1
|
Panda SP, Sinha S, Kesharwani A, Kumar S, Singh M, Kondepudi GM, Samuel A, Sanghi AK, Thapliyal S, Chaubey KK, Guru A. Role of OX/OXR cascade in insomnia and sleep deprivation link Alzheimer's disease and Parkinson's disease: Therapeutic avenue of Dual OXR Antagonist (DORA). Biochem Pharmacol 2025; 233:116794. [PMID: 39920976 DOI: 10.1016/j.bcp.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Sleep plays a role in the elimination of neurotoxic metabolites that are accumulated in the waking brain as a result of neuronal activity. Long-term insomnia and sleep deprivation are associated with oxidative stress, neuroinflammation, amyloid beta (Aβ) deposition, and Lewy body formation, which are known to increase the risk of mild cognitive impairment (MCI) and dementia. Orexin A (OXA) and orexin B (OXB), two neuropeptides produced in the lateral hypothalamus, are known to influence the sleep-wake cycle and the stress responses through their interactions with OX receptor 1 (OX1R) and OX receptor 2 (OX2R), respectively. OX/OXR cascade demonstrates intricate neuroprotective and anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-kB) and PLC/Ca2+ pathway activation. OX1R binds OXA more strongly than OXB by one-order ratio, whereas OX2R binds both OXA and OXB with equal strengths. Overexpression of OXs in individuals experiences sleep deprivation, circadian rhythm disturbances, insomnia-associated MCI, Parkinson's disease (PD), and Alzheimer's disease (AD). Many dual OXR antagonists (DORAs) have been effective in their clinical studies, with suvorexant and daridorexant receiving FDA clearance for insomnia therapy in 2014 and 2022 respectively. The results of clinical studies suggested that there is a new pharmaceutical option for treating insomnia and the sleep deprivation-AD/PD relationship by targeting the OXR system. DORAs treatment reduces Aβ deposition in the brain and improves synaptic plasticity and circadian expression. This review indicates the link between sleep disorders and MCI, DORAs are an appropriate medication category for treating insomnia, and sleep deprivation links AD and PD.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Gana Manjusha Kondepudi
- Vignan Institute of Pharmaceutical Technology, BesidesVSEZ, Kapu Jaggaraju Peta, Duvvada Station Road, Visakhapatnam 530049, India.
| | - Abhishek Samuel
- Translam Institute of Pharmaceutical Education & Research, Mawana Road, Meerut, Uttar Pradesh, India.
| | | | - Shailendra Thapliyal
- Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Science, Sanskriti University, Mathura, UP, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Li Y, Yan Z, Shao N, Tang S, Zhang X, Liu XM, Tang J. Dual orexin receptor antagonist ameliorates sleep deprivation-induced learning and memory impairment in APP/PS1 mice. Sleep Med 2024; 121:303-314. [PMID: 39047304 DOI: 10.1016/j.sleep.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Sleep is considered closely related to cognitive function, and cognitive impairment is the main clinical manifestation of Alzheimer's disease (AD). Sleep disturbance in AD patients is more severe than that in healthy elderly individuals. Additionally, sleep deprivation reportedly increases the activity of the hypothalamic orexin system and the risk of AD. To investigate whether intervention with the orexin system can improve sleep disturbance in AD and its impact on AD pathology. In this study, six-month-old amyloid precursor protein/presenilin 1 mice were subjected to six weeks of chronic sleep deprivation and injected intraperitoneally with almorexant, a dual orexin receptor antagonist (DORA), to investigate the effects and mechanisms of sleep deprivation and almorexant intervention on learning and memory in mice with AD. We found that sleep deprivation aggravated learning and memory impairment and increased brain β-amyloid (Aβ) deposition in mice with AD. The application of almorexant can increase the total sleep time of sleep-deprived mice and reduce cognitive impairment and Aβ deposition, which is related to the improvement in Aquaporin-4 polarity. Thus, DORA may be an effective strategy for delaying the progression of AD patients by improving the sleep disturbances.
Collapse
Affiliation(s)
- Yaran Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Zian Yan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Na Shao
- Department of Neurology, Shandong Provincial Qian Foshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China.
| | - Xiao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Xiao Min Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Jiyou Tang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| |
Collapse
|
3
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
4
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
5
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Muehlan C, Roch C, Vaillant C, Dingemanse J. The orexin story and orexin receptor antagonists for the treatment of insomnia. J Sleep Res 2023; 32:e13902. [PMID: 37086045 DOI: 10.1111/jsr.13902] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Insomnia is present in up to one third of the adult population worldwide, and it can present independently or with other medical conditions such as mental, metabolic, or cardiovascular diseases, which highlights the importance of treating this multifaceted disorder. Insomnia is associated with an abnormal state of hyperarousal (increased somatic, cognitive, and cortical activation) and orexin has been identified as a key promotor of arousal and vigilance. The current standards of care for the treatment of insomnia recommend non-pharmacological interventions (cognitive behavioural therapy) as first-line treatment and, if behavioural interventions are not effective or available, pharmacotherapy. In contrast to most sleep medications used for decades (benzodiazepines and 'Z-drugs'), the new orexin receptor antagonists do not modulate the activity of γ-aminobutyric acid receptors, the main inhibitory mechanism of the central nervous system. Instead, they temporarily block the orexin pathway, causing a different pattern of effects, e.g., less morning or next-day effects, motor dyscoordination, and cognitive impairment. The pharmacokinetic/pharmacodynamic properties of these drugs are the basis of the different characteristics explained in the package inserts, including the recommended starting dose. Orexin receptor antagonists seem to be devoid of any dependence and tolerance-inducing effects, rendering them a viable option for longer-term treatment. Safety studies did not show exacerbation of existing respiratory problems, but more real-world safety and pharmacovigilance experience is needed. This review provides an overview of the orexin history, the mechanism of action, the relation to insomnia, and key features of available drugs mediating orexin signalling.
Collapse
|
7
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Matzeu A, Martin-Fardon R. Daily treatment with the dual orexin receptor antagonist DORA-12 during oxycodone abstinence decreases oxycodone conditioned reinstatement. Neuropharmacology 2023; 239:109685. [PMID: 37579870 PMCID: PMC10529002 DOI: 10.1016/j.neuropharm.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.
