1
|
Ali AH, Hachem M, Ahmmed MK. Compound-Specific Isotope Analysis as a Potential Approach for Investigation of Cerebral Accumulation of Docosahexaenoic Acid: Previous Milestones and Recent Trends. Mol Neurobiol 2025; 62:5816-5837. [PMID: 39633088 PMCID: PMC11953176 DOI: 10.1007/s12035-024-04643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects. Compound-specific isotope analysis (CSIA) is recognized as a cost-effective alternative approach for investigating DHA metabolism in vitro and in vivo. This method involves determining variations in 13C content to identify the sources of specific compounds. This review comprehensively discusses a summary of different methods and recent advancements in CSIA application in studying DHA turnover in brain. Following, the ability and applications of CSIA by using gas-chromatography combined with isotope ratio mass-spectrometry to differentiate between natural endogenous DHA in brain and exogenous DHA are also highlighted. In general, the efficiency of CSIA has been demonstrated in utilizing natural 13C enrichment to distinguish between the incorporation of newly synthesized or pre-existing DHA into the brain and other body tissues, eliminating the need of tracers. This review provides comprehensive knowledge, which will have potential applications in both academia and industry for advancing the understanding in neurobiology and enhancing the development of nutritional strategies and pharmaceutical interventions targeting brain health.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
2
|
Andriambelo B, Vachon A, Dansereau MA, Laurent B, Plourde M. Providing lysophosphatidylcholine-bound omega-3 fatty acids increased eicosapentaenoic acid, but not docosahexaenoic acid, in the cortex of mice with the apolipoprotein E3 or E4 allele. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102661. [PMID: 39642444 DOI: 10.1016/j.plefa.2024.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Several mechanisms have been proposed for the brain uptake of omega-3 fatty acids (n-3), including passive diffusion of the unesterified form and the use of Mfsd2a transporter for the lysophosphatidylcholine (LPC) form. We hypothesize that the accumulation of LPC n-3 in the brain is lower in mice carrying the apolipoprotein E ε4 allele (APOE4), a major genetic risk factor for developing sporadic Alzheimer's disease in humans. OBJECTIVE Determine whether two or four months of supplementation with LPC n-3 increases the levels of docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) in the frontal cortex of APOE3 and APOE4 mice. METHODS APOE3 and APOE4 mice were administered LPC n-3 (9.6 mg DHA + 18.3 mg EPA) or sunflower oil (control) by oral gavage for two or four months (n = 5-8 per genotype, per treatment, and per treatment duration). At the end of the treatment period, frontal cortices were collected, and their FA profiles analyzed by gas chromatography with flame ionization detection. RESULTS After two months of gavage with LPC n-3, APOE3 mice showed increased levels of EPA in their cortex, but not DHA. In APOE4 mice, neither EPA nor DHA levels were significantly affected. After four months of LPC n-3, both APOE3 and APOE4 mice exhibited higher EPA levels, while changes in DHA levels were not statistically significant. CONCLUSION LPC n-3 supplementation increased EPA, but not DHA, levels in the frontal cortex of mice in a duration- and APOE genotype-dependent manner. Further research is needed to explore the implications for brain health.
Collapse
Affiliation(s)
- Bijou Andriambelo
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Annick Vachon
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Marc-André Dansereau
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Xuan J, Wang Z, Xia Q, Luo T, Mao Q, Sun Q, Han Z, Liu Y, Wei S, Liu S. Comparative Lipidomics Profiling of Acylglycerol from Tuna Oil Selectively Hydrolyzed by Thermomyces Lanuginosus Lipase and Candida Antarctica Lipase A. Foods 2022; 11:foods11223664. [PMID: 36429256 PMCID: PMC9689481 DOI: 10.3390/foods11223664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Lipase hydrolysis is an effective method to develop different functional types of lipids. In this study, tuna oil was partially hydrolyzed at 30% and 60% by Thermomyces lanuginosus lipase (TL 100 L) and Candida Antarctica lipase A (ADL), respectively, to obtain lipid-modified acylglycerols. The lipidomic profiling of the acylglycerols was investigated by UPLC-Q-TOF-MS and GC-MS to clarify the lipid modification effect of these two lipases on tuna oil. The results showed that 247 kinds of acylglycerols and 23 kinds of fatty acids were identified in the five samples. In the ADL group, the content of triacylglycerols (TAG) and diacylglycerols (DAG) increased by 4.93% and 114.38%, respectively, with an increase in the hydrolysis degree (HD), while there was a decreasing trend in the TL 100 L group. TL 100 L had a better enrichment effect on DHA, while ADL was more inclined to enrich EPA and hydrolyze saturated fatty acids. Cluster analysis showed that the lipids obtained by the hydrolysis of TL 100 L and ADL were significantly different in the cluster analysis of TAG, DAG, and monoacylglycerols (MAG). TL 100 L has strong TAG selectivity and a strong ability to hydrolyze acylglycerols, while ADL has the potential to synthesize functional lipids containing omega-3 PUFAs, especially DAG.
