1
|
Ogul H. Coexistence of moyamoya disease and subclavian steal syndrome. Acta Neurol Belg 2025:10.1007/s13760-025-02793-0. [PMID: 40299274 DOI: 10.1007/s13760-025-02793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Coexistence of moyamoya disease (MMD) and subclavian steal syndrome (SSS) is an extremely rare condition. We here presented the imaging features of a 50-year-old male with complaints of the severe headache and left upper limb weakness. Computed tomography (CT) angiography showed steno-occlusion of the right terminal internal carotid artery (ICA) and left middle cerebral artery compatible with MMD and total occlusion of the left proximal subclavian artery. Phase-contrast (PC) magnetic resonance (MR) angiography and Doppler ultrasonography (DUS) demonstrated retrograde flow pattern in the left vertebral artery.
Collapse
Affiliation(s)
- Hayri Ogul
- Department of Radiology, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
2
|
Deng X, Zhang S, Zhao R, Liu W, Huang W, Chen X, Gao X, Huang Y, Zhang D. The role of the RING finger protein 213 gene in Moyamoya disease. Fluids Barriers CNS 2025; 22:39. [PMID: 40247333 PMCID: PMC12004738 DOI: 10.1186/s12987-025-00649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/29/2025] [Indexed: 04/19/2025] Open
Abstract
Moyamoya Disease (MMD) represents a chronic and progressive cerebrovascular disorder characterized by the gradual occlusion of the terminal portions of the bilateral internal carotid arteries and their major branches, accompanied by the formation of abnormal vascular networks at the base of the skull. In adolescents, particularly in pediatric populations, MMD is a significant cause of stroke, posing a severe challenge to human health and imposing a heavy burden on healthcare systems. Ring Finger Protein 213 (RNF213), as the primary susceptibility gene for MMD, plays a crucial regulatory role in the initiation, progression, and prognosis of the disease. Despite extensive research on the role of RNF213 in the pathogenesis of MMD, the underlying molecular mechanisms remain incompletely understood and represent a pressing scientific challenge requiring further exploration. This review aims to synthesize the latest research findings and systematically elucidate the multifaceted roles of RNF213 in MMD, including genetic susceptibility, immune-inflammatory responses, blood-brain barrier(BBB) disruption, and angiogenesis. By integrating these findings, this study seeks to provide new insights and theoretical support for a comprehensive and in-depth understanding of the pathophysiological processes of MMD. This research not only contributes to further unraveling the complex pathogenesis of MMD but also lays a solid theoretical foundation for the development of targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Runsheng Zhao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weihong Huang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xuanlin Chen
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xiang Gao
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Kim MS, Nam S, Lee SU, Park SJ, Woo SJ, Lee J, Joo K. Moyamoya Disease Increased the Risk of Retinal Vascular Occlusion: A Nationwide Cohort Study in Korea. Ophthalmol Retina 2025; 9:386-391. [PMID: 39442651 DOI: 10.1016/j.oret.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To investigate the risk of retinal vascular occlusion in patients with Moyamoya disease (MMD). DESIGN Retrospective, longitudinal cohort study using the Korean National Health Insurance Service database. PARTICIPANTS Newly diagnosed MMD patients (n = 34 627), who were diagnosed between 2004 and 2022, and their propensity score matched controls (n = 136 945) were included. METHODS We identified retinal vascular occlusion events using diagnostic codes for central retinal artery occlusion, other retinal artery occlusion, and retinal vein occlusion. After a washout period from 2002 to 2003, information on the diagnosis of retinal vascular occlusion was extracted in both MMD and control group during the follow-up period. The association between MMD and the risk of subsequent retinal vascular occlusion was investigated using a time-dependent Cox proportional hazard model and Kaplan-Meier survival analysis with log-rank test adjusted for age, sex, and comorbidities. MAIN OUTCOME MEASURES Hazard ratios (HRs) and 95% confidence intervals (CIs) for retinal vascular occlusion development according to the MMD. RESULTS Moyamoya disease was associated with an increased risk of subsequent retinal vascular occlusion even after adjusting for confounding variables (HR, 1.22; 95% CI, 1.09-1.36). Among the subtypes of retinal vascular occlusion, central retinal artery occlusion showed a highest HR (2.23; 95% CI, 1.35-3.7). Incidence probability of retinal vascular occlusion was significantly higher among MMD patients than controls (P < 0.001, log-rank test). CONCLUSIONS In this nationwide population-based cohort study, patients with MMD in Korea had an elevated risk of retinal vascular occlusion, suggesting that the MMD is one of the risk factors for retinal vascular occlusion. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Min Seok Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Si Un Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
4
|
Ayub Jajja S, Kunwar D, Ahmed S, Akbar A, Anjum AS, Anjum S. Moyamoya disease in an adolescent with subarachnoid hemorrhage: a case report. Int J Neurosci 2025; 135:127-131. [PMID: 37996399 DOI: 10.1080/00207454.2023.2287980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE/AIM OF THE STUDY This study aims to present a case of Moyamoya disease (MMD) in an adolescent who experienced a subarachnoid hemorrhage (SAH). The purpose is to underscore the importance of considering MMD as a potential cause of SAH in adolescents, particularly in the absence of common causes such as trauma or aneurysmal rupture. The case further highlights the significance of early identification and appropriate management to prevent further complications and improve patient outcomes. MATERIALS AND METHODS The diagnosis was initially based on findings from a CT angiography and later confirmed through magnetic resonance angiography (MRA) and magnetic resonance imaging (MRI). RESULTS The case study demonstrates the effectiveness of utilizing MRA and MRI in diagnosing MMD in adolescents. It emphasizes the challenges in areas with limited resources where advanced imaging techniques like digital subtraction angiography (DSA) may not be readily accessible or affordable. The gold standard for MMD diagnosis, DSA, is acknowledged, but the study underscores the importance of alternative imaging methods in resource-constrained settings. CONCLUSION In conclusion, this case underscores the importance of considering Moyamoya disease as a potential etiology for subarachnoid hemorrhage in adolescents, particularly when common causes are absent. The study highlights the crucial role of MRA and MRI in the diagnosis of MMD, emphasizing their significance in areas with limited resources. Early identification and appropriate management are essential for preventing complications and improving patient outcomes, acknowledging the challenges associated with the accessibility of gold standard diagnostic techniques in certain settings.
Collapse
Affiliation(s)
| | - Digbijay Kunwar
- Internal Medicine, Nishtar Medical University, Multan, Pakistan
| | - Shahroze Ahmed
- Internal Medicine, Nishtar Medical University, Multan, Pakistan
| | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Nebraska, USA
| | | | - Sadia Anjum
- Radiology, Nishtar Medical University, Multan, Pakistan
| |
Collapse
|
5
|
Li J, He Q, Zheng Z, Liu C, Zhang B, Mou S, Zeng C, Sun W, Liu W, Ge P, Zhang D, Zhao J. Comprehensive Analysis and In Vitro Verification of Endothelial-Mesenchymal Transition-Related Genes in Moyamoya Disease. Mol Neurobiol 2025; 62:2515-2529. [PMID: 39134827 DOI: 10.1007/s12035-024-04423-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/06/2024] [Indexed: 01/28/2025]
Abstract
Moyamoya disease (MMD) is a rare, chronic, and progressive cerebrovascular disorder with unclear underlying causes and mechanisms. Previous studies suggest a potential involvement of endothelial-mesenchymal transition (EndMT) in the pathogenesis of MMD. This study aimed to explore the contribution of EndMT-related genes (ERGs) in MMD. Two datasets, GSE141022 and GSE157628, were integrated as the training set after batch effects removal. Differentially expressed ERGs were identified between MMD and control groups. Functional enrichment analysis and immune infiltration analysis were further performed. LASSO regression was used for hub MMD-related ERG selection. Consensus clustering was used for MMD subtype classification based on these hub MMD-related ERGs. Molecular characteristics between MMD subtypes were analyzed using WGCNA. PPI network was used to illuminate the genetic relationship. The hub MMD-related ERGs were validated in an independent testing set, GSE189993. The nomogram model was constructed and evaluated using ROC curves and calibration plots. Additionally, CCK-8, EdU, wound healing, and western blot were performed to confirm the function of the hub MMD-related ERGs. A total of 107 DE-ERGs were identified. Functional enrichment analysis showed these genes were associated with EndMT and immune response. The infiltrating levels of immune cells were commonly higher in the MMD group. LASSO regression identified 12 hub MMD-related ERGs, leading to the identification of two MMD subtypes. Four ERGs emerged as the final hub MMD-related ERGs after validation in the testing set, including CCL21, CEBPA, KRT18, and TNFRSF11A. The nomogram model exhibited excellent discrimination ability. In vitro experiments showed that CCL21, CEBPA, KRT18, and TNFRSF11A could promote proliferation, migration, and EndMT. This study investigated the potential role of EndMT in MMD and identified four hub MMD-related ERGs, providing potential therapeutic targets for MMD treatment.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Dong Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Department of Neurosurgery, Dongcheng District, Beijing Hospital, National Center of Gerontology, No. 1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Jizong Zhao
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
6
|
Walters BP, Trivedi YV, Katoch T, Gupta V, Jain R. Exploring the Connection: Moyamoya Disease and Its Implications for Cardiovascular Health. Cardiol Rev 2025:00045415-990000000-00391. [PMID: 39812469 DOI: 10.1097/crd.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis. However, the exact nature of the relationship between MMD and CVD remains incompletely understood, and emerging evidence suggests a potential interplay between these pathologies. In this study, we discuss the potential link between MMD and CVD, exploring genetic factors, pathophysiological mechanisms, and studies highlighting cardiac manifestations in MMD patients.