Collapse
Affiliation(s)
- Jessica M Illenberger
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | | | - Glenn Pascasio
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Alessandra Matzeu
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Bai F, Huang L, Deng J, Long Z, Hao X, Chen P, Wu G, Wen H, Deng Q, Bao X, Huang J, Yang M, Li D, Ren Y, Zhang M, Xiong Y, Li H. Prelimbic area to lateral hypothalamus circuit drives social aggression. iScience 2023; 26:107718. [PMID: 37810230 PMCID: PMC10551839 DOI: 10.1016/j.isci.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Controlling aggression is a vital skill in social species such as rodents and humans and has been associated with the medial prefrontal cortex (mPFC). In this study, we showed that during aggressive behavior, the activity of GABAergic neurons in the prelimbic area (PL) of the mPFC was significantly suppressed. Specific activation of GABAergic PL neurons significantly curbed male-to-male aggression and inhibited conditioned place preference (CPP) for aggression-paired contexts, whereas specific inhibition of GABAergic PL neurons brought about the opposite effect. Moreover, GABAergic projections from PL neurons to the lateral hypothalamus (LH) orexinergic neurons mediated aggressive behavior. Finally, directly modulated LH-orexinergic neurons influence aggressive behavior. These results suggest that GABAergic PL-orexinergic LH projection is an important control circuit for intermale aggressive behavior, both of which could be targets for curbing aggression.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lu Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xianglin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Penghui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Huizhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Qiangting Deng
- Editorial Office of Journal of Army Medical University, Chongqing 400038, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ming Yang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Defeng Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yukun Ren
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Zhang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
9
|
Rong J, Yamasaki T, Li Y, Kumata K, Zhao C, Haider A, Chen J, Xiao Z, Fujinaga M, Hu K, Mori W, Zhang Y, Xie L, Zhou X, Collier TL, Zhang MR, Liang S. Development of Novel 11C-Labeled Selective Orexin-2 Receptor Radioligands for Positron Emission Tomography Imaging. ACS Med Chem Lett 2023; 14:1419-1426. [PMID: 37849554 PMCID: PMC10577698 DOI: 10.1021/acsmedchemlett.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Orexin 2 receptors (OX2R) represent a vital subtype of orexin receptors intricately involved in the regulation of wakefulness, arousal, and sleep-wake cycles. Despite their importance, there are currently no positron emission tomography (PET) tracers available for imaging the OX2R in vivo. Herein, we report [11C]1 ([11C]OX2-2201) and [11C]2 ([11C]OX2-2202) as novel PET ligands. Both compounds 1 (K i = 3.6 nM) and 2 (K i = 2.2 nM) have excellent binding affinity activities toward OX2R and target selectivity (OX2/OX1 > 600 folds). In vitro autoradiography in the rat brain suggested good to excellent in vitro binding specificity for [11C]1 and [11C]2. PET imaging in rat brains indicated that the low brain uptake of [11C]2 may be due to P-glycoprotein and/or breast cancer resistance protein efflux interaction and/or low passive permeability. Continuous effort in medicinal chemistry optimization is necessary to improve the brain permeability of this scaffold.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Yinlong Li
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Achi Haider
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Xin Zhou
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
| | - Thomas L. Collier
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences,
Institute for Quantum Medical Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Steven Liang
- Department of Radiology and Imaging Sciences,
Emory University, Atlanta, Georgia 30322, United
States
- Division of Nuclear Medicine and Molecular Imaging,
Massachusetts General Hospital and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United
States
| |
Collapse
|
10
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Abstract
The hypocretins (Hcrts), also known as orexins, are two neuropeptides produced exclusively in the lateral hypothalamus. They act on two specific receptors that are widely distributed across the brain and involved in a myriad of neurophysiological functions that include sleep, arousal, feeding, reward, fear, anxiety and cognition. Hcrt cell loss in humans leads to narcolepsy with cataplexy (narcolepsy type 1), a disorder characterized by intrusions of sleep into wakefulness, demonstrating that the Hcrt system is nonredundant and essential for sleep/wake stability. The causal link between Hcrts and arousal/wakefulness stabilisation has led to the development of a new class of drugs, Hcrt receptor antagonists to treat insomnia, based on the assumption that blocking orexin-induced arousal will facilitate sleep. This has been clinically validated: currently, two Hcrt receptor antagonists are approved to treat insomnia (suvorexant and lemborexant), with a New Drug Application recently submitted to the US Food and Drug Administration for a third drug (daridorexant). Other therapeutic applications under investigation include reduction of cravings in substance-use disorders and prevention of neurodegenerative disorders such as Alzheimer's disease, given the apparent bidirectional relationship between poor sleep and worsening of the disease. Circuit neuroscience findings suggest that the Hcrt system is a hub that integrates diverse inputs modulating arousal (e.g., circadian rhythms, metabolic status, positive and negative emotions) and conveys this information to multiple output regions. This neuronal architecture explains the wealth of physiological functions associated with Hcrts and highlights the potential of the Hcrt system as a therapeutic target for a number of disorders. We discuss present and future possible applications of drugs targeting the Hcrt system for the treatment of circuit-related neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Dale NC, Hoyer D, Jacobson LH, Pfleger KDG, Johnstone EKM. Orexin Signaling: A Complex, Multifaceted Process. Front Cell Neurosci 2022; 16:812359. [PMID: 35496914 PMCID: PMC9044999 DOI: 10.3389/fncel.2022.812359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
The orexin system comprises two G protein-coupled receptors, OX1 and OX2 receptors (OX1R and OX2R, respectively), along with two endogenous agonists cleaved from a common precursor (prepro-orexin), orexin-A (OX-A) and orexin-B (OX-B). For the receptors, a complex array of signaling behaviors has been reported. In particular, it becomes obvious that orexin receptor coupling is very diverse and can be tissue-, cell- and context-dependent. Here, the early signal transduction interactions of the orexin receptors will be discussed in depth, with particular emphasis on the direct G protein interactions of each receptor. In doing so, it is evident that ligands, additional receptor-protein interactions and cellular environment all play important roles in the G protein coupling profiles of the orexin receptors. This has potential implications for our understanding of the orexin system's function in vivo in both central and peripheral environments, as well as the development of novel agonists, antagonists and possibly allosteric modulators targeting the orexin system.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Laura H. Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
13
|