Collapse
Affiliation(s)
- Junyong Xuan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence:
| | - Tingyu Luo
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qingya Mao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center for Key Technology of Marine Food Deep Processing, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
4
|
Dai Y, Zhang L, Yan Z, Li Z, Fu M, Xue C, Wang J. A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill ( Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct 2021; 12:6766-6779. [PMID: 34160515 DOI: 10.1039/d1fo00056j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by cartilage destruction, and its incidence is much higher in the osteoporotic population. There is increasing evidence that the occurrence and development of OA are modulated by the dietary intake of polyunsaturated fatty acids (PUFA). This study investigated the effects of dietary PUFA, including n-3/n-6 PUFA proportion and the molecular form of n-3 PUFA, on OA using osteoporotic osteoarthritis dual model mice, where phospholipid type n-3 PUFA were specifically examined. The results revealed that a low proportion of n-6/n-3 PUFA in diets from 1 : 1 to 6 : 1 significantly improved the cartilage structure and inhibited articular cartilage polysaccharide loss. Furthermore, the low proportion n-6/n-3 PUFA diets inhibited the NF-κB signaling pathway by activating G-protein coupled receptor 120 (GPR120) to reduce inflammation and inhibit catabolism. Antarctic krill (Euphausia superba) oil (AKO), rich in phospholipid-type n-3 PUFA, had a better effect on OA than linseed oil (plant-derived n-3 PUFA), which may be due to peroxisome proliferator-activated receptor-gamma (PPAR γ). These findings suggested that the low proportion n-6/n-3 PUFA diets, particularly with AKO, alleviated inflammation and inhibited articular cartilage degeneration. Therefore, dietary intervention can be a potential treatment for OA.
Collapse
Affiliation(s)
- Yufeng Dai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang C, Zhou MM, Zhang TT, Cong PX, Xu J, Xue CH, Yanagita T, Wei ZH, Wang YM. Effects of Dietary Supplementation with EPA-enriched Phosphatidylcholine and Phosphatidylethanolamine on Glycerophospholipid Profile in Cerebral Cortex of SAMP8 Mice fed with High-fat Diet. J Oleo Sci 2021; 70:275-287. [PMID: 33456004 DOI: 10.5650/jos.ess20212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The destruction of lipid homeostasis is associated with nervous system diseases such as Alzheimer's disease (AD). It has been reported that dietary EPA-enriched phosphatidylcholine (EPA-PC) and phosphatidylethanolamine (EPA-PE) could improve brain function. However, it was unclear that whether EPA-PC and EPA-PE intervention could change the lipid composition of cerebral cortex in AD mice. All the senescence-accelerated mouse-prone 8 (SAMP8) mice were fed with a high-fat diet for 8 weeks. After another 8 weeks of intervention with EPA-PC and EPA-PE (1%, w/w), the cerebral cortex lipid levels were determined by lipidomics. Results demonstrated that dietary supplementation with EPA-PE and EPA PC for 8 weeks significantly increased the amount of choline plasmalogen (pPC) and Lyso phosphatidylethanolamine (LPE) in the cerebral cortex of SAMP8 mice fed with high fat diet. Meanwhile, administration with EPA-PE and EPA-PC could significantly decrease the level of docosapentaenoic acid (DPA)-containing phosphatidylserine (PS) as well as increase the levels of arachidonic acid (AA)-containing phosphatidylethanolamine and PS in cerebral cortex. EPA-PE and EPA-PC could restore the lipid homeostasis of dementia mice to a certain degree, which might provide a potential novel therapy strategy and direction of dietary intervention in patients with cognitive impairment.