Collapse
Affiliation(s)
- Benjamin P Walters
- From the Department of Internal Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | - Tavishi Katoch
- Department of Internal Medicine, Indira Gandhi Medical College, Shimla, HP, India
| | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH; and
| | - Rohit Jain
- Department of Internal Medicine, Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
7
|
Pathak R, Kaur M, Shabeen G, Janu V. Anesthesia management of an infant with moyamoya disease posted for encephaloduroarteriomyosynosteosis procedure. Saudi J Anaesth 2025; 19:140-141. [PMID: 39958288 PMCID: PMC11829675 DOI: 10.4103/sja.sja_363_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 02/18/2025] Open
Affiliation(s)
- Ruchi Pathak
- Department of Anesthesia and Critical Care, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Manbir Kaur
- Department of Anesthesia and Critical Care, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Ghazala Shabeen
- Department of Anesthesia and Critical Care, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Vikas Janu
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Tan BYQ, Kok CHP, Ng MBJ, Loong S, Jou E, Yeo LLL, Han W, Anderson CD, Khor CC, Lai PS. Exploring RNF213 in Ischemic Stroke and Moyamoya Disease: From Cellular Models to Clinical Insights. Biomedicines 2024; 13:17. [PMID: 39857601 PMCID: PMC11762504 DOI: 10.3390/biomedicines13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Advances in stroke genetics have highlighted the critical role of rare genetic variants in cerebrovascular diseases, with RNF213 emerging as a key player in ischemic stroke and Moyamoya disease (MMD). Initially identified as the primary susceptibility gene for MMD, RNF213-notably the p.R4810K variant-has been strongly linked to intracranial artery stenosis (ICAS) and various ischemic stroke subtypes, particularly in East Asian populations. This gene encodes an E3 ubiquitin ligase with diverse roles in angiogenesis, vascular remodeling, lipid metabolism, and cerebral blood flow regulation, yet its exact mechanisms in cerebrovascular pathology remain incompletely understood. This review synthesizes findings from genetic studies, as well as cellular and animal models, to provide a holistic understanding of RNF213's involvement in cerebrovascular diseases. Key mechanisms by which RNF213 variants contribute to disease pathogenesis are explored, alongside discussions on their clinical utility as biomarkers and therapeutic targets. Additionally, we address the gene's implications for disease prediction, risk assessment, and cascade screening. By integrating evidence across disciplines, this review identifies critical knowledge gaps, including the biological pathways underlying RNF213's pathogenicity. These insights lay the groundwork for future research and underscore the potential of RNF213 in driving personalized approaches to cerebrovascular disease management.
Collapse
Affiliation(s)
- Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | | | - Megan B. J. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
| | - Shaun Loong
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
| | - Eric Jou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Leonard L. L. Yeo
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Christopher D. Anderson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
9
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024; 60:6779-6798. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
10
|
Ma L, Ge P, Zeng C, Liu C, Yin Z, Ya X, Zhai Y, He Q, Li J, Ye X, Zhang Q, Wang R, Zhang D, Zhang Y, Zhao J. Prognostic value of morphology and hemodynamics in moyamoya disease for long-term outcomes and disease progression. Sci Rep 2024; 14:28182. [PMID: 39548256 PMCID: PMC11568140 DOI: 10.1038/s41598-024-79608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
To explore the relationship between morphological and hemodynamic parameters, baseline characteristics, and long-term outcomes in patients with moyamoya disease (MMD) using a computational fluid dynamics model. We retrospectively reviewed 129 patients at Beijing Tiantan hospital between July 2020 and December 2021. Perioperative clinical variables and Suzuki stage were recorded. Logistic regression analysis was employed to identify the risk factors for unfavorable long-term outcomes. The association between morphological, CT perfusion parameters, hemodynamic parameters and the Suzuki stage, clinical variables of MMD was also analyzed. Patients with high relative Wall Shear Stress (rWSS) were older and had more cases with higher Suzuki stage and worse follow-up mRS scores (p < 0.05). High rWSS at the terminal ICA and diabetes mellitus were identified as independent predictors of unfavorable long-term outcomes [OR = 3.039(1.191-7.754), p = 0.020; OR = 3.164(1.141-8.723), p = 0.027, respectively]. ROC analysis demonstrated that predictive models incorporating rWSS improved AUC values, with the highest AUC in Model 2 (AUC = 0.889). High rWSS was significantly associated with future TIA and stroke events (p = 0.032). We speculated that high rWSS and diabetes mellitus were independent risk factors for unfavorable long-term outcomes in patients with MMD. rWSS and morphological parameters are crucial for predicting MMD progression and understanding its pathogenesis.
Collapse
Affiliation(s)
- Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peicong Ge
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
11
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Cottrell DB, Haley SM. Key information about moyamoya. Nursing 2024; 54:12-14. [PMID: 39302744 DOI: 10.1097/nsg.0000000000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Damon B Cottrell
- At Texas Woman's University in Dallas, Tex., Damon B. Cottrell is a Professor and Sheila M. Haley is an Assistant Clinical Professor
| | | |
Collapse
|
13
|
Shin HS, Park GH, Choi ES, Park SY, Kim DS, Chang J, Hong JM. RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease. J Cereb Blood Flow Metab 2024; 44:1801-1815. [PMID: 38573771 PMCID: PMC11494856 DOI: 10.1177/0271678x241245557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024]
Abstract
Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 (RNF213), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVECWT) or p.R4810K (HUVECR4810K) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 (p < 0.0001) and LC3-II (p = 0.0039), and impaired endothelial function (p = 0.0252). HUVECR4810K during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVECR4810K and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.
Collapse
Affiliation(s)
- Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Geun Hwa Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Da Sol Kim
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| |
Collapse
|
14
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Wang A, Li N, Zhang N, Liu J, Yang T, Li D, Li C, Li R, Jiang T, Xia C. Desmoglein-2 Affects Vascular Function in Moyamoya Disease by Interacting with MMP-9 and Influencing PI3K Signaling. Mol Neurobiol 2024; 61:6539-6552. [PMID: 38326520 PMCID: PMC11339177 DOI: 10.1007/s12035-024-04010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The pathogenesis and development of Moyamoya disease are still unclear. This study aimed to investigate the effect of desmoglein-2 (DSG2) on Moyamoya disease and determine the inhibitory effect of DSG2 in vascular remodeling in Moyamoya disease.RNA sequencing, immunohistochemistry (IHC), and western blotting were used to detect the expression of DSG2 in the superficial temporal artery (STA) tissues of Moyamoya disease. The association between DSG2 and endothelial cells' biological activities was investigated by cell counting kit-8 (CCK-8), migration assay, tube formation assay, flow cytometry with Annexin V-FITC/PI staining, and TUNEL apoptotic cell detection kit. Pathways affected by overexpression or knockdown of DSG2 were identified in endothelial cells.The expression of DSG2 in the STA tissues of Moyamoya disease was lower than that in normal controls. Overexpression of DSG2 inhibits the proliferation and migration but promotes apoptosis in endothelial cells, and low DSG2 levels result in impaired angiogenesis. In addition, there was an interaction between DSG2 and MMP-9, and DSG2 acted through the PI3K signaling in endothelial cells.Our results indicate that DSG2 affects PI3K signaling in vascular endothelial cells, and MMP-9 is involved in DSG2-mediated vascular changes in Moyamoya disease.
Collapse
Affiliation(s)
- Ajun Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Nan Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Jian Liu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Tao Yang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Dongxue Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Changwen Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Tongcui Jiang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| | - Chengyu Xia
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China.
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Viteva E, Vasilev P, Vasilev G, Chompalov K. Clinical Case of a 23-Year-Old Patient with Moyamoya Disease and Epilepsy in Bulgaria. Neurol Int 2024; 16:869-879. [PMID: 39195567 DOI: 10.3390/neurolint16040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Moyamoya disease is a cerebrovascular pathology characterized by progressive stenosis of the internal carotid arteries and their branches, leading to ischemic and/or hemorrhagic disorders of the cerebral circulation, primarily affecting children and young adults. We present a case of a 23-year-old woman with a history of recurrent cerebrovascular accidents since childhood. Despite experiencing focal motor seizures and transient ischemic attacks, her condition remained undiagnosed until 2006, when, at the age of 7, a digital subtraction angiography revealed characteristic bilateral internal carotid artery occlusions. Subsequent diagnostic challenges and treatments preceded a worsening of symptoms in adulthood, including generalized tonic-clonic seizures. Upon presentation to our clinic, the patient exhibited upper motor neuron syndrome and occipital lobe syndrome, consistent with the disease's pathophysiology, neuroimaging, and clinical manifestations. Imaging studies confirmed multiple ischemic lesions throughout the cerebral vasculature. Treatment adjustments were made due to the increased incidence of seizures, and the dose of her anti-seizure medication-divalproex sodium-was increased. This case underscores the diagnostic complexities and challenges in managing moyamoya disease, emphasizing the importance of early recognition and prompt intervention.