Keenan RJ, Daykin H, Chu J, Cornthwaite-Duncan L, Allocca G, Hoyer D, Jacobson LH. Differential sleep/wake response and sex effects following acute suvorexant, MK-1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. Br J Pharmacol 2022; 179:3403-3417. [PMID: 35112344 PMCID: PMC9302982 DOI: 10.1111/bph.15813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Transgenic mouse models of tauopathy display prominent sleep/wake disturbances which manifest primarily as a hyperarousal phenotype during the active phase, suggesting that tau pathology contributes to sleep/wake changes. However, no study has yet investigated the effect of sleep‐promoting compounds in these models. Such information has implications for the use of hypnotics as potential therapeutic tools in tauopathy‐related disorders. Experimental Approach This study examined polysomnographic recordings in 6‐6.5‐month‐old male and female rTg4510 mice following acute administration of suvorexant (50 mg·kg−1), MK‐1064 (30 mg·kg−1) or zolpidem (10 mg·kg−1), administered at the commencement of the active phase. Key Results Suvorexant, a dual OX receptor antagonist, promoted REM sleep in rTg4510 mice, without affecting wake or NREM sleep. MK‐1064, a selective OX2 receptor antagonist, reduced wake and increased NREM and total sleep time. MK‐1064 normalised the hyperarousal phenotype of male rTg4510 mice, whereas female rTg4510 mice exhibited a more transient response. Zolpidem, a GABAA receptor positive allosteric modulator, decreased wake and increased NREM sleep in both male and female rTg4510 mice. Of the three compounds, the OX2 receptor antagonist MK‐1064 promoted and normalised physiologically normal sleep, especially in male rTg4510 mice. Conclusions and Implications Our findings indicate that hyperphosphorylated tau accumulation and associated hyperarousal does not significantly alter the responses of tauopathy mouse models to hypnotics. However, the sex differences observed in the sleep/wake response of rTg4510 mice to MK‐1064, but not suvorexant or zolpidem, raise questions about therapeutic implications for the use of OX2 receptor antagonists in human neurodegenerative disorders.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiahui Chu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Somnivore Inc. Ltd. Pty, Bacchus Marsh, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Kim HJJ, Zagzoog A, Smolyakova AM, Ezeaka UC, Benko MJ, Holt T, Laprairie RB. In vivo Evidence for Brain Region-Specific Molecular Interactions Between Cannabinoid and Orexin Receptors. Front Neurosci 2021; 15:790546. [PMID: 34992518 PMCID: PMC8724524 DOI: 10.3389/fnins.2021.790546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid and orexin neuromodulatory systems serve key roles in many of the same biological functions such as sleep, appetite, pain processing, and emotional behaviors related to reward. The type 1 cannabinoid receptor (CB1R) and both subtypes of the orexin receptor, orexin receptor type 1 (OX1R) and orexin receptor type 2 (OX2R) are not only expressed in the same brain regions modulating these functions, but physically interact as heterodimers in recombinant and neuronal cell cultures. In the current study, male and female C57BL/6 mice were co-treated with the cannabinoid receptor agonist CP55,940 and either the OX2R antagonist TCS-OX2-29 or the dual orexin receptor antagonist (DORA) TCS-1102. Mice were then evaluated for catalepsy, body temperature, thermal anti-nociception, and locomotion, after which their brains were collected for receptor colocalization analysis. Combined treatment with the DORA TCS-1102 and CP55,940 potentiated catalepsy more than CP55,940 alone, but this effect was not observed for changes in body temperature, nociception, locomotion, or via selective OX2R antagonism. Co-treatment with CP55,940 and TCS-1102 also led to increased CB1R-OX1R colocalization in the ventral striatum. This was not seen following co-treatment with TCS-OX2-29, nor in CB1R-OX2R colocalization. The magnitude of effects following co-treatment with CP55,940 and either the DORA or OX2R-selective antagonist was greater in males than females. These data show that CB1R-OX1R colocalization in the ventral striatum underlies cataleptic additivity between CP55,940 and the DORA TCS-1102. Moreover, cannabinoid-orexin receptor interactions are sex-specific with regards to brain region and functionality. Physical or molecular interactions between these two systems may provide valuable insight into drug-drug interactions between cannabinoid and orexin drugs for the treatment of insomnia, pain, and other disorders.
Collapse
Affiliation(s)
- Hye Ji J. Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Udoka C. Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael J. Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagan Holt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
16
|
At the intersection of sleep deficiency and opioid use: mechanisms and therapeutic opportunities. Transl Res 2021; 234:58-73. [PMID: 33711513 PMCID: PMC8217216 DOI: 10.1016/j.trsl.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022]
Abstract
Due to the ongoing opioid epidemic, innovative scientific perspectives and approaches are urgently needed to reduce the unprecedented personal and societal burdens of nonmedical and recreational opioid use. One promising opportunity is to focus on the relationship between sleep deficiency and opioid use. In this review, we examine empirical evidence: (1) at the interface of sleep deficiency and opioid use, including hypothesized bidirectional associations between sleep efficiency and opioid abstinence; (2) as to whether normalization of sleep deficiency might directly or indirectly improve opioid abstinence (and vice versa); and (3) regarding mechanisms that could link improvements in sleep to opioid abstinence. Based on available data, we identify candidate sleep-restorative therapeutic approaches that should be examined in rigorous clinical trials.
Collapse
|
17
|
Kaushik MK, Aritake K, Cherasse Y, Imanishi A, Kanbayashi T, Urade Y, Yanagisawa M. Induction of narcolepsy-like symptoms by orexin receptor antagonists in mice. Sleep 2021; 44:6145803. [PMID: 33609365 DOI: 10.1093/sleep/zsab043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Orexins/hypocretins are hypothalamic neuropeptides that promote and stabilize wakefulness by binding to the orexin receptor type-1 (OX1R) and type-2 (OX2R). Disruption of orexinergic signaling results in the sleep disorder narcolepsy in mice, rats, dogs, and humans. The orexin receptor antagonist suvorexant promotes sleep by blocking both OX1R and OX2R. Whereas suvorexant has been clinically approved for the treatment of insomnia because it is well tolerated in experimental animals as well as in human patients, a logical question remains as to why orexin receptor antagonists do not induce overt narcolepsy-like symptoms. Here we show that acute and chronic suvorexant promotes both rapid eye movement (REM) and non-REM (NREM) sleep without inducing cataplexy in mice. Interestingly, chronic suvorexant increases OX2R mRNA and decreases orexin mRNA and peptide levels, which remain low long after termination of suvorexant administration. When mice are chronically treated with suvorexant and then re-challenged with the antagonist after a 1-week washout, however, cataplexy and sleep-onset REM (SOREM) are observed, which are exacerbated by chocolate administration. Heterozygous orexin knockout mice, with lower brain orexin levels, show cataplexy and SOREM after acute suvorexant administration. Furthermore, we find that acute suvorexant can induce cataplexy and SOREM in wild-type mice when co-administered with chocolate under stress-free (temporally anesthetized) conditions. Taken together, these results suggest that suvorexant can inhibit orexin synthesis resulting in susceptibility to narcolepsy-like symptoms in mice under certain conditions.