Collapse
Affiliation(s)
- Chen Zhang
- College of Food Science and Engineering, Ocean University of China
| | - Miao-Miao Zhou
- College of Food Science and Engineering, Ocean University of China.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China
| | - Pei-Xu Cong
- College of Food Science and Engineering, Ocean University of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China.,Laboratory of Marine Drugs & Biological products, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China.,Laboratory of Marine Drugs & Biological products, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| |
Collapse
|
6
|
Melgosa R, Sanz MT, Beltrán S. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids – Towards a biorefinery for fish waste valorization. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Na BR, Lee JH. In Vitro and In Vivo Digestibility of Soybean, Fish, and Microalgal Oils, and Their Influences on Fatty Acid Distribution in Tissue Lipid of Mice. Molecules 2020; 25:E5357. [PMID: 33212752 PMCID: PMC7697985 DOI: 10.3390/molecules25225357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022] Open
Abstract
The digestion rates of microalgal (docosahexaenoic acid, DHA, 56.8%; palmitic acid, 22.4%), fish (DHA, 10.8%; eicosapentaenoic acid, EPA, 16.2%), and soybean oils (oleic, 21.7%; linoleic acid, 54.6%) were compared by coupling the in vitro multi-step and in vivo apparent digestion models using mice. The in vitro digestion rate estimated based on the released free fatty acids content was remarkably higher in soybean and fish oils than in microalgal oil in 30 min; however, microalgal and fish oils had similar digestion rates at longer digestion. The in vivo digestibility of microalgal oil (91.49%) was lower than those of soybean (96.50%) and fish oils (96.99%). Among the constituent fatty acids of the diet oils, docosapentaenoic acid (DPA) exhibited the highest digestibility, followed by EPA, DHA, palmitoleic, oleic, palmitic, and stearic acid, demonstrating increased digestibility with reduced chain length and increased unsaturation degree of fatty acid. The diet oils affected the deposition of fatty acids in mouse tissues, and DHA concentrations were high in epididymal fat, liver, and brain of mice fed microalgal oil. In the present study, microalgal oil showed lower in vitro and in vivo digestibility, despite adequate DHA incorporation into major mouse organs, such as the brain and liver.
Collapse
Affiliation(s)
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan-si 38453, Korea;
| |
Collapse
|
8
|
Ding L, Zhang L, Shi H, Xue C, Yanagita T, Zhang T, Wang Y. The Protective Effect of Dietary EPA‐Enriched Ethanolamine Plasmalogens against Hyperlipidemia in Aged Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Lingyu Zhang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Haohao Shi
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry Department of Applied Biochemistry and Food Science Saga University Saga 840‐8502 Japan
| | - Tiantian Zhang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 P. R. China
| |
Collapse
|
9
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
10
|
He C, Sun Z, Qu X, Cao J, Shen X, Li C. A comprehensive study of lipid profiles of round scad (Decapterus maruadsi) based on lipidomic with UPLC-Q-Exactive Orbitrap-MS. Food Res Int 2020; 133:109138. [DOI: 10.1016/j.foodres.2020.109138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
11
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chen H, Deng G, Zhou Q, Chu X, Su M, Wei Y, Li L, Zhang Z. Effects of eicosapentaenoic acid and docosahexaenoic acid versus α-linolenic acid supplementation on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Food Funct 2020; 11:1919-1932. [PMID: 32175534 DOI: 10.1039/c9fo03052b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous randomized controlled trials (RCTs) made direct comparisons between EPA/DHA versus ALA on improving cardiovascular risk factors and have reached inconsistent findings. The aim of this meta-analysis was to compare the effects of EPA/DHA vs. ALA supplementation on cardiometabolic disturbances. Databases including MEDLINE, Embase, PubMed and Cochrane Trials were searched until December 2019. The pooled effects (weighted mean difference, WMD) of outcomes with moderate and high heterogeneity were calculated with a random-effects model, while low heterogeneity was calculated with a fixed-effect model. Fourteen RCTs with 1137 participants who met the eligibility criteria were pooled. Compared with participants supplemented with ALA, those who received EPA/DHA supplementation experienced a greater reduction in triglycerides (TG) (WMD -0.191 mmol l-1; 95% CI -0.249, -0.133) but a greater increase in high-density lipoprotein (HDL) (WMD 0.033 mmol l-1; 95% CI 0.004, 0.062), low-density lipoprotein (LDL) (WMD 0.130 mmol l-1; 95% CI 0.006, 0.253) and total cholesterol (TC) (WMD 0.179 mmol l-1; 95% CI 0.006, 0.352). In subgroup analyses, the WMD for TG was much lower in trials with participants >40 years old (-0.246 mmol l-1; 95% CI -0.325, -0.167). When DHA and EPA were separately administered, modest increases in HDL were observed in trials that used DHA as a supplement (0.161 mmol l-1; 95% CI 0.017, 0.304), but not in trials using EPA (0.040 mmol l-1; 95% CI -0.132, 0.212). In conclusion, dietary EPA/DHA supplementation improved the TG and HDL status but increased LDL levels in comparison with ALA.
