualization of the network activity of thousands of neurons at high spatiotemporal resolution. However, VSD imaging usually requires removal of the dura mater for dye staining, and thereafter the exposed cortex needs to be protected using an optically transparent artificial dura. This is a major disadvantage that limits repeated VSD imaging over the long term. To address this issue, we propose to use an atelocollagen membrane as the dura substitute. We fabricated a small cranial chamber device, which is a tubular structure equipped with a collagen membrane at one end of the tube. We implanted the device into rats and monitored neural activity in the frontal cortex 1 week following surgery. The results indicate that the collagen membrane was chemically transparent, allowing VSD staining across the membrane material. The membrane was also optically transparent enough to pass light; forelimb-evoked neural activity was successfully visualized through the artificial dura. Because of its ideal chemical and optical manipulation capability, this collagen membrane may be widely applicable in various implantable neural sensors.
Collapse
Affiliation(s)
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| |
Collapse
|
37
|
|
38
|
Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Huang H, Su S, Wu N, Wan H, Wan S, Bi H, Sun L. Graphene-Based Sensors for Human Health Monitoring. Front Chem 2019; 7:399. [PMID: 31245352 PMCID: PMC6580932 DOI: 10.3389/fchem.2019.00399] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Since the desire for real-time human health monitoring as well as seamless human-machine interaction is increasing rapidly, plenty of research efforts have been made to investigate wearable sensors and implantable devices in recent years. As a novel 2D material, graphene has aroused a boom in the field of sensor research around the world due to its advantages in mechanical, thermal, and electrical properties. Numerous graphene-based sensors used for human health monitoring have been reported, including wearable sensors, as well as implantable devices, which can realize the real-time measurement of body temperature, heart rate, pulse oxygenation, respiration rate, blood pressure, blood glucose, electrocardiogram signal, electromyogram signal, and electroencephalograph signal, etc. Herein, as a review of the latest graphene-based sensors for health monitoring, their novel structures, sensing mechanisms, technological innovations, components for sensor systems and potential challenges will be discussed and outlined.
Collapse
Affiliation(s)
- Haizhou Huang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shi Su
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
| | - Nan Wu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hao Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shu Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hengchang Bi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| |
Collapse
|