Collapse
Affiliation(s)
- Mahesh K Kaushik
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Aya Imanishi
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:E795. [PMID: 33466831 PMCID: PMC7830608 DOI: 10.3390/ijms22020795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aside from the classical motor symptoms, Parkinson's disease also has various non-classical symptoms. Interestingly, orexin neurons, involved in the regulation of exploratory locomotion, spontaneous physical activity, and energy expenditure, are affected in Parkinson's. In this study, we hypothesized that Parkinson's-disease-associated pathology affects orexin neurons and therefore impairs functions they regulate. To test this, we used a transgenic animal model of Parkinson's, the A53T mouse. We measured body composition, exploratory locomotion, spontaneous physical activity, and energy expenditure. Further, we assessed alpha-synuclein accumulation, inflammation, and astrogliosis. Finally, we hypothesized that chemogenetic inhibition of orexin neurons would ameliorate observed impairments in the A53T mice. We showed that aging in A53T mice was accompanied by reductions in fat mass and increases in exploratory locomotion, spontaneous physical activity, and energy expenditure. We detected the presence of alpha-synuclein accumulations in orexin neurons, increased astrogliosis, and microglial activation. Moreover, loss of inhibitory pre-synaptic terminals and a reduced number of orexin cells were observed in A53T mice. As hypothesized, this chemogenetic intervention mitigated the behavioral disturbances induced by Parkinson's disease pathology. This study implicates the involvement of orexin in early Parkinson's-disease-associated impairment of hypothalamic-regulated physiological functions and highlights the importance of orexin neurons in Parkinson's disease symptomology.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
| | - Catherine M. Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
- Minneapolis VA Health Care System, GRECC, 1 Veterans Dr, Minneapolis, MN 55417, USA
| |
Collapse
|
19
|
Mezeiova E, Janockova J, Konecny J, Kobrlova T, Benkova M, Dolezal R, Prchal L, Karasova-Zdarova J, Soukup O, Korabecny J. From orexin receptor agonist YNT-185 to novel antagonists with drug-like properties for the treatment of insomnia. Bioorg Chem 2020; 103:104179. [PMID: 32891860 DOI: 10.1016/j.bioorg.2020.104179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022]
Abstract
YNT-185 is the first known small molecule acting as orexin 2 receptor (OX2R) agonist with implication to narcolepsy treatment, served as a template scaffold in generating a small set of seven compounds with predictive affinity to OX2R. The design of the new small molecules was driven mostly by improving physicochemical properties of the parent drug YNT-185 in parallel with in silico studies, later suggesting their favorable binding modes within the active site of OX2R. We obtained seven new potential OX2R binders that were evaluated in vitro for their CNS availability, cytotoxicity, and behavior pattern on OX2R. Out of them, 15 emerged as the most potent modulator of OX2R, which, contrary to YNT-185, displayed inverse mode of action, i.e. antagonist profile. 15 was also submitted to an in vivo experiment revealing its ability to permeate through BBB into the brain with a short half-life.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jana Karasova-Zdarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
20
|
Salvadore G, Bonaventure P, Shekhar A, Johnson PL, Lord B, Shireman BT, Lebold TP, Nepomuceno D, Dugovic C, Brooks S, Zuiker R, Bleys C, Tatikola K, Remmerie B, Jacobs GE, Schruers K, Moyer J, Nash A, Van Nueten LGM, Drevets WC. Translational evaluation of novel selective orexin-1 receptor antagonist JNJ-61393215 in an experimental model for panic in rodents and humans. Transl Psychiatry 2020; 10:308. [PMID: 32895369 PMCID: PMC7477545 DOI: 10.1038/s41398-020-00937-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Orexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders. Here, we characterized a novel selective OX1R antagonist, JNJ-61393215, and determined its affinity and potency for human and rat OX1R in vitro. We also evaluated the safety, pharmacokinetic, and pharmacodynamic properties of JNJ-61393215 in first-in-human single- and multiple-ascending dose studies conducted. Finally, the potential anxiolytic effects of JNJ-61393215 were evaluated both in rats and in healthy men using 35% CO2 inhalation challenge to induce panic symptoms. In the rat CO2 model of panic anxiety, JNJ-61393215 demonstrated dose-dependent attenuation of CO2-induced panic-like behavior without altering baseline locomotor or autonomic activity, and had minimal effect on spontaneous sleep. In phase-1 human studies, JNJ-61393215 at 90 mg demonstrated significant reduction (P < 0.02) in CO2-induced fear and anxiety symptoms that were comparable to those obtained using alprazolam. The most frequently reported adverse events were somnolence and headache, and all events were mild in severity. These results support the safety, tolerability, and anxiolytic effects of JNJ-61393215, and validate CO2 exposure as a translational cross-species experimental model to evaluate the therapeutic potential of novel anxiolytic drugs.
Collapse
Affiliation(s)
- Giacomo Salvadore
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Titusville, NJ USA
| | | | - Anantha Shekhar
- grid.257413.60000 0001 2287 3919Departments of Psychiatry, and Pharmacology, Indiana University, School of Medicine, Indianapolis, IN USA
| | - Philip L. Johnson
- grid.257413.60000 0001 2287 3919Department of Anatomy, Physiology and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN USA
| | - Brian Lord
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Brock T. Shireman
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Terry P. Lebold
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Diane Nepomuceno
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Christine Dugovic
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Sander Brooks
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands ,grid.10419.3d0000000089452978Leiden University Medical Center, Leiden, The Netherlands
| | - Rob Zuiker
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands
| | - Cathy Bleys
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Kanaka Tatikola
- grid.497530.c0000 0004 0389 4927Janssen Scientific Affairs, LLC, Titusville, NJ USA
| | - Bart Remmerie
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Gabriel E. Jacobs
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schruers
- grid.5012.60000 0001 0481 6099Research School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - John Moyer
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Titusville, NJ USA
| | - Abigail Nash
- grid.497530.c0000 0004 0389 4927Janssen Scientific Affairs, LLC, Titusville, NJ USA
| | - Luc G. M. Van Nueten
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Wayne C. Drevets
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| |
Collapse
|
21
|
Kaufmann P, Ort M, Golor G, Kornberger R, Dingemanse J. First-in-human study with ACT-539313, a novel selective orexin-1 receptor antagonist. Br J Clin Pharmacol 2020; 86:1377-1386. [PMID: 32067262 PMCID: PMC7319015 DOI: 10.1111/bcp.14251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS The orexin system is involved in anxiety behaviour and corresponding physiological reactions and constitutes a target for treatment of anxiety disorders. ACT-539313 is a potent, selective orexin-1 receptor antagonist being developed for the treatment of anxiety disorders. This first-in-human study investigated its single-dose pharmacokinetics (PK) including food effect, pharmacodynamics (PD), safety and tolerability. METHODS This double-blind, placebo-controlled, randomized study included 40 healthy male subjects. Ascending oral doses of 10-400 mg ACT-539313 were investigated in 5 dose groups of 8 subjects (of whom 2 received placebo per dose group). At 100 mg, subjects received ACT-539313 in fasted and fed conditions in a fixed sequential design. PK, PD (objective and subjective measures of sedation and effects on central nervous system), safety and tolerability were assessed. RESULTS In fasted conditions, ACT-539313 was rapidly absorbed (median time to maximum plasma concentration [Cmax ] 0.7-3.5 h) and cleared from plasma with a mean terminal half-life of 3.3-5.7 h across dose levels. A 1.63-fold (90% confidence interval: 1.26-2.11) increase in Cmax and no change in area under the concentration-time curve extrapolated to infinity was observed under fed compared to fasted conditions. No relevant PD signals were detected except for a trend of reduced saccadic peak velocity around time to Cmax . The most commonly reported adverse events were somnolence and headache. All adverse events were transient and of mild or moderate intensity. No treatment-related effects on vital signs, clinical laboratory or 12-lead electrocardiogram were observed. CONCLUSIONS ACT-539313 exhibits good safety and tolerability at single doses of up to and including 400 mg that warrant further investigations.