Collapse
Affiliation(s)
- Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
| | - Guifang Deng
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Quan Zhou
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Mengyang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liping Li
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Sehl A, Couëdelo L, Vaysse C, Cansell M. Intestinal bioavailability of n-3 long-chain polyunsaturated fatty acids influenced by the supramolecular form of phospholipids. Food Funct 2020; 11:1721-1728. [DOI: 10.1039/c9fo02953b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aims at studying the bioavailability of n-3 long-chain polyunsaturated fatty acids carried by marine phospholipids, formulated in different supramolecular forms,i.e.oil-in-water emulsion and liposomes.
Collapse
Affiliation(s)
- Anthony Sehl
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
- Univ. Bordeaux
| | - Leslie Couëdelo
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | - Carole Vaysse
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | | |
Collapse
|
14
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
15
|
Cao W, Wang C, Chin Y, Chen X, Gao Y, Yuan S, Xue C, Wang Y, Tang Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct 2019; 10:277-288. [DOI: 10.1039/c8fo01404c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DHA-PL and EPA-PL may effectively protect mice against intestinal dysfunction under chronic stress exposure.
Collapse
Affiliation(s)
- Wanxiu Cao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Chengcheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yaoxian Chin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Xin Chen
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuan Gao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shihan Yuan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qingjuan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
16
|
Lindblom A, Ericsson C, Hagstedt T, Kjellstedt A, Oscarsson J, Oakes ND. Uptake and tissue accretion of orally administered free carboxylic acid as compared to ethyl ester form of docosahexaenoic acid (DHA) in the rat. PLoS One 2018; 13:e0201367. [PMID: 30071037 PMCID: PMC6072001 DOI: 10.1371/journal.pone.0201367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Aim The aim of this study was to compare the plasma exposure and tissue accretion of docosahexaenoic acid (DHA) in response to oral dosing of free carboxylic acid (OM3CA) and ethyl ester (OM3EE) forms. Materials and methods Sixteen adult male Wistar rats, fed a low-fat, carbohydrate-rich, standard chow diet, were chronically catheterized and gavaged for 5 consecutive days with either OM3CA (n = 9) or OM3EE (n = 7), the last day fasted overnight and spiked respectively with either 14C-DHA or 14C-DHA-ethyl ester (14C-DHA-EE) tracers. Appearance of 14C-labelled plasma polar and neutral lipids over 4 h and retention of 14C-activity (R) in the tissues at 4 h were measured. Results Compared to OM3EE, OM3CA resulted in 2- and 3-fold higher areas under the plasma 14C-labelled polar and neutral lipid curves (exposures), respectively, as well as, higher R in all tissues examined. For both OM3CA and OM3EE, R varied in a tissue specific manner; highest in liver, followed by red skeletal muscle, adipose tissue, brain and white skeletal muscle. Multiple linear regression analysis revealed that R in each tissue (except liver) was dependent on polar lipid exposure alone (r2>0.87 and P<0.001), but not neutral lipid exposure, and furthermore this dependence was indistinguishable for OM3CA and OM3EE. In the liver, R was found to be dependent on both polar and neutral lipid exposures (r2 = 0.97, P<0.001), with relative contributions of 85±2% and 15±2%, respectively. As for the other tissues, these dependencies were indistinguishable for OM3CA and OM3EE. Conclusion The present results, in fasted low-fat diet fed rats, are consistent with higher oral bioavailability of OM3CA versus OM3EE forms of DHA. Once DHA has entered the circulation, the tissue distribution is independent of the dosed form and uptake in the skeletal muscle, fat and brain is driven by the polar pools of DHA in plasma, while DHA accretion in liver is supplied by both polar and neutral plasma lipids.