Collapse
Affiliation(s)
- Ekaterina Viteva
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Clinic of Neurology, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| | - Petar Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Clinic of Neurology, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| | - Georgi Vasilev
- Clinic of Neurology, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Kostadin Chompalov
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Clinic of Neurology, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| |
Collapse
|
17
|
Yuan Y, He X, Li Y, Jin L, Zhu Y, Lin G, Hu L, Zhou H, Cao Y, Hu J, Chen G, Wang L. The effects of anastomoses between anterior and posterior circulation on postoperative prognosis of patients with moyamoya disease. Neurol Sci 2024; 45:3287-3295. [PMID: 38285326 PMCID: PMC11176245 DOI: 10.1007/s10072-024-07346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Moyamoya disease (MMD) is a chronic ischemic cerebrovascular disease. Collateral circulation in MMD has emerged as a research focus. Our aims were to assess the impact of anastomoses between the anterior and posterior circulations on the prognosis of MMD patients. METHODS We reviewed the preoperative digital subtraction angiography images of patients with MMD who underwent revascularization surgery at our hospital between March 2014 and May 2020 and divided the patients into two groups: those with anastomoses (PtoA group) and those without anastomoses (non-PtoA group). The differences in follow-up (more than 6 months) collateral vessel establishment (Matsushima grade) and the modified Rankin Scale (mRS) were compared between the two groups as well as between the patients with different degrees of anastomoses. The early complications following revascularization were also compared between the two groups. RESULTS This study included 104 patients with MMD, of which 38 were non-PtoA and 66 were PtoA. There were no significant differences in Matsushima score (P = 0.252) and mRS score (P = 0.066) between the two groups. In addition, Matsushima score (P = 0.243) and mRS score (P = 0.360) did not differ significantly between patients with different degrees of anastomoses. However, the non-PtoA group had a significantly higher rate of cerebral hyperperfusion syndrome (CHS) than the PtoA group (34.2% vs 16.7%, P = 0.041). CONCLUSION MMD patients without anastomoses between anterior and posterior circulations preoperatively should be vigilant of the occurrence of CHS in the early stages after revascularization.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Nursing, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuchao He
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yin Li
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Lingji Jin
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yuhan Zhu
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Gaojun Lin
- Department of Neurosurgery, Wenling First People Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Taizhou, China
| | - Libin Hu
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China
- Department of Neurosurgery, School of Medicine, Hangzhou First People Hospital, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Lin Wang
- Department of Neurosurgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Li XY, Tian YY, Li CH, Wang JW, Li H, Liu JF, Gao BL. Preliminary outcomes of endovascular treatment of moyamoya disease. Neurologia 2024; 39:449-456. [PMID: 38901925 DOI: 10.1016/j.nrleng.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/28/2021] [Indexed: 06/22/2024] Open
Abstract
PURPOSE This study aimed to investigate the effectiveness and safety of endovascular revascularisation of intracranial artery occlusion and stenosis in moyamoya disease using stent angioplasty. MATERIALS AND METHODS We recruited 12 patients (8 women and 4 men) with occlusion and stenosis of intracranial arteries in the context of moyamoya disease who underwent endovascular stent angioplasty. Clinical data, baseline conditions, lesion location, treatment outcomes, periprocedural complications, and follow-up outcomes were analysed. RESULTS The occlusion was located at the M1 segment of the middle cerebral artery in 8 patients, at both the M1 and A2 segments in one patient, and at the C7 segment of the internal carotid artery in 3. Thirteen stents were deployed at the occlusion site, including the low-profile visualized intraluminal support (LVIS) device in 8 patients, an LVIS device and a Solitaire AB stent in one, and a Leo stent in 3, with a success rate of 100% and no intraprocedural complications. Plain CT imaging after stenting revealed leakage of contrast agent, which disappeared on the second day, resulting in no clinical symptoms or neurological sequelae. Follow-up angiography studies were performed in all patients for 6-12 months (mean, 8.8). Slight asymptomatic in-stent stenosis was observed in 2 patients (16.7%), and no neurological deficits were observed in the other patients. All preoperative ischaemic symptoms completely disappeared at follow-up. CONCLUSION Stent angioplasty is a safe and effective treatment for occlusion and stenosis of intracranial arteries in moyamoya disease.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| | - Yang-Yang Tian
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| | - Cong-Hui Li
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China.
| | - Ji-Wei Wang
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| | - Hui Li
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| | - Jian-Feng Liu
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| | - Bu-Lang Gao
- Department of Neurosurgery, The First Hospital, Hebei Medical University, China
| |
Collapse
|
19
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Pavone C, Bonacini L, Di Cecco G, D’Aniello S, Stoenoiu MS, Persu A, Valzania F, Pascarella R. RNF213 Polymorphisms in Intracranial Artery Dissection. Genes (Basel) 2024; 15:725. [PMID: 38927660 PMCID: PMC11203323 DOI: 10.3390/genes15060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more prevalent in the Asian population. We performed a systematic review of the literature, aiming to assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213 variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only patients of Asian descent and the small but non-negligible coexistence with moyamoya disease familiarity might be limiting factors, requiring further studies to confirm these preliminary findings and the embryological interpretation.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Maria Simona Stoenoiu
- Department of Internal Medicine, Rheumatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
20
|
Kijpaisalratana N, Ariyaprakai C, Sriamornrattanakul K, Wongsuriyanan S, Akharathammachote N, Susantitaphong P, Suwanwela NC. Antiplatelet Treatment in Moyamoya Disease: A Systematic Review. Cerebrovasc Dis Extra 2024; 14:76-85. [PMID: 38697036 PMCID: PMC11250630 DOI: 10.1159/000539025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
INTRODUCTION Moyamoya disease (MMD) is an uncommon cause of stroke. Antiplatelet treatment is commonly prescribed for patients with MMD despite the lack of strong evidence supporting its efficacy. We conducted a systematic review to evaluate evidence of antiplatelet treatment and clinical outcomes among patients with MMD. METHODS A systematic literature search was performed to identify studies that evaluated the association between antiplatelet treatment and clinical outcomes, including ischemic stroke, hemorrhagic stroke, functional outcome, survival, and bypass patency, in patients with MMD. The following databases were searched: PubMed, Embase, Scopus, and the Cochrane Library, from the inception date to February 2022. RESULTS Eight studies were included in this systematic review. Six studies evaluated antiplatelet treatment and ischemic stroke. Most studies did not demonstrate a protective effect of antiplatelet treatment against ischemic stroke. Five studies evaluated antiplatelet treatment and hemorrhagic stroke. All of them did not demonstrate an increased risk of hemorrhagic stroke. One study found the benefit of antiplatelet treatment in terms of survival. Regarding the effect of antiplatelet treatment on functional outcome and patency of surgical bypass, the results were inconclusive. CONCLUSION Current evidence suggests that antiplatelet treatment in patients with MMD did not demonstrate a protective effect against ischemic stroke. However, antiplatelet treatment did not increase the risk of hemorrhagic stroke in patients with MMD. The well-designed randomized controlled trial should be highlighted.
Collapse
Affiliation(s)
- Naruchorn Kijpaisalratana
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanon Ariyaprakai
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Kitiporn Sriamornrattanakul
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Somkiat Wongsuriyanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Nasaeng Akharathammachote
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nijasri C. Suwanwela
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chulalongkorn Stroke Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
21
|
Medicherla C, Pashun R, Al-Mufti F. Review of Cerebral Collateral Circulation and Insight into Cardiovascular Strategies to Limit Collateral Damage in Ischemic Stroke. Cardiol Rev 2024; 32:188-193. [PMID: 37729598 DOI: 10.1097/crd.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cerebral collateral circulation is a dynamic and adaptive process by which alternative vascular pathways supply perfusion to ischemic brain tissue in the event of an arterial occlusion. This complicated network of blood vessels that acts as a natural bypass plays a pivotal role in stroke pathophysiology and has become a key area of study given its significance in stroke treatment and patient outcomes. In this review, we will study the factors influencing the formation, recruitment, and endurance of collateral vessels; discuss imaging modalities for quantitative and qualitative assessment of this network; explore the role of collaterals in stroke management; and highlight several cardiovascular strategies to minimize damage to collaterals and optimize stroke outcomes.
Collapse
Affiliation(s)
| | - Raymond Pashun
- Department of Cardiology, New York University Langone Health, New York, NY
| | - Fawaz Al-Mufti
- Department of Neurology, Neurosurgery, and Radiology, New York Medical College, Valhalla, NY
| |
Collapse
|
22
|
Konduru RA, Prasad A, Cheriyath P, Okere A. A Rare Case of Cardiac Myxoma With Moyamoya Phenomenon: A Disease or Syndrome? Cureus 2024; 16:e59381. [PMID: 38817499 PMCID: PMC11139051 DOI: 10.7759/cureus.59381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Moyamoya disease (MMD) is a rare, idiopathic, progressive, obstructive, vasculopathy affecting primarily the terminal portions of the intracerebral internal carotid arteries, typically at the base of the brain. It is more commonly seen in people of East Asian descent. The moyamoya phenomenon refers to the characteristic appearance of the tangle of fine blood vessels, also described as a puff of smoke. Moyamoya syndrome (MMS) refers to the constriction-induced chronic brain ischemia that is believed to cause overexpression of proangiogenic factors, creating a fragile network of collateral capillaries. MMS refers to the moyamoya phenomenon in the presence of other congenital or acquired disorders. Intracerebral hemorrhage is the leading cause of death for MMS patients. Overall, the prognosis is variable. Cardiac myxoma can cause embolization of tumor cells, plaques, and thrombus, and recurrent thromboembolism can lead to chronic brain ischemia, which can lead to the development of collaterals. There have been cases reported where the moyamoya phenomenon resolved following myxoma resection. Here, we present the case of a female who had intraventricular bleeding and was diagnosed with MMD. Eighteen months later, she presented with shortness of breath and was diagnosed with cardiac myxoma with multiple valvular regurgitations. The myxoma was surgically removed.