Collapse
Affiliation(s)
- Priska Kaufmann
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| | - Marion Ort
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| | | | | | - Jasper Dingemanse
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| |
Collapse
|
22
|
Mahoney CE, Mochizuki T, Scammell TE. Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep 2020; 43:zsz302. [PMID: 31830270 PMCID: PMC7294412 DOI: 10.1093/sleep/zsz302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Orexin receptor antagonists are clinically useful for treating insomnia, but thorough blockade of orexin signaling could cause narcolepsy-like symptoms. Specifically, while sleepiness is a desirable effect, an orexin antagonist could also produce cataplexy, sudden episodes of muscle weakness often triggered by strong, positive emotions. In this study, we examined the effects of dual orexin receptor antagonists (DORAs), lemborexant (E2006) and almorexant, on sleep-wake behavior and cataplexy during the dark period in wild-type (WT) mice and prepro-orexin knockout (OXKO) mice. In WT mice, lemborexant at 10 and 30 mg/kg quickly induced NREM sleep in a dose-dependent fashion. In contrast, lemborexant did not alter sleep-wake behavior in OXKO mice. Under the baseline condition, cataplexy was rare in lemborexant-treated WT mice, but when mice were given chocolate as a rewarding stimulus, lemborexant dose-dependently increased cataplexy. Almorexant produced similar results. Collectively, these results demonstrate that DORAs potently increase NREM and REM sleep in mice via blockade of orexin signaling, and higher doses can cause cataplexy when co-administered with a likely rewarding stimulus.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Japan
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Williams RH, Black SW, Thomas AM, Piquet J, Cauli B, Kilduff TS. Excitation of Cortical nNOS/NK1R Neurons by Hypocretin 1 is Independent of Sleep Homeostasis. Cereb Cortex 2020; 29:1090-1108. [PMID: 29462275 DOI: 10.1093/cercor/bhy015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/10/2018] [Indexed: 11/14/2022] Open
Abstract
We have proposed that cortical nNOS/NK1R interneurons have a role in sleep homeostasis. The hypocretins (orexins) are wake-promoting neuropeptides and hypocretin/orexin (Hcrt) neurons project to the cortex. Hcrt peptides affect deep layer cortical neurons, and Hcrt receptor 1 (Hcrtr1; Ox1r) mRNA is expressed in cortical nNOS/NK1R cells. Therefore, we investigated whether Hcrt neuron stimulation affects cingulate cortex nNOS/NK1R neurons. Bath application of HCRT1/orexin-A evoked an inward current and membrane depolarization in most nNOS/NK1R cells which persisted in tetrodotoxin; optogenetic stimulation of Hcrt terminals expressing channelrhodopsin-2 confirmed these results, and pharmacological studies determined that HCRTR1 mediated these responses. Single-cell RT-PCR found Hcrtr1 mRNA in 31% of nNOS/NK1R cells without any Hcrtr2 mRNA expression; immunohistochemical studies of Hcrtr1-EGFP mice confirmed that a minority of nNOS/NK1R cells express HCRTR1. When Hcrt neurons degenerated in orexin-tTA;TetO DTA mice, the increased EEG delta power during NREM sleep produced in response to 4 h sleep deprivation and c-FOS expression in cortical nNOS/NK1R cells during recovery sleep were indistinguishable from that of controls. We conclude that Hcrt excitatory input to these deep layer cells is mediated through HCRTR1 but is unlikely to be involved in the putative role of cortical nNOS/NK1R neurons in sleep homeostasis.
Collapse
Affiliation(s)
- Rhîannan H Williams
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA.,Institute for Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sarah W Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Alexia M Thomas
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Juliette Piquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Bruno Cauli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| |
Collapse
|
24
|
Maehara S, Yuge N, Higashi C, Ota T, Furukawa J, Takeuchi T. Pharmacological characterization of a novel potent, selective, and orally active orexin 2 receptor antagonist, SDM-878. Neuropsychopharmacol Rep 2020; 40:182-189. [PMID: 32337858 PMCID: PMC7722660 DOI: 10.1002/npr2.12105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Recently, we identified a novel orexin 2 (OX2) receptor antagonist, SDM‐878 (2‐(3‐(2‐(1H‐pyrazol‐1‐yl)nicotinoyl)‐3,8‐diazabicyclo[3.2.1]octan‐8‐yl)‐3‐methoxyisonicotinonitrile). The purpose of the present study is to characterize the in vitro and in vivo pharmacological effects of SDM‐878. Methods The in vitro potency and selectivity of SDM‐878 were examined in CHO cells that exhibit stable expression of human orexin 1 (OX1), human orexin 2 (OX2), rat OX1, and rat OX2receptors. Then, the plasma half‐life, oral bioavailability, and brain penetration of SDM‐878 were examined in rats. The in vivo effect of SDM‐878 in rats was tested using electroencephalography (EEG). The target engagement of SDM‐878 in the rat brain was examined using the antagonistic effect against hyperlocomotion caused by the intracerebroventricular administration of the OX2 receptor agonist, ADL‐OXB ([Ala11, d‐Leu15]‐orexin B). Results SDM‐878 showed potent inhibitory activities for human and rat OX2 receptors with IC values of 10.6 and 8.8 nM, respectively, and approximately 1000‐fold selectivity against the OX1receptor. In rat studies, SDM‐878 exhibited a relatively short half‐life in plasma, oral bioavailability, and good brain penetration. These data indicate that SDM‐878 is a potent, selective, orally active, and brain‐penetrable OX2receptor antagonist. In behavioral studies using rats, SDM‐878 (100 mg/kg) antagonized hyperlocomotion caused by intracerebroventricular administration of ADL‐OXB. SDM‐878 exhibited a potent sleep‐promoting effect at the same dose (100 mg/kg) in a rat EEG study. Conclusion Our results suggest that SDM‐878 is likely to be a good pharmacological tool for investigating the role of the OX2receptor and may have therapeutic potential for the treatment of insomnia. We identified a novel potent, selective, orally active, and brain‐penetrable orexin 2 receptor antagonist, SDM‐878. SDM‐878 exhibited a potent sleep‐promoting effect in rats and may have therapeutic potential for the treatment of insomnia.![]()
Collapse
Affiliation(s)
- Shunsuke Maehara
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Natsuko Yuge
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Chika Higashi
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Takumi Ota
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Junji Furukawa
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Takashi Takeuchi
- Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., Gotemba, Japan
| |
Collapse
|
25
|
Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol Biochem Behav 2020; 194:172929. [PMID: 32315694 DOI: 10.1016/j.pbb.2020.172929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Orexin is a neurotransmitter that mainly regulates sleep/wake cycle. In addition to its sleep cycle regulatory role, it is involved in regulation of attention, energy homeostasis, neurogenesis and cognition. Several evidences has shown the involvement of orexin in narcolepsy, but there are also growing evidences that shows the disturbance in orexin system in neurodegenerative diseases including Alzheimer's, Parkinson's, Epilepsy, Huntington's diseases and Amyotrophic lateral sclerosis. Pathogenesis and clinical symptoms of these disorders can be partly attributed from orexin system imbalance. However, there are controversial reports on the exact relationship between orexin and these neurodegenerative diseases. Therefore, the aim of this review is to summarize the current evidences regarding the role of orexin in these neurodegenerative diseases.