Collapse
Affiliation(s)
- Anna Lindblom
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
- * E-mail:
| | - Cecilia Ericsson
- Early Clinical Development, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Therese Hagstedt
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Ann Kjellstedt
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Jan Oscarsson
- Global Medicines Early Development, Cardiovascular Renal & Metabolism, Metabolism, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Nicholas D. Oakes
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| |
Collapse
|
17
|
Antarctic Krill Oil improves articular cartilage degeneration via activating chondrocyte autophagy and inhibiting apoptosis in osteoarthritis mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Chiu CY, Wang LP, Liu SH, Chiang MT. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4118-4128. [PMID: 29627983 DOI: 10.1021/acs.jafc.8b00529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of dietary supplementation of fish oil on the signals of lipid metabolism involved in hepatic cholesterol and triglyceride influx and excretion in high-fat diet (HFD)-fed rats. Fish oil (FO) repressed body (HFD, 533 ± 18.2 g; HFD+FO, 488 ± 28.0 g, p < 0.05) and liver weights (HFD, 5.7 ± 0.6 g/100 g of body weight; HFD+FO, 4.8 ± 0.4 g/100 g of body weight, p < 0.05) in HFD-fed rats. Fish oil could also improve HFD-induced imbalance of lipid metabolism in blood, liver, and adipose tissues including the significant decreases in plasma and liver total cholesterol (TC) (plasma-HFD, 113 ± 33.6 mg/dL; HFD+FO, 50.0 ± 5.95 mg/dL, p < 0.05; liver-HFD, 102 ± 13.0 mg/g liver; [corrected] HFD+FO, 86.6 ± 7.81 mg/g liver, [corrected] p < 0.05), blood, liver, and adipose triglyceride (TG) (blood-HFD, 52.5 ± 20.4 mg/dL; HFD+FO, 29.8 ± 4.30 mg/dL, p < 0.05; liver-HFD, 56.2 ± 10.0 mg/g liver; [corrected] HFD+FO, 30.3 ± 5.28 mg/g liver, [corrected] p < 0.05; adipose-HFD, 614 ± 73.2 mg/g liver, [corrected] HFD+FO, 409 ± 334 mg/g of adipose tissue, [corrected] p < 0.05), and low density (HFD, 79.8 ± 40.9 mg/dL; HFD+FO, 16.6 ± 5.47 mg/dL, p < 0.05) and very-low-density (HFD, 49.7 ± 33.3 mg/dL; HFD+FO, 10.4 ± 3.45 mg/dL, p < 0.05) lipoprotein and the significant increases in fecal TC (HFD, 12.2 ± 0.67 mg/g feces; [corrected] HFD+FO, 16.3 ± 2.04 mg/g feces, [corrected] < 0.05) and TG (HFD, 2.09 ± 0.10 mg/g feces; [corrected] HFD+FO, 2.38 ± 0.22 mg/g feces, [corrected] p < 0.05) and lipoprotein lipase activity of adipose tissues (HFD, 16.6 ± 3.64 μM p-nitrophenol; HFD+FO, 24.5 ± 4.19 μM p-nitrophenol, p < 0.05). Moreover, fish oil significantly activated the protein expressions of hepatic lipid metabolism regulators (AMPKα and PPARα) and significantly regulated the lipid-transport-related signaling molecules (ApoE, MTTP, ApoB, Angptl4, ApoCIII, ACOX1, and SREBPF1) in blood or liver of HFD-fed rats. These results suggest that fish oil supplementation improves HFD-induced imbalance of lipid homeostasis in blood, liver, and adipose tissues in rats.