Collapse
Affiliation(s)
- Rayees A Konduru
- Anesthesiology, NewYork-Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - Ankita Prasad
- Pediatrics, NewYork-Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - Pramil Cheriyath
- Internal Medicine, Saint Clare's Denville Hospital, Denville, USA
| | - Arthur Okere
- Internal Medicine, Saint Clare's Denville Hospital, Denville, USA
| |
Collapse
|
23
|
Ge P, Tao C, Wang W, He Q, Liu C, Zheng Z, Mou S, Zhang B, Liu X, Zhang Q, Wang R, Li H, Zhang D, Zhao J. Circulating immune cell landscape and T-cell abnormalities in patients with moyamoya disease. Clin Transl Med 2024; 14:e1647. [PMID: 38566524 PMCID: PMC10988118 DOI: 10.1002/ctm2.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive. METHODS In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls. RESULTS Our investigation unveiled immune dysfunction in MMD patients, primarily characterized by perturbations in T-cell (TC) subpopulations, including a reduction in effector TCs and an increase in regulatory TCs (Tregs). Additionally, we observed diminished natural killer cells and dendritic cells alongside heightened B cells and monocytes in MMD patients. Notably, within the MMD group, there was an augmented proportion of fragile Tregs, whereas the stable Treg fraction decreased. MMD was also linked to heightened immune activation, as evidenced by elevated expression levels of HLA-DR and p-STAT3. CONCLUSIONS Our findings offer a comprehensive view of the circulating immune cell landscape in MMD patients. Immune dysregulation in patients with MMD was characterized by alterations in T-cell populations, including a decrease in effector T-cells and an increase in regulatory T-cells (Tregs), suggest a potential role for disrupted circulating immunity in the aetiology of MMD.
Collapse
|
24
|
Xu Y, Chen B, Guo Z, Chen C, Wang C, Zhou H, Zhang C, Feng Y. Identification of diagnostic markers for moyamoya disease by combining bulk RNA-sequencing analysis and machine learning. Sci Rep 2024; 14:5931. [PMID: 38467737 PMCID: PMC10928210 DOI: 10.1038/s41598-024-56367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
Moyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown etiology. A growing number of reports describe the development of MMD relevant to infection or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and development of novel targeted therapy and may be the key to improving the patient's outcome. Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the weighted gene co-expression network analysis (WGCNA) and the differential expression analyses were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to construct the protein interaction (PPI) network. The three machine-learning algorithms of support vector machine-recursive feature elimination (SVM-RFE), random forest and least absolute shrinkage and selection operator (LASSO) were used to analyze the key genes and take intersection to construct MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl-tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, the immune infiltration profile demonstrated that ACAN expression was associated with mast cells resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers and immune infiltration characteristics of MMD, which may shed light on the potential intervention targets of moyamoya disease patients.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Zhongxiang Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China.
| |
Collapse
|
25
|
Ge P, Yin Z, Tao C, Zeng C, Yu X, Lei S, Li J, Zhai Y, Ma L, He Q, Liu C, Liu W, Zhang B, Zheng Z, Mou S, Zhao Z, Wang S, Sun W, Guo M, Zheng S, Zhang J, Deng X, Liu X, Ye X, Zhang Q, Wang R, Zhang Y, Zhang S, Wang C, Yang Z, Zhang N, Wu M, Sun J, Zhou Y, Shi Z, Ma Y, Zhou J, Yu S, Li J, Lu J, Gao F, Wang W, Chen Y, Zhu X, Zhang D, Zhao J. Multiomics and blood-based biomarkers of moyamoya disease: protocol of Moyamoya Omics Atlas (MOYAOMICS). Chin Neurosurg J 2024; 10:5. [PMID: 38326922 PMCID: PMC10851534 DOI: 10.1186/s41016-024-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is a rare and complex cerebrovascular disorder characterized by the progressive narrowing of the internal carotid arteries and the formation of compensatory collateral vessels. The etiology of MMD remains enigmatic, making diagnosis and management challenging. The MOYAOMICS project was initiated to investigate the molecular underpinnings of MMD and explore potential diagnostic and therapeutic strategies. METHODS The MOYAOMICS project employs a multidisciplinary approach, integrating various omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, to comprehensively examine the molecular signatures associated with MMD pathogenesis. Additionally, we will investigate the potential influence of gut microbiota and brain-gut peptides on MMD development, assessing their suitability as targets for therapeutic strategies and dietary interventions. Radiomics, a specialized field in medical imaging, is utilized to analyze neuroimaging data for early detection and characterization of MMD-related brain changes. Deep learning algorithms are employed to differentiate MMD from other conditions, automating the diagnostic process. We also employ single-cellomics and mass cytometry to precisely study cellular heterogeneity in peripheral blood samples from MMD patients. CONCLUSIONS The MOYAOMICS project represents a significant step toward comprehending MMD's molecular underpinnings. This multidisciplinary approach has the potential to revolutionize early diagnosis, patient stratification, and the development of targeted therapies for MMD. The identification of blood-based biomarkers and the integration of multiple omics data are critical for improving the clinical management of MMD and enhancing patient outcomes for this complex disease.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shixiong Lei
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Chengjun Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziwen Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Nijia Zhang
- Department of Neurosurgery, Beijing Childrens Hospital, Capital Medical University, Beijing, China
| | - Mingxing Wu
- Department of Neurosurgery, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jian Sun
- Department of Neurosurgery, Beijing Changping District Hospital, Beijing, China
| | - Yujia Zhou
- Department of Neurosurgery, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yonggang Ma
- Department of NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jianpo Zhou
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochen Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Junli Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Faliang Gao
- Department of Neurosurgery, Center for Rehabilitation Medicine, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
26
|
Kim JH, Jeon H, Kim M, Byun J, Chung Y, Lee SU, Park W, Park JC, Ahn JS, Lee S. Chemical and perfusion markers as predictors of moyamoya disease progression and complication types. Sci Rep 2024; 14:56. [PMID: 38167529 PMCID: PMC10762200 DOI: 10.1038/s41598-023-47984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
To investigate the association between chemical markers (triglyceride, C-reactive protein (CRP), and inflammation markers) and perfusion markers (relative cerebral vascular reserve (rCVR)) with moyamoya disease progression and complication types. A total of 314 patients diagnosed with moyamoya disease were included. Triglyceride and CRP levels were assessed and categorized based on Korean guidelines for dyslipidemia and CDC/AHA guidelines, respectively. Perfusion markers were evaluated using Diamox SPECT. Cox proportional hazard analysis was performed to examine the relationship between these markers and disease progression, as well as complication types (ischemic stroke, hemorrhagic stroke, and rCVR deterioration). Elevated triglyceride levels (≥ 200) were significantly associated with higher likelihood of end-point events (HR: 2.292, CI 1.00-4.979, P = 0.03). Severe decreased rCVR findings on Diamox SPECT were also significantly associated with end-point events (HR: 3.431, CI 1.254-9.389, P = 0.02). Increased CRP levels and white blood cell (WBC) count were significantly associated with moyamoya disease progression. For hemorrhagic stroke, higher triglyceride levels were significantly associated with end-point events (HR: 5.180, CI 1.355-19.801, P = 0.02). For ischemic stroke, severe decreased rCVR findings on Diamox SPECT (HR: 5.939, CI 1.616-21.829, P < 0.01) and increased CRP levels (HR: 1.465, CI 1.009-2.127, P = 0.05) were significantly associated with end-point events. Elevated triglyceride, CRP, and inflammation markers, as well as decreased rCVR, are potential predictors of moyamoya disease progression and complication types. Further research is warranted to understand their role in disease pathophysiology and treatment strategies.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Joonho Byun
- Department of Neurosurgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Medical Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Tu YK, Fang YC. Molecular Biomarkers Affecting Moyamoya Disease. Adv Tech Stand Neurosurg 2024; 49:1-18. [PMID: 38700677 DOI: 10.1007/978-3-031-42398-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.
Collapse
Affiliation(s)
- Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
DeRon N, Fischer F, Norris T. Moyamoya Disease Causing Stroke in the Setting of Cocaine Use and Uncontrolled Hypertension Due to Primary Hyperaldosteronism. Cureus 2024; 16:e51578. [PMID: 38313982 PMCID: PMC10835197 DOI: 10.7759/cureus.51578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Moyamoya disease is a cerebrovascular disease characterized by stenosis of large intracranial arteries and the development of smaller collateral vessels. Moyamoya may cause strokes and stroke-like symptoms in young patients. It has also been linked to autoimmune diseases and neuropsychiatric conditions. We present a case of moyamoya disease in a young patient with concomitant hyperaldosteronism, uncontrolled hypertension, and cocaine use disorder, along with features of antisocial personality disorder. This is a unique presentation of an underlying neurological disease causing psychiatric features exacerbated by cocaine use, and it describes a rare clinical presentation that physicians should consider in patients with moyamoya disease.
Collapse
Affiliation(s)
- Nathan DeRon
- Internal Medicine, Methodist Health System, Dallas, USA
| | | | - Tara Norris
- Internal Medicine, Methodist Health System, Dallas, USA
| |
Collapse
|
29
|
Krylov VV, Senko IV, Amiralieva MS, Staroverov MS, Grigoryev IV, Kordonskaya OO, Glotova NA. [Moyamoya disease in adults: treatment methods in modern era]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:75-82. [PMID: 38512098 DOI: 10.17116/jnevro202412403275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Moyamoya angiopathy is a chronic progressive cerebrovascular disease characterized by stenosis and occlusion of the distal segments of the internal carotid arteries and/or proximal segments of the middle and anterior cerebral arteries, with a gradual compensatory restructuring of the cerebral circulation to the system of the external carotid arteries. Today, the main treatment method for Moyamoya angiopathy is surgical revascularization of the brain. A search and analysis of publications on the treatment of adult patients with Moyamoya angiopathy was carried out in the PubMed and Medscape databases over the past 10 years. We present a case of an adult female patient with a hemorrhagic form of Moyamoya angiopathy stage IV according to J. Suzuki, who underwent staged combined revascularization of both cerebral hemispheres. Surgical revascularization included the creation of a low-flow extra-intracranial shunt combined with a combination of indirect synangiosis. The combination of direct and indirect methods of surgical revascularization enables to achieve the development of an extensive network of collaterals and fully compensate for cerebral circulatory disorders both in the early and late postoperative periods, which is confirmed by instrumental diagnostic data. Combined revascularization is the most effective modern method of treating patients with Moyamoya angiopathy due to the complementary influence of direct and indirect components of revascularization.