Collapse
|
26
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Hoyer D, Allen A, Jacobson LH. Hypnotics with novel modes of action. Br J Clin Pharmacol 2020; 86:244-249. [PMID: 31756268 PMCID: PMC7015741 DOI: 10.1111/bcp.14180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Insomnia and, more generally, lack of sleep are on the rise. Traditionally treated by classical hypnotics, such as benzodiazepines and Z drugs, which both act on the GABAA receptor, and other modalities, including nondrug therapies, such as cognitive behavioural therapy, there is a range of new hypnotics which are being developed or have recently received market approval. Suvorexant and the like target the orexin/hypocretin system: they should have less side effects in terms of drug-drug interactions with e.g. alcohol, less memory impairment and dependence potential compared to classical hypnotics.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health SciencesThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Andrew Allen
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Laura H. Jacobson
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health SciencesThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
28
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
29
|
Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 36:802-814. [PMID: 30136622 PMCID: PMC6387567 DOI: 10.1089/neu.2018.5810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- Hannah E. Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Dustrude ET, Caliman IF, Bernabe CS, Fitz SD, Grafe LA, Bhatnagar S, Bonaventure P, Johnson PL, Molosh AI, Shekhar A. Orexin Depolarizes Central Amygdala Neurons via Orexin Receptor 1, Phospholipase C and Sodium-Calcium Exchanger and Modulates Conditioned Fear. Front Neurosci 2018; 12:934. [PMID: 30618563 PMCID: PMC6305451 DOI: 10.3389/fnins.2018.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Orexins (OX), also known as hypocretins, are excitatory neuropeptides with well-described roles in regulation of wakefulness, arousal, energy homeostasis, and anxiety. An additional and recently recognized role of OX is modulation of fear responses. We studied the OX neurons of the perifornical hypothalamus (PeF) which send projections to the amygdala, a region critical in fear learning and fear expression. Within the amygdala, the highest density of OX-positive fibers was detected in the central nucleus (CeA). The specific mechanisms underlying OX neurotransmission within the CeA were explored utilizing rat brain slice electrophysiology, pharmacology, and chemogenetic stimulation. We show that OX induces postsynaptic depolarization of medial CeA neurons that is mediated by OX receptor 1 (OXR1) but not OX receptor 2 (OXR2). We further characterized the mechanism of CeA depolarization by OX as phospholipase C (PLC)- and sodium-calcium exchanger (NCX)- dependent. Selective chemogenetic stimulation of OX PeF fibers recapitulated OXR1 dependent depolarization of CeA neurons. We also observed that OXR1 activity modified presynaptic release of glutamate within the CeA. Finally, either systemic or intra-CeA perfusion of OXR1 antagonist reduced the expression of conditioned fear. Together, these data suggest the PeF-CeA orexinergic pathway can modulate conditioned fear through a signal transduction mechanism involving PLC and NCX activity and that selective OXR1 antagonism may be a putative treatment for fear-related disorders.
Collapse
Affiliation(s)
- Erik T Dustrude
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Izabela F Caliman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cristian S Bernabe
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stephanie D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Laura A Grafe
- Department Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Seema Bhatnagar
- Department Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
31
|
Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res 2018; 1731:146037. [PMID: 30481504 DOI: 10.1016/j.brainres.2018.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Fear is an important physiological function for survival. It appears when animals or humans are confronted with an environmental threat. The amygdala has been shown to play a highly important role in emergence of fear. Hypothalamic orexin neurons are activated by fearful stimuli to evoke a 'defense reaction' with an increase in arousal level and sympathetic outflow to deal with the imminent danger. However, how this system contributes to the emergence of fear-related behavior is not well understood. Orexin neurons in the hypothalamus send excitatory innervations to noradrenergic neurons in the locus coeruleus (NALC) which express orexin receptor 1 (OX1R) and send projections to the lateral amygdala (LA). Inhibition of this di-synaptic orexin → NALC → LA pathway by pharmacological or opto/chemogenetic methods reduces cue-induced fear expression. Excitatory manipulation of this pathway induces freezing, a fear-related behavior that only occurs when the environment contains some elements suggestive of danger. Although, fear memory helps animals respond to a context or cue previously paired with an aversive stimulus, fear-related behavior is sometimes evoked even in a distinct context containing some similar elements, which is known as fear generalization. Our recent observation suggests that the orexin → NALC → LA pathway might contribute to this response. This review focuses on recent advances regarding the role of hypothalamic orexin neurons in behavioral fear expression. We also discuss the potential effectiveness of orexin receptor antagonists for treating excessive fear response or overgeneralization seen in anxiety disorder and post-traumatic stress disorder (PTSD).
Collapse
|
32
|
Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018; 41:5060288. [PMID: 30060151 PMCID: PMC6454482 DOI: 10.1093/sleep/zsy141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
Study Objectives The present study investigated the function of Hypocretin (Hcrt or Orexin/OX) receptor antagonists in sleep modulation and memory function with optical methods in transgenic mice. Methods We used Hcrt-IRES-Cre knock-in mice and AAV vectors expressing channelrhodopsin-2 (ChR2) to render Hcrt neurons sensitive to blue light stimulation. We optogenetically stimulated Hcrt neurons and measured latencies to wakefulness in the presence or absence of OX1/2R antagonists and Zolpidem. We also examined endogenous Hcrt neuronal activity with fiber photometry. Changes in memory after optogenetic sleep disruption were evaluated by the novel object recognition test (NOR) and compared for groups treated with vehicle, OX1/2R antagonists, or Zolpidem. We also analyzed electroencephalogram (EEG) power spectra of wakefulness, rapid eye movement (REM) sleep, and non-REM (NREM) sleep following the injections of vehicle, OX1/2R antagonists, and Zolpidem in young adult mice. Results Acute optogenetic stimulation of Hcrt neurons at different frequencies resulted in wakefulness. Treatment with dual OX1/2R antagonists (DORAs) DORA12 and MK6096, as well as selective OX2R antagonist MK1064 and Zolpidem, but not selective OX1R antagonist 1SORA1, significantly reduced the bout length of optogenetic stimulation-evoked wakefulness episode. Fiber photometry recordings of GCaMP6f signals showed that Hcrt neurons are active during wakefulness, even in the presence of OXR antagonists. Treatment with dual OX1/2R antagonists improved memory function despite optogenetic sleep fragmentation caused impaired memory function in a NOR test. Conclusions Our results show DORAs and selective OX2R antagonists stabilize sleep and improve sleep-dependent cognitive processes even when challenged by optogenetic stimulation mimicking highly arousing stimuli.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Natalie Nevárez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
33
|
Janto K, Prichard JR, Pusalavidyasagar S. An Update on Dual Orexin Receptor Antagonists and Their Potential Role in Insomnia Therapeutics. J Clin Sleep Med 2018; 14:1399-1408. [PMID: 30092886 DOI: 10.5664/jcsm.7282] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
STUDY OBJECTIVES Current pharmacological options for the treatment of insomnia insufficiently meet the needs of all insomnia patients. Approved treatments are not consistently effective in improving sleep onset and sleep maintenance, while also having complicated safety profiles. These limitations highlight the unmet need for additional medications and treatment strategies. Initial research suggests that the dual orexin receptor antagonists (DORAs) may offer an additional pharmaceutical option to treat insomnia in some patients. METHODS We reviewed the existing literature on dual orexin receptor antagonists in PubMed databases using the search terms "orexin receptor antagonist," "almorexant" "filorexant," "lembroexant" and "suvorexant"; searches were limited to English language primary research articles, clinical trials, and reviews. RESULTS Targeting the orexin receptor system for treatment of insomnia offers an additional and alternative pharmacological approach to more common gamma aminobutyric acid agonist sedative hypnotic treatment. Effectiveness is not well established in the current literature; however, the literature does suggest efficacy. Preclinical reports also suggest the potential for treatment in individuals with comorbid Alzheimer disease and insomnia. CONCLUSIONS DORAs offer an additional treatment option for insomnia. More clinical trials are needed to robustly evaluate their safety and effectiveness in several subclasses of individuals with insomnia. Given the published literature, head-to-head comparisons to existing treatment for insomnia are warranted.