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health , National Taiwan University , Taipei 100 , Taiwan
| | - Lou-Pin Wang
- Department of Food Science, College of Life Science , National Taiwan Ocean University , Keelung 202 , Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
- Department of Pediatrics, College of Medicine and Hospital , National Taiwan University , Taipei 100 , Taiwan
- Department of Medical Research, China Medical University Hospital , China Medical University , Taichung 404 , Taiwan
| | - Meng-Tsan Chiang
- Department of Food Science, College of Life Science , National Taiwan Ocean University , Keelung 202 , Taiwan
| |
Collapse
|
19
|
Ding L, Zhang T, Che H, Zhang L, Xue C, Chang Y, Wang Y. DHA-Enriched Phosphatidylcholine and DHA-Enriched Phosphatidylserine Improve Age-Related Lipid Metabolic Disorder through Different Metabolism in the Senescence-Accelerated Mouse. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Tiantian Zhang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Hongxia Che
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Lingyu Zhang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
- Qingdao National Laboratory for Marine Science and Technology; Laboratory of Marine Drugs and Biological Products; Qingdao 266237 P.R. China
| | - Yaoguang Chang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Yuming Wang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
- Qingdao National Laboratory for Marine Science and Technology; Laboratory of Marine Drugs and Biological Products; Qingdao 266237 P.R. China
| |
Collapse
|
20
|
Zhou MM, Che HX, Huang JQ, Zhang TT, Xu J, Xue CH, Wang YM. Comparative Study of Different Polar Groups of EPA-Enriched Phospholipids on Ameliorating Memory Loss and Cognitive Deficiency in Aged SAMP8 Mice. Mol Nutr Food Res 2018; 62:e1700637. [DOI: 10.1002/mnfr.201700637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Miao-miao Zhou
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Hong-xia Che
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jia-qi Huang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Tian-tian Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jie Xu
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Chang-hu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Yu-ming Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| |
Collapse
|
21
|
Chang M, Zhang T, Han X, Tang Q, Yanagita T, Xu J, Xue C, Wang Y. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1408-1418. [PMID: 29345914 DOI: 10.1021/acs.jafc.7b05173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p < 0.01). Moreover, lipo-EPA exhibited excellent inhibition on the mRNA expression of SREBP-1c and FAS at the values of 0.454 ± 0.09 (p < 0.01) and 0.523 ± 0.08 (p < 0.01), respectively, thus ameliorating OA-induced NAFLD. Meanwhile, lipo-EPA could significantly suppress the SREBP-2 and HMGR levels (31.4% and 66.7%, p < 0.05, respectively). In addition, EPA-PL and lipo-DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.
Collapse
Affiliation(s)
- Mengru Chang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Xiuqing Han
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University , Saga 840-8502, Japan
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province PR China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province PR China
| |
Collapse
|
22
|
Omega-3-carboxylic acids provide efficacious anti-inflammatory activity in models of crystal-mediated inflammation. Sci Rep 2018; 8:1217. [PMID: 29352206 PMCID: PMC5775341 DOI: 10.1038/s41598-018-19252-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
This study assesses the efficacy and exposure–response relationship of omega-3-carboxylic acids (OM-3 CA) in models of crystal-based inflammation. Human THP-1 macrophages and primary peripheral blood mononuclear cells exposed to multiple inflammatory crystal types were used to determine the anti-inflammatory potential of omega-3 (OM-3) fatty acids in vitro. Anti-inflammatory effects of OM-3 CA in vivo were tested in rat monosodium urate (MSU) crystal air pouch and rat knee intra-articular MSU injection models. Acute treatment with the OM-3 fatty acid docosahexaenoic acid suppressed MSU-, cholesterol crystal-, and calcium pyrophosphate crystal-mediated interleukin-1β (IL-1β) production in vitro. In vivo, OM-3 CA dose-dependently reduced crystal-mediated cell migration, exudate volume, and levels of IL-1β and prostaglandin E2. Following intra-articular injection of MSU, treatment with OM-3-CA (1 mL/kg) and indomethacin (1 mg/kg) resulted in similar mean reductions in pain (23% and 41%, respectively) and swelling (58% and 50%, respectively), compared with controls. Additionally, in complex formulations of OM-3 fatty acids, high levels of palmitic acid could reduce the in vivo effect on crystal-mediated IL-1β elevation. OM-3 CA has a broadly efficacious anti-inflammatory effect with a strong exposure–response relationship that could be beneficial in prevention and treatment of crystal arthritis, with potential applications in other IL-1β-mediated diseases.