Collapse
Affiliation(s)
- V V Krylov
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
| | - I V Senko
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
| | - M Sh Amiralieva
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
| | - M S Staroverov
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
- Clinical City Hospital No. 4, Perm, Russia
| | - I V Grigoryev
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
| | - O O Kordonskaya
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N A Glotova
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
| |
Collapse
|
30
|
Kaku Y, Ohmori Y, Kameno K, Uchikawa H, Takemoto Y, Kawano T, Ishimura T, Uetani H, Mukasa A. Inhalational Anesthesia Reduced Transient Neurological Events After Revascularization Surgery for Moyamoya Disease. Neurosurgery 2023:00006123-990000000-01002. [PMID: 38108408 DOI: 10.1227/neu.0000000000002804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The choice between inhalational and total intravenous anesthesia (TIVA) in revascularization surgery for Moyamoya disease (MMD) remains a topic of debate. Anesthesia methods have changed with the advent of new anesthetics. This study investigated whether modern anesthesia methods affected the development of neurological symptoms after revascularization surgery for MMD. METHODS This single-center retrospective study included 63 adult patients (82 hemispheres) with MMD treated with direct and indirect bypass surgeries at our hospital between 2013 and 2022. Patients were divided into inhalational anesthesia (IA) and TIVA groups based on the anesthesia maintenance method. Baseline patient characteristics; postoperative neurological symptoms, including hyperperfusion syndrome, cerebral infarction, and transient neurological events (TNEs); and cortical hyperintensity belt (CHB) sign scores (5-point scale from 0 to 4) on postoperative magnetic resonance imaging were compared between the two groups. The operation methods, anesthetics, and intraoperative hemodynamic and ventilatory parameters were compared between patients with and without TNEs. RESULTS The IA and TIVA groups comprised 39 and 43 hemispheres, respectively. The frequency of postoperative hyperperfusion syndrome and cerebral infarction did not differ between the groups, but the number of TNEs in the IA group (5/39; 13%) was significantly lower than that in the TIVA group (16/43; 37%). Multivariate logistic regression analysis revealed that TNEs were associated with TIVA (odds ratio, 3.91; 95% CI, 1.24-12.35; P = .02). The median [IQR] postoperative CHB sign score in the IA group (2 [1-3]) was significantly lower than that in the TIVA group (4 [3-4]). CONCLUSION The IA group had fewer postoperative TNEs and lower CHB sign scores than the TIVA group. Although further studies are needed, this study provides insights into the prevention of TNEs with IA and reconsideration of the optimal anesthesia for MMD.
Collapse
Affiliation(s)
- Yasuyuki Kaku
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuki Ohmori
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Koki Kameno
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroki Uchikawa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Yushin Takemoto
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | | | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
31
|
Ye F, Niu X, Liang F, Dai Y, Liang J, Li J, Wu X, Zheng H, Qi T, Sheng W. RNF213 loss-of-function promotes pathological angiogenesis in moyamoya disease via the Hippo pathway. Brain 2023; 146:4674-4689. [PMID: 37399508 PMCID: PMC10629795 DOI: 10.1093/brain/awad225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 07/05/2023] Open
Abstract
Moyamoya disease is an uncommon cerebrovascular disorder characterized by steno-occlusive changes in the circle of Willis and abnormal vascular network development. Ring finger protein 213 (RNF213) has been identified as an important susceptibility gene for Asian patients, but researchers have not completely elucidated whether RNF213 mutations affect the pathogenesis of moyamoya disease. Using donor superficial temporal artery samples, whole-genome sequencing was performed to identify RNF213 mutation types in patients with moyamoya disease, and histopathology was performed to compare morphological differences between patients with moyamoya disease and intracranial aneurysm. The vascular phenotype of RNF213-deficient mice and zebrafish was explored in vivo, and RNF213 knockdown in human brain microvascular endothelial cells was employed to analyse cell proliferation, migration and tube formation abilities in vitro. After bioinformatics analysis of both cell and bulk RNA-seq data, potential signalling pathways were measured in RNF213-knockdown or RNF213-knockout endothelial cells. We found that patients with moyamoya disease carried pathogenic mutations of RNF213 that were positively associated with moyamoya disease histopathology. RNF213 deletion exacerbated pathological angiogenesis in the cortex and retina. Reduced RNF213 expression led to increased endothelial cell proliferation, migration and tube formation. Endothelial knockdown of RNF213 activated the Hippo pathway effector Yes-associated protein (YAP)/tafazzin (TAZ) and promoted the overexpression of the downstream effector VEGFR2. Additionally, inhibition of YAP/TAZ resulted in altered cellular VEGFR2 distribution due to defects in trafficking from the Golgi apparatus to the plasma membrane and reversed RNF213 knockdown-induced angiogenesis. All these key molecules were validated in ECs isolated from RNF213-deficient animals. Our findings may suggest that loss-of-function of RNF213 mediates the pathogenesis of moyamoya disease via the Hippo pathway.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingyang Niu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanyuan Dai
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 517108, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanyue Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Choi SA, Moon YJ, Koh EJ, Phi JH, Lee JY, Kim KH, Kim SK. Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease. J Korean Neurosurg Soc 2023; 66:642-651. [PMID: 37138505 PMCID: PMC10641413 DOI: 10.3340/jkns.2023.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. METHODS ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. RESULTS The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. CONCLUSION Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Yeom I, Oh WO. Development and effects of salutogenesis program for adolescents with moyamoya disease: A randomized controlled trial. PLoS One 2023; 18:e0284015. [PMID: 37883389 PMCID: PMC10602295 DOI: 10.1371/journal.pone.0284015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/15/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Disease-specific interventions for management and health behavior implementation are needed to improve the health and quality of life of adolescents with moyamoya disease. OBJECTIVE This study aimed to develop a program for adolescents with moyamoya disease based on the salutogenesis theory, which focuses on the process of enhancing health through successful adaptation to external stressors, and to evaluate its effectiveness. METHODS A randomized controlled trial was performed according to the CONSORT guidelines. This preliminary research and experimental treatment were conducted at a Severance Hospital ward and outpatient clinic among 48 participants randomized into the intervention (seven sessions of salutogenesis program, n = 24) or the control group (one session of one-to-one moyamoya disease education program, n = 24) from September 6, 2018 to January 4, 2019. Changes in the following study outcomes were reported: "knowledge of moyamoya disease," "social support," "sense of coherence," "moyamoya disease health behavior," "stress," "depression," "subjective health status," "frequency of ischemic symptoms," and "quality of life". RESULTS The salutogenesis program improved the knowledge and social support of adolescents with illness-related problems and helped them attain healthy behaviors and stress reduction. It was confirmed to be effective in improving their quality of life. CONCLUSIONS The salutogenesis program for adolescents with moyamoya disease effectively improved the generalized resistance resources and sense of coherence in adolescents with moyamoya disease. TRIAL REGISTRATION Korean Clinical Research Information Service registry, KCT0006869.
Collapse
Affiliation(s)
- Insun Yeom
- Brain Korea 21 FOUR Project, College of Nursing, Yonsei University, Seoul, Republic of Korea
| | - Won-oak Oh
- College of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Yu X, Ge P, Zhai Y, Liu W, Zhang Q, Ye X, Liu X, Wang R, Zhang Y, Zhao J, Zhang D. Gut microbiota in adults with moyamoya disease: characteristics and biomarker identification. Front Cell Infect Microbiol 2023; 13:1252681. [PMID: 37915847 PMCID: PMC10616959 DOI: 10.3389/fcimb.2023.1252681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Background and purpose When it comes to the onset of moyamoya disease (MMD), environmental variables are crucial. Furthermore, there is confusion about the relationship between the gut microbiome, an environmental variable, and MMD. Consequently, to identify the particular bacteria that cause MMD, we examined the gut microbiome of MMD individuals and healthy controls (HC). Methods A prospective case-control investigation was performed from June 2021 to May 2022. The fecal samples of patients with MMD and HC were obtained. Typically, 16S rRNA sequencing was employed to examine their gut microbiota. The QIIME and R softwares were used to examine the data. The linear discriminant analysis effect size analysis was used to determine biomarkers. Multivariate analysis by linear models (MaAsLin)2 were used to find associations between microbiome data and clinical variables. Model performance was assessed using the receiver operating characteristic curve and the decision curve analysis. Results This investigation involved a total of 60 MMD patients and 60 HC. The MMD group's Shannon and Chao 1 indices were substantially lower than those of the HC cohort. β-diversity was significantly different in the weighted UniFrac distances. At the phylum level, the relative abundance of Fusobacteriota/Actinobacteria was significantly higher/lower in the MMD group than that in the HC group. By MaAsLin2 analysis, the relative abundance of the 2 genera, Lachnoclostridium and Fusobacterium, increased in the MMD group, while the relative abundance of the 2 genera, Bifidobacterium and Enterobacter decreased in the MMD group. A predictive model was constructed by using these 4 genera. The area under the receiver operating characteristic curve was 0.921. The decision curve analysis indicated that the model had usefulness in clinical practice. Conclusions The gut microbiota was altered in individuals with MMD, and was characterized by increased abundance of Lachnoclostridium and Fusobacterium and decreased abundance of Bifidobacterium and Enterobacter. These 4 genera could be used as biomarkers and predictors in clinical practice.