Collapse
Affiliation(s)
- Kayla Janto
- Department of Psychology, University of St. Thomas, St. Paul, Minnesota
| | | | - Snigdha Pusalavidyasagar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
34
|
Recinella L, Chiavaroli A, Ferrante C, Mollica A, Macedonio G, Stefanucci A, Dimmito MP, Dvorácskó S, Tömböly C, Brunetti L, Orlando G, Leone S. Effects of central RVD-hemopressin(α) administration on anxiety, feeding behavior and hypothalamic neuromodulators in the rat. Pharmacol Rep 2018; 70:650-657. [DOI: 10.1016/j.pharep.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/26/2023]
|
35
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
36
|
Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018; 4:44-49. [PMID: 30155524 PMCID: PMC6111069 DOI: 10.1016/j.ibror.2018.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022] Open
Abstract
MCH neurons contain neither VGAT nor VGLUT2. Majority of orexin neurons contain VGLUT2. MCH neurons do not contain orexin.
The neuropeptides orexin and melanin-concentrating hormone (MCH), as well as the neurotransmitters GABA (γ-Aminobutyric acid) and glutamate are chief modulators of the sleep-wake states in the posterior hypothalamus. To investigate co-expression of vesicular GABA transporter (VGAT, a marker of GABA neurons) and the vesicular glutamate transporter-2 (VGLUT2, a marker of glutamate neurons) in orexin and MCH neurons, we generated two transgenic mouse lines. One line selectively expressed the reporter gene EYFP in VGAT+ neurons, whereas the other line expressed reporter gene tdTomato in VGLUT2+ neurons. Co-localization between these genetic reporters and orexin or MCH immunofluorescent tags was determined using 3D computer reconstructions of Z stacks that were acquired using a multiphoton laser confocal microscope. Our results demonstrated that MCH neurons expressed neither VGAT nor VGLUT2, suggesting MCH neurons are a separate cluster of cells from VGAT+ GABAergic neurons and VGLUT2+ glutamatergic neurons. Moreover, most orexin neurons expressed VGLUT2, indicating these neurons are glutamatergic. Our data suggested that in the posterior hypothalamus there are four major distinct groups of neurons: VGAT+, orexin+/VGLUT2+, orexin-/VGLUT2+, and MCH neurons. This study facilitated our understanding of the role of these neurotransmitters and neuropeptides in relation to sleep/wake regulation.
Collapse
Key Words
- Arousal
- CeA, central nucleus of amygdala
- GABA
- GABA-γ, Aminobutyric acid
- GAD65, glutamic acid decarboxylase-65
- GAD67, glutamic acid decarboxylase-67
- Gad1, Glutamate decarboxylase 1
- Glutamate
- MCH, melanin concentrating hormone
- NREM, non-rapid eye movement
- REM, rapid eye movement
- RTN, reticular thalamic nucleus
- SSC, somatosensory cortex
- Sleep
- VGAT, vesicular GABA transporter
- VGLUT2, vesicular glutamate transporter-2
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Emmaline Bendell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bingyu Zou
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Sun
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
37
|
Coleman PJ, Gotter AL, Herring WJ, Winrow CJ, Renger JJ. The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annu Rev Pharmacol Toxicol 2017; 57:509-533. [PMID: 27860547 DOI: 10.1146/annurev-pharmtox-010716-104837] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABAA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABAA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage-specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.
Collapse
Affiliation(s)
- Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486;
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - W Joseph Herring
- Department of Clinical Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
38
|
|
39
|
Futamura A, Nozawa D, Araki Y, Tamura Y, Tokura S, Kawamoto H, Tokumaru Y, Kakihara S, Aoki T, Ohtake N. Identification of highly selective and potent orexin receptor 1 antagonists derived from a dual orexin receptor 1/2 antagonist based on the structural framework of pyrazoylethylbenzamide. Bioorg Med Chem 2017; 25:5203-5215. [DOI: 10.1016/j.bmc.2017.07.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 11/28/2022]
|
40
|
Abstract
Addiction is a chronic relapsing disorder characterized by compulsive drug seeking and drug taking despite negative consequences. Alcohol abuse and addiction have major social and economic consequences and cause significant morbidity and mortality worldwide. Currently available therapeutics are inadequate, outlining the need for alternative treatments. Detailed knowledge of the neurocircuitry and brain chemistry responsible for aberrant behavior patterns should enable the development of novel pharmacotherapies to treat addiction. Therefore it is important to expand our knowledge and understanding of the neural pathways and mechanisms involved in alcohol seeking and abuse. The orexin (hypocretin) neuropeptide system is an attractive target, given the recent FDA and PMDA approval of suvorexant for the treatment of insomnia. Orexin is synthesized exclusively in neurons located in the lateral (LH), perifornical (PEF), and dorsal medial (DMH) hypothalamus. These neurons project widely throughout the neuraxis with regulatory roles in a wide range of behavioral and physiological responses, including sleep-wake cycle neuroendocrine regulation, anxiety, feeding behavior, and reward seeking. Here we summarize the literature to date, which have evaluated the interplay between alcohol and the orexin system.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
41
|
Abstract
The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX1 and OX2 receptors (OX2Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX2R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX2R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX2R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX2R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation remains equivocal, since OX2R antagonists are in early stages: MK-1064 has completed Phase I, and MIN202 is currently in clinical Phase II/III trials. However, data from insomnia patients have not yet been released. Promotional material suggests that balanced sleep is indeed induced by MIN-202, whereas in volunteers MK-1064 has been reported to act similarly to DORAs.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sui Chen
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sanjida Mir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
42
|
Bonaventure P, Dugovic C, Shireman B, Preville C, Yun S, Lord B, Nepomuceno D, Wennerholm M, Lovenberg T, Carruthers N, Fitz SD, Shekhar A, Johnson PL. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation. Front Pharmacol 2017; 8:357. [PMID: 28649201 PMCID: PMC5465257 DOI: 10.3389/fphar.2017.00357] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.
Collapse
Affiliation(s)
| | | | - Brock Shireman
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Cathy Preville
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Sujin Yun
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San DiegoCA, United States
| | | | | | | | | | - Stephanie D. Fitz
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
| | - Philip L. Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IndianapolisIN, United States
| |
Collapse
|
43
|
Yao L, Ramirez AD, Roecker AJ, Fox SV, Uslaner JM, Smith SM, Hodgson R, Coleman PJ, Renger JJ, Winrow CJ, Gotter AL. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J Neurochem 2017; 142:204-214. [PMID: 28444767 DOI: 10.1111/jnc.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/27/2022]
Abstract
Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA)A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABAA receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABAA modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABAA modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep.