Collapse
|
23
|
Shi H, Zou J, Zhang T, Che H, Gao X, Wang C, Wang Y, Xue C. Protective Effects of DHA-PC against Vancomycin-Induced Nephrotoxicity through the Inhibition of Oxidative Stress and Apoptosis in BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:475-484. [PMID: 29254330 DOI: 10.1021/acs.jafc.7b04565] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The clinical use of glycopeptide antibiotic vancomycin is usually accompanied by nephrotoxicity, limiting its application and therapeutic efficiency. The aim of this study was to investigate the protection of DHA-enriched phosphatidylcholine (DHA-PC) against nephrotoxicity using a model of vancomycin-induced male BALB/c mice with renal injury by measuring death curves, histological changes, and renal function indexes. The addition of DHA in DHA and DHA-PC groups were 300 mg/kg per day on the basis of human intake level in our study. Results indicated that DHA-PC could dramatically extend the survival time of mice, while traditional DHA and PC had no significant effects. Moreover, oral administration of DHA-PC exhibited better effects on reducing vancomycin-induced increases of blood urea nitrogen, creatinine, cystatin C, and kidney injury molecule-1 levels than traditional DHA and PC. DHA-PC significantly delayed the development of vancomycin-induced renal injury, including tubular necrosis, hyaline casts, and tubular degeneration. A further mechanistic study revealed that the protective effect of DHA-PC on vancomycin-mediated toxicity might be attributed to its ability to inhibit oxidative stress and inactivate mitogen-activated protein kinase (MAPK) signaling pathways, which was associated with upregulation of Bcl-2 and downregulation of caspase-9, caspase-3, cytochrome-c, p38, and JNK. These findings suggest that DHA-PC may be acted as the dietary supplements or functional foods against vancomycin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Haohao Shi
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Junzhe Zou
- Teaching Center of Fundamental Courses, Ocean University of China , No. 238 Songling Road, Qingdao, Shandong Province 266100, PR China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongxia Che
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiang Gao
- College of Life Sciences, Qingdao University , No. 308, Ningxia Road, Qingdao, Shandong Province 266071, PR China
| | - Chengcheng Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province 266237, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province 266237, PR China
| |
Collapse
|
24
|
Wen M, Ding L, Zhang L, Cong P, Zhang T, Xu J, Chang Y, Wang Y, Xue C. A comparative study of eicosapentaenoic acid enriched phosphatidylcholine and ethyl ester in improving cognitive deficiency in Alzheimer's disease model rats. Food Funct 2018. [DOI: 10.1039/c7fo01815k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular mechanisms of EPA-PC and EPA-EE in improving Aβ-induced cognitive deficiency in rats.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research
- Liaocheng University
- Liaocheng 252059
- P.R. China
- College of Food Science and Engineering
| | - Lin Ding
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Lingyu Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Peixu Cong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Tiantian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Jie Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Yaoguang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
- Qingdao National Laboratory for Marine Science and Technology
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
25
|
Wu F, Wang DD, Wen M, Che HX, Xue CH, Yanagita T, Zhang TT, Wang YM. Comparative analyses of DHA-Phosphatidylcholine and recombination of DHA-Triglyceride with Egg-Phosphatidylcholine or Glycerylphosphorylcholine on DHA repletion in n-3 deficient mice. Lipids Health Dis 2017; 16:234. [PMID: 29216887 PMCID: PMC5721541 DOI: 10.1186/s12944-017-0623-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Docosahexaenoic acid (DHA) is important for optimal neurodevelopment and brain function during the childhood when the brain is still under development. Methods The effects of DHA-Phosphatidylcholine (DHA-PC) and the recombination of DHA-Triglyceride with egg PC (DHA-TG + PC) or α-Glycerylphosphorylcholine (DHA-TG + α-GPC) were comparatively analyzed on DHA recovery and the DHA accumulation kinetics in tissues including cerebral cortex, erythrocyte, liver, and