Collapse
Affiliation(s)
- Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| |
Collapse
|
35
|
Kim JW, Hayashi T, Kim SK, Shirane R. Technical evolution of pediatric neurosurgery: moyamoya disease. Childs Nerv Syst 2023; 39:2819-2827. [PMID: 37395784 DOI: 10.1007/s00381-023-06017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Moyamoya disease (MMD) is a rare steno-occlusive disease of the bilateral internal carotid arteries that predominantly occurs in East Asia. Since the first description of the MMD by Suzuki and Takaku in 1969, significant advances have been made in both basic and clinical understanding of the disease. The incidence and prevalence of pediatric MMD have increased, potentially due to improved detection rates. The advancement of neuroimaging techniques has enabled MRI-based diagnostics and detailed visualization of the vessel wall. Various methods of surgical treatments are successful in pediatric MMD patients, and recent studies emphasize the importance of reducing postoperative complications since the goal of MMD surgery is to prevent future cerebral infarction and hemorrhage. Long-term outcomes following appropriate surgical treatment in pediatric MMD patients have shown promising results, including favorable outcomes in very young patients. Further studies with a large patient cohort are needed to establish individualized risk group stratification for determining the optimal timing of surgical treatment and to conduct multidisciplinary outcome assessments.
Collapse
Affiliation(s)
- Joo Whan Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, 03080, 101 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Toshiaki Hayashi
- Department of Pediatric Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Miyagi Children's Hospital, 4 Chome-3-17 Ochiai, Aoba Ward, Sendai, Miyagi, 989-3126, Japan
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, 03080, 101 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| | - Reizo Shirane
- Department of Neurosurgery, Miyagi Children's Hospital, 4 Chome-3-17 Ochiai, Aoba Ward, Sendai, Miyagi, 989-3126, Japan.
| |
Collapse
|
36
|
Chen T, Wei W, Yu J, Xu S, Zhang J, Li X, Chen J. The Progression of Pathophysiology of Moyamoya Disease. Neurosurgery 2023; 93:502-509. [PMID: 36912514 DOI: 10.1227/neu.0000000000002455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease that often leads to hemorrhagic and ischemic strokes; however, its etiology remains elusive. Surgical revascularization by either direct or indirect bypass techniques to restore cerebral hypoperfusion is the treatment of choice to date. This review aims to provide an overview of the current advances in the pathophysiology of MMD, including the genetic, angiogenic, and inflammatory factors related to disease progression. These factors may cause MMD-related vascular stenosis and aberrant angiogenesis in complex manners. With a better understanding of the pathophysiology of MMD, nonsurgical approaches that target the pathogenesis of MMD may be able to halt or slow the progression of this disease.
Collapse
Affiliation(s)
- Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Shuangxiang Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| |
Collapse
|
37
|
Oh WO, Park IT, Han J, Lee E, Lee A. Development of a mobile application based on the salutogenic model for self-management in adolescents with Moyamoya disease. J Pediatr Nurs 2023; 72:63-72. [PMID: 37086628 DOI: 10.1016/j.pedn.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/19/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
PURPOSE Moyamoya disease (MMD) is a rare disease which has a high incidence of onset in adolescence. Disease self-management skills are imperative for adolescents with MMD. This study aimed to describe the systematic development, content, and usability of the Moyamoya Healthy Youth application (app), which was developed to enhance self-management skills for adolescents with MMD. DESIGN AND METHODS The theoretical grounding for the app was salutogenic model and the development process of the app was guided by the intervention mapping (IM) protocol. Results of each IM step were applied to the next step leading to the design of the app. Additionally, a pilot test was conducted to determine the usability of the app. RESULTS Following the salutogenic model, we identified the stressors, behaviors, and resources regarding managing symptoms of MMD by interviewing adolescents with MMD, their parents, and healthcare providers. Based on the findings of the interviews, we determined the program outcomes and performance objectives to improve the self-management of MMD in adolescents. The app was developed by translating the theoretical methods to achieve the performance objectives into practical strategies for delivering the program. A pilot test with eight participants showed satisfaction with the app in terms of its usefulness and ease of use. CONCLUSION We delineated the development process of the Moyamoya Healthy Youth. Additionally, we presented the positive outcomes regarding the usability of the app. PRACTICE IMPLICATIONS The Moyamoya Healthy Youth app could benefit adolescents with MMD, by improving their self-management skills which are crucial for their health.
Collapse
Affiliation(s)
- Won-Oak Oh
- Korea University, College of Nursing, Seoul, Republic of Korea.
| | - Il Tae Park
- Woosong University, College of Health and Welfare, Daejeon, Republic of Korea
| | - Jihee Han
- Korea University, College of Nursing, Seoul, Republic of Korea
| | - Eunji Lee
- Korea University, College of Nursing, Seoul, Republic of Korea.
| | - Anna Lee
- Yonsei University, College of Nursing and Mo-Im Kim Nursing Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Yoo J, Jeon J, Baik M, Kim J. Association between statin therapy and the risk of stroke in patients with moyamoya disease: a nationwide cohort study. Stroke Vasc Neurol 2023; 8:276-283. [PMID: 36549762 PMCID: PMC10512045 DOI: 10.1136/svn-2022-001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Knowledge regarding the pharmacological treatment for moyamoya disease (MMD), a chronic and progressive cerebrovascular disease conferring greater stroke risk, is limited. In the present study, whether statin therapy is associated with a reduced risk of stroke in patients with MMD was investigated. METHODS This was a retrospective cohort study in which the occurrence of stroke in patients with newly diagnosed MMD was investigated using the nationwide health insurance database in Korea from January 2007 to March 2021. A multivariable Cox proportional hazards regression model was constructed for stroke, in which statin therapy after MMD diagnosis was treated as a time-dependent variable. Adjustment was done for sex, age, presence of comorbidities, concurrent stroke, revascularisation surgery and treatment with antiplatelets. RESULTS The present study included 13 373 newly diagnosed patients with MMD; 40.8% had a concurrent stroke at the time of MMD diagnosis. During the mean follow-up of 5.1±3.3 years, 631 patients (4.7%) suffered a stroke event (haemorrhagic stroke: 458 patients, ischaemic stroke: 173 patients). Statin therapy after MMD diagnosis was significantly associated with a reduced risk of stroke (adjusted HR 0.74; 95% CI 0.60 to 0.91, p=0.004). In the secondary outcome analysis, the risk of haemorrhagic stroke (adjusted HR 0.74; 95% CI 0.58 to 0.95, p=0.018) and ischaemic stroke (adjusted HR 0.75; 95% CI 0.52 to 1.08, p=0.124) were reduced with the statin treatment. Taking statins was also associated with a lower risk of all-cause mortality (adjusted HR 0.47; 95% CI 0.33 to 0.67, p<0.001). CONCLUSION In patients with MMD, statin therapy was associated with a reduced risk of subsequent stroke. The findings indicate statin treatment may be beneficial for patients with MMD, however the results should be confirmed in randomised controlled trials.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei College of Medicine, Yongin-si, Korea (the Republic of)
| | - Jimin Jeon
- Department of Neurology, Yongin Severance Hospital, Yonsei College of Medicine, Yongin-si, Korea (the Republic of)
| | - Minyoul Baik
- Department of Neurology, Yongin Severance Hospital, Yonsei College of Medicine, Yongin-si, Korea (the Republic of)
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei College of Medicine, Yongin-si, Korea (the Republic of)
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea (the Republic of)
| |
Collapse
|
39
|
Yu X, Ge P, Zhai Y, Liu W, Zhang Q, Ye X, Liu X, Wang R, Zhang Y, Zhao J, Zhang D. Plasma urea cycle metabolite levels and the risk of moyamoya disease. Front Neurosci 2023; 17:1163733. [PMID: 37492403 PMCID: PMC10363741 DOI: 10.3389/fnins.2023.1163733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Background and purpose Urea cycle metabolites are expected to be the biomarkers for cerebrovascular diseases. However, the effects of circulating urea cycle metabolites on the risk of MMD and its subcategories remain unclear. The aim of this study was to prospectively investigate the association between plasma urea cycle metabolites and the risk of MMD and its subcategories. Methods We measured plasma urea cycle metabolite levels for 360 adult MMD patients and 89 matched healthy controls. Clinical and laboratory characteristics were obtained from the medical record. The study was conducted from July 2020 to December 2021. Results After multivariate adjustment, the risk of MMD increased with each increment in ornithine level (per natural log [ornithine] increment: OR, 3.893; 95% CI, 1.366-11.090). The risk of MMD decreased with each increment in arginine level (per natural log [arginine] increment: OR, 0.109; 95% CI, 0.028-0.427), urea level (per natural log [urea] increment: OR, 0.261; 95% CI, 0.072-0.940), and global arginine bioavailability ratio (GABR) level (per natural log [GABR] increment: OR, 0.189; 95% CI, 0.074-0.484). The addition of plasma arginine (integrated discrimination improvement: 1.76%, p = 0.021) or GABR (integrated discrimination improvement: 1.76%, p = 0.004) to conventional risk factors significantly improved the risk reclassification for MMD. Conclusion Plasma ornithine levels are positively associated with the risk of MMD. By contrast, the levels of arginine, urea, and GABR are inversely related to the risk of MMD. Plasma urea cycle metabolites might be potential biomarkers for the risk of MMD.
Collapse
Affiliation(s)
- Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| |
Collapse
|
40
|
Lucia K, Acker G, Rubarth K, Beyaztas D, Vajkoczy P. The Development and Effect of Systemic Hypertension on Clinical and Radiological Outcome in Adult Moyamoya Angiopathy Following Revascularization Surgery: Experience of a Single European Institution. J Clin Med 2023; 12:4219. [PMID: 37445259 DOI: 10.3390/jcm12134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with Moyamoya Angiopathy (MMA) display structurally altered vessels with decreased cerebral autoregulatory capacity, so aggressive lowering of systemic hypertension may aggravate ischemic symptoms, whereas uncontrolled hypertension may promote hemorrhage. This study provides an in-depth analysis of the role of hypertension in adult MMA patients including long-term analysis of clinical and radiological development. In this single-center retrospective analysis of 137 adult MMA patients with 206 surgically treated hemispheres angiographic images, clinical/operative data were reviewed and scored. Univariate Cox-regression analysis was performed to evaluate hypertension as a predictor for negative angiographic and clinical outcomes following revascularization surgery. A total of 50% of patients were being treated for hypertension prior to the first surgery. Patients with and without hypertension did not differ in terms of age, gender, diagnosis, symptom onset or disease severity (Berlin and Suzuki Grades). Although hypertension did not statistically significantly affect postoperative collaterals, moyamoya vessels or STA-MCA bypass patency, patients with hypertension showed higher rates of bypass patency and better bypass filling compared to those without hypertension. No significant differences in adverse events were found in patients with and without systemic hypertension and the presence of systemic hypertension was not found to predict negative clinical or radiological outcomes. In conclusion, the rate of systemic hypertension in MMA patients appears to be higher than the general population; however, this is not associated with an increased risk of postoperative complications or negative angiographic development following revascularization procedures. Systemic hypertension may also positively influence the rate of bypass patency and filling following revascularization procedures.