Collapse
Affiliation(s)
- Lihang Yao
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Andres D Ramirez
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony J Roecker
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Steven V Fox
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Jason M Uslaner
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Sean M Smith
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Robert Hodgson
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| |
Collapse
|
44
|
Yun S, Wennerholm M, Shelton JE, Bonaventure P, Letavic MA, Shireman BT, Lovenberg TW, Dugovic C. Selective Inhibition of Orexin-2 Receptors Prevents Stress-Induced ACTH Release in Mice. Front Behav Neurosci 2017; 11:83. [PMID: 28533747 PMCID: PMC5420581 DOI: 10.3389/fnbeh.2017.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Orexins peptides exert a prominent role in arousal-related processes including stress responding, by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptors located widely throughout the brain. Stress or orexin administration stimulates hyperarousal, adrenocorticotropic hormone (ACTH) and corticosterone release, and selective OX1R blockade can attenuate several stress-induced behavioral and cardiovascular responses but not the hypothalamic-pituitary-adrenal (HPA) axis activation. As opposed to OX1R, OX2R are preferentially expressed in the paraventricular hypothalamic nucleus which is involved in the HPA axis regulation. In the present study, we investigated the effects of a psychological stress elicited by cage exchange (CE) on ACTH release in two murine models (genetic and pharmacological) of selective OX2R inhibition. CE-induced stress produced a significant increase in ACTH serum levels. Mice lacking the OX2R exhibited a blunted stress response. Stress-induced ACTH release was absent in mice pre-treated with the selective OX2R antagonist JNJ-42847922 (30 mg/kg po), whereas pre-treatment with the dual OX1/2R antagonist SB-649868 (30 mg/kg po) only partially attenuated the increase of ACTH. To assess whether the intrinsic and distinct sleep-promoting properties of each antagonist could account for the differential stress response, a separate group of mice implanted with electrodes for standard sleep recording were orally dosed with JNJ-42847922 or SB-649868 during the light phase. While both compounds reduced the latency to non-rapid eye movement (NREM) sleep without affecting its duration, a prevalent REM-sleep promoting effect was observed only in mice treated with the dual OX1/2R antagonist. These data indicate that in a psychological stress model, genetic or pharmacological inhibition of OX2R markedly attenuated stress-induced ACTH secretion, as a separately mediated effect from the NREM sleep induction of OX2R antagonism.
Collapse
Affiliation(s)
- Sujin Yun
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Michelle Wennerholm
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Jonathan E Shelton
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Pascal Bonaventure
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Michael A Letavic
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Brock T Shireman
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Timothy W Lovenberg
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| | - Christine Dugovic
- Department of Neuroscience, Janssen Research and Development, L.L.C.San Diego, CA, USA
| |
Collapse
|
45
|
Coborn JE, DePorter DP, Mavanji V, Sinton CM, Kotz CM, Billington CJ, Teske JA. Role of orexin-A in the ventrolateral preoptic area on components of total energy expenditure. Int J Obes (Lond) 2017; 41:1256-1262. [PMID: 28392556 DOI: 10.1038/ijo.2017.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identifying whether components of total energy expenditure (EE) are affected by orexin receptor (OXR1 and OXR2) stimulation or antagonism with dual orexin receptor antagonists (DORAs) has relevance for obesity treatment. Orexin receptor stimulation reduces weight gain by increasing total EE and EE during spontaneous physical activity (SPA). OBJECTIVE The purpose of this study was to determine if a DORA (TCS-1102) in the ventrolateral preoptic area (VLPO) reduced orexin-A-induced arousal, SPA, total EE and EE during sleep, rest, wake and SPA and whether the DORA alone reduced total EE and its components. We hypothesized that: (1) a DORA would reduce orexin-A induced increases in arousal, SPA, components of total EE, reductions in sleep and the EE during sleep and (2) the DORA alone would reduce baseline (non-stimulated) SPA and total EE. SUBJECTS/METHODS Sleep, wakefulness, SPA and EE were determined after microinjection of the DORA (TCS-1102) and orexin-A in the VLPO of male Sprague-Dawley rats with a unilateral cannula targeted towards the VLPO. Individual components of total EE were determined based on time-stamped data. RESULTS The DORA reduced orexin-A-induced increases in arousal, SPA, total EE and EE during SPA, wake, rest and sleep 1 h post injection (P<0.05). Orexin-A significantly reduced sleep and significantly increased EE during sleep 1 h post injection (P<0.05). Furthermore, the DORA alone significantly reduced total EE, EE during sleep (NREM and REM) and resting EE 2 h post injection (P<0.05). CONCLUSIONS These data suggest that orexin-A reduces weight gain by stimulating total EE through increases in EE during SPA, rest and sleep. Residual effects of the DORA alone include decreases in total EE and EE during sleep and rest, which may promote weight gain.
Collapse
Affiliation(s)
- J E Coborn
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - D P DePorter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - V Mavanji
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - C M Sinton
- Arizona Respiratory Center, University of Arizona, Tucson, AZ, USA
| | - C M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - C J Billington
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
46
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. Am J Physiol Heart Circ Physiol 2017; 312:H808-H817. [PMID: 28159808 DOI: 10.1152/ajpheart.00572.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
47
|
Stump CA, Cooke AJ, Bruno J, Cabalu TD, Gotter AL, Harell CM, Kuduk SD, McDonald TP, O’Brien J, Renger JJ, Williams PD, Winrow CJ, Coleman PJ. Discovery of highly potent and selective orexin 1 receptor antagonists (1-SORAs) suitable for in vivo interrogation of orexin 1 receptor pharmacology. Bioorg Med Chem Lett 2016; 26:5809-5814. [DOI: 10.1016/j.bmcl.2016.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022]
|
48
|
The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram. Behav Brain Res 2016; 308:205-10. [DOI: 10.1016/j.bbr.2016.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
|
49
|
Gotter AL, Forman MS, Harrell CM, Stevens J, Svetnik V, Yee KL, Li X, Roecker AJ, Fox SV, Tannenbaum PL, Garson SL, Lepeleire ID, Calder N, Rosen L, Struyk A, Coleman PJ, Herring WJ, Renger JJ, Winrow CJ. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man. Sci Rep 2016; 6:27147. [PMID: 27256922 PMCID: PMC4891657 DOI: 10.1038/srep27147] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022] Open
Abstract
Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.
Collapse
Affiliation(s)
| | - Mark S. Forman
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Joanne Stevens
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Vladimir Svetnik
- Department of Biostatistics and Research Decision Sciences, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ka Lai Yee
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Xiaodong Li
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Anthony J. Roecker
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Steven V. Fox
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Susan L. Garson
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Inge De Lepeleire
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Nicole Calder
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Laura Rosen
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Arie Struyk
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Paul J. Coleman
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - W. Joseph Herring
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - John J. Renger
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
50
|
Kumar A, Chanana P, Choudhary S. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs. Pharmacol Rep 2016; 68:231-42. [DOI: 10.1016/j.pharep.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
|