testis were evaluated in the weaning n-3 deficient mice. Results The concentration of DHA in weaning n-3 deficient mice could be recovered rapidly by dietary DHA supplementation, in which DHA-PC exhibited the better efficacy than the recombination of DHA-Triglyceride with egg PC or α-GPC. Interestingly, DHA-TG + α-GPC exhibited the greater effect on DHA accumulation than DHA-TG + PC in cerebral cortex and erythrocyte (p < 0.05), which was similar to DHA-PC. Meanwhile, DHA-TG + PC showed a similar effect to DHA-PC on DHA repletion in testis, which was better than that of DHA-TG + α-GPC (p < 0.05). Conclusion We concluded that different forms of DHA supplements could be applied targetedly based on the DHA recovery in different tissues, although the supplemental effects of the recombination of DHA-Triglyceride with egg PC or α-GPC were not completely equivalent to that of DHA-PC, which could provide some references to develop functional foods to support brain development and function.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Hong-Xia Che
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, Shandong Province, 266237, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, 840-8502, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
26
|
Eicosapentaenoic acid-enriched phospholipids improve atherosclerosis by mediating cholesterol metabolism. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Zhang L, Wang D, Wen M, Du L, Xue C, Wang J, Xu J, Wang Y. Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Gázquez A, Hernández-Albaladejo I, Larqué E. Docosahexaenoic acid supplementation during pregnancy as phospholipids did not improve the incorporation of this fatty acid into rat fetal brain compared with the triglyceride form. Nutr Res 2016; 37:78-86. [PMID: 28215317 DOI: 10.1016/j.nutres.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Prenatal docosahexaenoic acid (DHA) supply is important to ensure an adequate infant neurodevelopment. Several fat supplements with DHA under different chemical structures are available. There is an increased placental phospholipase activity at the end of pregnancy. The hypothesis of this study was to discern whether DHA consumption during pregnancy as phospholipids (PLs) could be more available for placental DHA uptake and fetal accretion than triglycerides (TGs) form. We aimed to evaluate maternofetal DHA status in pregnant rats fed with DHA as PL from egg yolk or TG from algae oil to determine which source might be most effective during pregnancy. Three experimental diets were tested: 2.5% DHA-TG (n = 10), 2.5% DHA-PL (n = 9), and 9% DHA-PL (n = 9). The total PL content of these diets was 2%, 12%, and 38%, respectively. We determined dietary fat absorption and quantified fatty acids by gas chromatography in maternal and fetal tissues. Dietary PL enhanced significantly dietary fat absorption. However, animals fed the highest PL-content diet (38% PL and 9% DHA-PL) stored most of the absorbed fat in maternal liver, promoting hepatic steatosis, which was not observed in the lower PL-content diets (12% and 2%). Despite higher fat absorption of PL-containing diets, maternal and fetal tissues (including fetal brain) did not show major differences in DHA content between the 2.5% DHA-PL and 2.5% DHA-TG-fed groups. We conclude that the chemical form of DHA consumed by the rat during gestation (PL or TG) does not differentially affect DHA accretion into fetal brain, and both lipid sources can be equally used for maternal DHA supplementation during pregnancy.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| |
Collapse
|
29
|
Ding L, Wang D, Zhou M, Du L, Xu J, Xue C, Wang Y. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice. J Oleo Sci 2016; 65:593-602. [PMID: 27321119 DOI: 10.5650/jos.ess16005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p < 0.05). Notably, the proportion of DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism.
Collapse
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering, Ocean University of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wen M, Xu J, Ding L, Zhang L, Du L, Wang J, Wang Y, Xue C. Eicosapentaenoic acid-enriched phospholipids improve Aβ1–40-induced cognitive deficiency in a rat model of Alzheimer's disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
DHA-PC and DHA-PS improved Aβ1–40 induced cognitive deficiency uncoupled with an increase in brain DHA in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|