Collapse
Affiliation(s)
- Kristin Lucia
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurosurgery, Goethe University Hospital Frankfurt Am Main, Schleusenweg 2-16, 60528 Frankfurt Am Main, Germany
| | - Güliz Acker
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Rubarth
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Biometrics and Clinical Epidemiology Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Medical Informatics Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Defne Beyaztas
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
41
|
Cao L, Ai Y, Dong Y, Li D, Wang H, Sun K, Wang C, Zhang M, Yan D, Li H, Liang G, Yang B. Bioinformatics analysis reveals the landscape of immune cell infiltration and novel immune-related biomarkers in moyamoya disease. Front Genet 2023; 14:1101612. [PMID: 37265961 PMCID: PMC10230076 DOI: 10.3389/fgene.2023.1101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Objective: This study aimed to identify immune infiltration characteristics and new immunological diagnostic biomarkers in the cerebrovascular tissue of moyamoya disease (MMD) using bioinformatics analysis. Methods: GSE189993 and GSE141022 were downloaded from the GEO database. Differentially expressed gene and PPI analysis were performed. After performing WGCNA, the most significant module associated with MMD was obtained. Next, functional pathways according to GSEA, GO, and KEGG were enriched for the aforementioned core genes obtained from PPI and WGCNA. Additionally, immune infiltration, using the CIBERSORT deconvolution algorithm, immune-related biomarkers, and the relationship between these genes, was further explored. Finally, diagnostic accuracy was verified with ROC curves in the validation dataset GSE157628. Results: A total of 348 DEGs were screened, including 89 downregulated and 259 upregulated genes. The thistlel module was detected as the most significant module associated with MMD. Functional analysis of the core genes was chiefly involved in the immune response, immune system process, protein tyrosine kinase activity, secretory granule, and so on. Among 13 immune-related overlapping genes, 4 genes (BTK, FGR, PTPN11, and SYK) were identified as potential diagnostic biomarkers, where PTPN11 showed the highest specificity and sensitivity. Meanwhile, a higher proportion of eosinophils, not T cells or B cells, was demonstrated in the specific immune infiltration landscape of MMD. Conclusion: Immune activities and immune cells were actively involved in the progression of MMD. BTK, FGR, PTPN11, and SYK were identified as potential immune diagnostic biomarkers. These immune-related genes and cells may provide novel insights for immunotherapy in the future.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunzheng Ai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Dong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongpeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiwen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
43
|
Guevara‐Rodriguez N, Marmanillo‐Mendoza G, Castelar J, Ciobanu C, Fulger I. Unusual presentation of acquired thrombotic thrombocytopenic purpura (TTP) versus catastrophic antiphospholipid syndrome in a patient with Moya-Moya disease, case report, and literature review. Clin Case Rep 2023; 11:e7317. [PMID: 37192853 PMCID: PMC10182009 DOI: 10.1002/ccr3.7317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/18/2023] Open
Abstract
Coincidences in medicine are not so common. We are presenting a case of a patient diagnosed with Moya-Moya disease and antiphospholipid syndrome (APS) who presented with clinical and laboratory characteristics of catastrophic APS versus TTP. The diagnosis was a challenge because characteristics were overlapping. Nevertheless, a decision to treat the patient for TTP was made with afterward improvement. MMD has been associated with multiple immune disorders; however, only one case of acquired thrombotic thrombocytopenic purpura has been documented in association with this disease. None has been associated with catastrophic antiphospholipid syndrome. We are presenting a challenging case where all these three medical conditions were present at the same time.
Collapse
Affiliation(s)
| | | | - Jorge Castelar
- Department of Medicine, Internal MedicineSt. Barnabas Hospital Health SystemThe BronxNew YorkUSA
| | - Camelia Ciobanu
- Department of Medicine, Internal MedicineSt. Barnabas Hospital Health SystemThe BronxNew YorkUSA
| | - Ilmana Fulger
- Department of Medicine, Internal Medicine, Department of Hemato‐OncologySt. Barnabas Hospital Health SystemThe BronxNew YorkUSA
| |
Collapse
|
44
|
Patzig DMM, Forbrig PDMR, Küpper DMC, Eren DMOE, Masouris DMI, Saam PDMT, Kellert PDML, Liebig PDMT, Schöberl PDMF. Evaluation of vessel-wall contrast-enhancement on high-resolution MRI in European patients with Moyamoya disease. J Stroke Cerebrovasc Dis 2023; 32:107135. [PMID: 37079960 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVES Data regarding MR vessel-wall imaging (VWI) in patients with Moyamoya disease (MMD) is sparse, particularly in non-asian cohorts. We contribute data regarding the frequency of vessel wall contrast-enhancement (VW-CE) and its potential clinical significance in a European patient group. MATERIALS AND METHODS Patients with a diagnosis of MMD who were examined by VWI were included in the study. VW-CE of stenoocclusive lesions of the terminal internal carotid artery and/or its proximal branches was rated qualitatively. Changes of VW-CE on available follow-up were recorded. VW-CE was correlated with diffusion-restricted lesions and magnetic resonance angiography (MRA) findings. RESULTS Eleven patients (eight female, three male) were included. Twenty-eight stenoocclusive lesions were analyzed, of which 16 showed VW-CE (57.1%). VW-CE was mostly concentric (n=15), rather than eccentric (n=1). In all three patients in whom follow-up VWI was available, changes of VW-CE were documented. Diffusion-restricted lesions were more frequently related to stenoocclusive lesions with VW-CE (n=9) than without VW-CE (n=2), bordering statistical significance. The affected arteries were assessed as stenotic and as occluded in 14 cases each and VW-CE was seen significantly more often in stenotic (n=12) than in occluded arteries (n=4). No correlation was found between the presence of VW-CE and moyamoya stages determined by MRA. CONCLUSIONS Our data suggest that concentric VW-CE is a relatively frequent finding in European MMD patients. VW-CE may change over time and occur in certain stages, possibly representing "active stenosing". Larger studies are needed to validate these findings and determine the clinical relevance of VW-CE in MMD.
Collapse
Affiliation(s)
- Dr Med Maximilian Patzig
- Institute of Diagnostic and Interventional Neuroradiology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany; Radiologie Augsburg Friedberg, Augsburg, Germany, Phone: +49 89 440072501.
| | - Pd Dr Med Robert Forbrig
- Institute of Diagnostic and Interventional Neuroradiology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440072501.
| | - Dr Med Clemens Küpper
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440073690.
| | - Dr Med Ozan Emre Eren
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440073690.
| | - Dr Med Ilias Masouris
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440073690.
| | - Prof Dr Med Tobias Saam
- Institute of Clinical Radiology, Ludwig-Maximilians-University Munich, Germany; Die Radiologie, Rosenheim, Germany, Phone: +89 8031 230970.
| | - Prof Dr Med Lars Kellert
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440073690.
| | - Prof Dr Med Thomas Liebig
- Institute of Diagnostic and Interventional Neuroradiology, Ludwig-Maximilians-University Munich, Germany, Phone: +49 89 440072501.
| | | |
Collapse
|
45
|
Xue Y, Zhang Q, Wang LJ, Tu WJ, Zhao J. Application of Induced Pluripotent Stem Cells in Moyamoya Disease: Progress and Promises. Curr Stem Cell Res Ther 2023; 18:733-739. [PMID: 35674309 DOI: 10.2174/1574888x17666220607121027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusion cerebrovascular disease accompanied by the formation of the abnormal vascular network at the base of the brain. The etiology of MMD is not fully clarified. Lack of pathological specimens hinders the research progress. Induced pluripotent stem cells (iPSC) derived from patients with outstanding differentiation potential and infinite proliferation ability could conquer the problem of insufficient samples. The technology of iPSC holds the promise of clarifying the underlying molecular mechanism in the development of MMD. In this review, we summarized the latest progress and difficulties in the research of mechanism and detailed the application of iPSC in MMD, aiming to provide an outlook of iPSC in molecular mechanism and novel therapies of MMD.
Collapse
Affiliation(s)
- Yimeng Xue
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lin-Jian Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
46
|
Chen S, Wang B, Wen Y, Wang Z, Long T, Chen J, Zhang G, Li M, Zhang S, Pan J, Feng W, Qi S, Wang G. Ultrasonic hemodynamic changes of superficial temporal artery graft in different angiogenesis outcomes of Moyamoya disease patients treated with combined revascularization surgery. Front Neurol 2023; 14:1115343. [PMID: 36873438 PMCID: PMC9978192 DOI: 10.3389/fneur.2023.1115343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective Combined bypass is commonly used in adult Moyamoya disease (MMD) for revascularization purposes. The blood flow from the external carotid artery system supplied by the superficial temporal artery (STA), middle meningeal artery (MMA), and deep temporal artery (DTA) can restore the impaired hemodynamics of the ischemic brain. In this study we attempted to evaluate the hemodynamic changes of the STA graft and predict the angiogenesis outcomes in MMD patients after combined bypass surgery by using quantitative ultrasonography. Methods We retrospectively studied Moyamoya patients who were treated by combined bypass between September 2017 and June 2021 in our hospital. We quantitatively measured the STA with ultrasound and recorded the blood flow, diameter, pulsatility index (PI) and resistance index (RI) to assess graft development preoperatively and at 1 day, 7 days, 3 months, and 6 months after surgery. All patients received both pre- and post- operative angiography evaluation. Patients were divided into either well- or poorly-angiogenesis groups according to the transdural collateral formation status on angiography at 6 months after surgery (W group or P group). Patients with matshushima grade A or B were divided into W group. Patients with matshushima grade C were divided into P group, indicating a poor angiogenesis development. Results A total of 52 patients with 54 operated hemispheres were enrolled, including 25 men and 27 women with an average age of 39 ± 14.3 years. Compared to preoperative values, the average blood flow of an STA graft at day 1 postoperation increased from 16.06 ± 12.47 to 117.47± 73.77 (mL/min), diameter increased from 1.14 ± 0.33 to 1.81 ± 0.30 (mm), PI dropped from 1.77 ± 0.42 to 0.76 ± 0.37, and RI dropped from 1.77 ± 0.42 to 0.50 ± 0.12. According to the Matsushima grade at 6 months after surgery, 30 hemispheres qualified as W group and 24 hemispheres as P group. Statistically significant differences were found between the two groups in diameter (p = 0.010) as well as flow (p = 0.017) at 3 months post-surgery. Flow also remained significantly different at 6 months after surgery (p = 0.014). Based on GEE logistic regression evaluation, the patients with higher levels of flow post-operation were more likely to have poorly-compensated collateral. ROC analysis showed that increased flow of ≥69.5 ml/min (p = 0.003; AUC = 0.74) or a 604% (p = 0.012; AUC = 0.70) increase at 3 months post-surgery compared with the pre-operative value is the cut-off point which had the highest Youden's index for predicting P group. Furthermore, a diameter at 3 months post-surgery that is ≥0.75 mm (p = 0.008; AUC = 0.71) or 52% (p =0.021; AUC = 0.68) wider than pre-operation also indicates a high risk of poor indirect collateral formation. Conclusions The hemodynamic of the STA graft changed significantly after combined bypass surgery. An increased flow of more than 69.5 ml/min at 3 months was a good predictive factor for poor neoangiogenesis in MMD patients treated with combined bypass surgery.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoping Wang
- Department of Ultrasonography, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhibin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tinghan Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junda Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
RNF213 Loss-of-Function Promotes Angiogenesis of Cerebral Microvascular Endothelial Cells in a Cellular State Dependent Manner. Cells 2022; 12:cells12010078. [PMID: 36611871 PMCID: PMC9818782 DOI: 10.3390/cells12010078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Enhanced and aberrant angiogenesis is one of the main features of Moyamoya disease (MMD) pathogenesis. The ring finger protein 213 (RNF213) and the variant p.R4810K have been linked with higher risks of MMD and intracranial arterial occlusion development in east Asian populations. The role of RNF213 in diverse aspects of the angiogenic process, such as proliferation, migration and capillary-like formation, is well-known but has been difficult to model in vitro. To evaluate the effect of the RNF213 MMD-associated gene on the angiogenic activity, we have generated RNF213 knockout in human cerebral microvascular endothelial cells (hCMEC/D3-RNF213-/-) using the CRISPR-Cas9 system. Matrigel-based assay and a tri-dimensional (3D) vascularized model using the self-assembly approach of tissue engineering were used to assess the formation of capillary-like structures. Quite interestingly, this innovative in vitro model of MMD recapitulated, for the first time, disease-associated pathophysiological features such as significant increase in angiogenesis in confluent endothelial cells devoid of RNF213 expression. These cells, grown to confluence, also showed a pro-angiogenic signature, i.e., increased secretion of soluble pro-angiogenic factors, that could be eventually used as biomarkers. Interestingly, we demonstrated that that these MMD-associated phenotypes are dependent of the cellular state, as only noted in confluent cells and not in proliferative RNF213-deficient cells.
Collapse
|
48
|
Data-Independent Acquisition-Based Serum Proteomic Profiling of Adult Moyamoya Disease Patients Reveals the Potential Pathogenesis of Vascular Changes. J Mol Neurosci 2022; 72:2473-2485. [PMID: 36520382 DOI: 10.1007/s12031-022-02092-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disease with unknown etiology. The pathogenesis of vascular changes remains unclear. Ischemic and hemorrhagic adult MMD patients and healthy volunteers were enrolled to collect serum for data-independent acquisition (DIA)-based proteomic analysis and ELISA validation. DIA serum proteomic revealed that apolipoprotein C-I (APOC1), apolipoprotein D (APOD), and apolipoprotein A-IV (APOA4) were decreased. The reductases glutathione S-transferase omega-1 (GSTO1) and peptidyl-prolyl cis-trans isomerase A (PPIA) were upregulated, and ADAMTS-like protein 4 (ADAMTSL4) was downregulated in both ischemic and hemorrhagic MMD. Afamin (AFM) and transforming growth factor-beta-induced protein ig-h3 (TGFBI) increased in ischemic patients but decreased in hemorrhagic patients. Serum ELISA results confirmed that APOA4, APOC1, and APOD were decreased compared to controls. Then, we retrospectively analyzed biochemical indexes of 200 MMD patients. A total of 54 enrolled MMD patients showed decreased total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-c). APOA4, APOC1, and APOD were vital factors in the HDL decrease in MMD patients. Lipoprotein dysfunction in MMD patients is involved in MMD. Intimal thickening by enhanced adhesion, middle layer vascular smooth muscle cell migration, and decreased lipid antioxidant function represented by HDL are potential pathogeneses of vascular changes in MMD.
Collapse
|
49
|
Oh WO, Yeom I, Lim SH. Structural equation model based on salutogenesis theory for evaluating factors affecting health-related quality of life in adolescents with moyamoya disease. Sci Rep 2022; 12:20348. [PMID: 36437307 PMCID: PMC9701670 DOI: 10.1038/s41598-022-24825-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Moyamoya disease is a cerebrovascular disorder and a significant chronic health concern requiring regular monitoring to control the disease and its related complications. We examined a hypothetical model by integrating the concepts of a structural health-related quality-of-life model based on the salutogenesis theory, and to identify how social support, sense of coherence, and stress contribute to health behaviors, subjective health status, and quality of life in adolescents with moyamoya disease among 239 adolescents in Korea. A structural equation model was used to analyze the data. The fitness of the hypothetical model with the salutogenesis theory was satisfactory, showing that the goodness-of-fit index = 0.91, adjusted goodness-to-fit index = 0.90, comparative fit index = 0.92, normed fit index = 0.91, incremental fit index = 0.91, standardized root mean squared residual = 0.04, root mean square error of approximation = 0.07, parsimony normed fit index = 0.61, parsimony goodness of fit index = 0.51. The model explained 68.9% of quality of life. Health behavior (β = -0.173, p = 0.467) and stress (β = -0.557, p < 0.001) had significant direct and total effects on quality of life. Sense of coherence had a significant direct (β = 0.371, p = 0.003), indirect (β = 0.220, p = 0.013), and total (β = 0.590, p < 0.001) effect on quality of life. This study found that sense of coherence was significant factors contributing to lower stress, improved health status, and quality of life in adolescents with moyamoya disease. To improve the quality of life for adolescents with moyamoya disease, comprehensive nursing interventions need to be developed and applied.
Collapse
Affiliation(s)
- Won-oak Oh
- grid.222754.40000 0001 0840 2678Korea University College of Nursing, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Insun Yeom
- grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project, College of Nursing, Yonsei University, Seoul, Republic of Korea
| | - Sung-Hyun Lim
- grid.222754.40000 0001 0840 2678Korea University College of Nursing, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
50
|
Lehman LL, Kaseka ML, Stout J, See AP, Pabst L, Sun LR, Hassanein SA, Waak M, Vossough A, Smith ER, Dlamini N. Pediatric Moyamoya Biomarkers: Narrowing the Knowledge Gap. Semin Pediatr Neurol 2022; 43:101002. [PMID: 36344019 DOI: 10.1016/j.spen.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Moyamoya is a progressive cerebrovascular disorder that leads to stenosis of the arteries in the distal internal carotid, proximal middle cerebral and proximal anterior cerebral arteries of the circle of Willis. Typically a network of collaterals form to bypass the stenosis and maintain cerebral blood flow. As moyamoya progresses it affects the anterior circulation more commonly than posterior circulation, and cerebral blood flow becomes increasingly reliant on external carotid supply. Children with moyamoya are at increased risk for ischemic symptoms including stroke and transient ischemic attacks (TIA). In addition, cognitive decline may occur over time, even in the absence of clinical stroke. Standard of care for stroke prevention in children with symptomatic moyamoya is revascularization surgery. Treatment of children with asymptomatic moyamoya with revascularization surgery however remains more controversial. Therefore, biomarkers are needed to assist with not only diagnosis but also with determining ischemic risk and identifying best surgical candidates. In this review we will discuss the current knowledge as well as gaps in research in relation to pediatric moyamoya biomarkers including neurologic presentation, cognitive, neuroimaging, genetic and biologic biomarkers of disease severity and ischemic risk.
Collapse
Affiliation(s)
- Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Matsanga Leyila Kaseka
- Department of Neurology, CHU Sainte-Justine, Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Jeffery Stout
- Harvard Medical School, Boston, MA; Newborn Medicine, Boston Children's Hospital, Boston, MA
| | - Alfred P See
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Lisa Pabst
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| | - Lisa R Sun
- Division of Pediatric Neurology, Division of Cerebrovascular Neurology, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sahar A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Michaela Waak
- Department of Paediatric Intensive Care, Queensland Children's Hospital; Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Philadelphia, Philadelphia, Pennsylvania
| | - Edward R Smith
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|