1
|
Stasiak-Różańska L, Gawor J, Piwowarek K, Fabiszewska A, Aleksandrzak-Piekarczyk T. Co-Fermentation and Genomic Insights into Lactic Acid Bacteria for Enhanced Propionic Acid Production Using a Non-GMO Approach. Foods 2025; 14:1573. [PMID: 40361655 PMCID: PMC12071468 DOI: 10.3390/foods14091573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Propionic acid (PA) is an important organic acid with applications in food preservation, feed additives, and bio-based chemical production. While industrial PA is mostly derived from petrochemical processes, sustainable microbial alternatives are gaining attention. In this study, we explored a co-fermentation strategy using lactic acid bacteria (LAB) with complementary metabolic capabilities to enhance PA biosynthesis via the 1,2-propanediol (PDO) pathway. Genome-based screening identified a metabolic division between strains capable of producing PDO (e.g., Carnobacterium maltaromaticum IBB3447) and those converting PDO to PA (e.g., Levilactobacillus brevis IBB3735). Notably, we discovered that C. maltaromaticum IBB3447 is capable of PDO 24 biosynthesis, a function previously undescribed in this species. Phenotypic assays confirmed glycerol metabolism and acid tolerance among strains. In co-culture fermentation trials, the highest PA concentration (6.87 mM) was achieved using simultaneous fermentation in a fructose-sorbitol-glucose (FRC-SOR-GLC) medium, accompanied by prior PDO accumulation (up to 13.13 mM). No single strain produced PA independently, confirming that metabolic cooperation is required. These findings reveal a novel LAB-based bioprocess for sustainable PA and PDO production, using cross-feeding interactions and the valorization of industrial waste streams. The study supports future optimization and scale-up for circular bioeconomy applications.
Collapse
Affiliation(s)
- Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
2
|
Ağagündüz D, Keskin FN. The impact of fermentation on development of medical foods (for celiac, irritable bowel syndrome patients). HANDBOOK OF SOURDOUGH MICROBIOTA AND FERMENTATION 2025:161-181. [DOI: 10.1016/b978-0-443-18622-6.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Haryani Y, Abdul Halid N, Goh SG, Nor-Khaizura MAR, Md Hatta MA, Sabri S, Radu S, Hasan H. Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds. J Biotechnol 2024; 395:53-63. [PMID: 39245212 DOI: 10.1016/j.jbiotec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Collapse
Affiliation(s)
- Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Riau 28293, Indonesia
| | - Nadrah Abdul Halid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Halal Science Research, Halal Research Product Institute, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
4
|
Yadav MK, Song JH, Vasquez R, Lee JS, Kim IH, Kang DK. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria-A Systematic Review. Foods 2024; 13:3687. [PMID: 39594102 PMCID: PMC11594216 DOI: 10.3390/foods13223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Exopolysaccharides (EPSs) are large-molecular-weight, complex carbohydrate molecules and extracellularly secreted bio-polymers released by many microorganisms, including lactic acid bacteria (LAB). LAB are well known for their ability to produce a wide range of EPSs, which has received major attention. LAB-EPSs have the potential to improve health, and their applications are in the food and pharmaceutical industries. Several methods have been developed and optimized in recent years for producing, extracting, purifying, and characterizing LAB-produced EPSs. The simplest method of evaluating the production of EPSs is to observe morphological features, such as ropy and mucoid appearances of colonies. Ethanol precipitation is widely used to extract the EPSs from the cell-free supernatant and is generally purified using dialysis. The most commonly used method to quantify the carbohydrate content is phenol-sulfuric acid. The structural characteristics of EPSs are identified via Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy. The molecular weight and composition of monosaccharides are determined through size-exclusion chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. The surface morphology of EPSs is observed via scanning electron microscopy and atomic force microscopy, whereas thermal characteristics are determined through thermogravimetry analysis, derivative thermogravimetry, and differential scanning calorimetry. In the present review, we discuss the different existing methods used for the detailed study of LAB-produced EPSs, which provide a comprehensive guide on LAB-EPS preparation, critically evaluating methods, addressing knowledge gaps and key challenges, and offering solutions to enhance reproducibility, scalability, and support for both research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (M.K.Y.); (J.H.S.); (R.V.); (J.S.L.); (I.H.K.)
| |
Collapse
|
5
|
Sun Y, Su X, Zhao L, Sun T, Liu W. Carbon metabolism of a novel isolate from Lacticaseibacillus rhamnosus Probio-M9 derived through space mutant. J Appl Microbiol 2024; 135:lxae205. [PMID: 39152088 DOI: 10.1093/jambio/lxae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/07/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
AIMS Carbon source is a necessary nutrient for bacterial strain growth. In industrial production, the cost of using different carbon sources varies greatly. Moreover, the complex environment in space may cause metabolic a series of changes in the strain, and this method has been successfully applied in some basic research. To date, space mutagenesis is still limited number of studies, particularly in carbon metabolism of probiotics. METHODS AND RESULTS HG-R7970-41 was isolated from bacterium suspension (Probio-M9) after space flight, which can produce capsular polysaccharide after space mutagenesis. Phenotype Microarray (PM) was used to evaluated the metabolism of HG-R7970-41 in 190 single carbon sources. RNA sequencing and total protein identification of two strains revealed their different carbon metabolism mechanisms. PM results demonstrated the metabolism of 10 carbon sources were different between Probio-M9 and HG-R7970-41. Transcriptomic and proteomic analyses revealed that this change in carbon metabolism of HG-R7970-41 mainly related to changes in phosphorylation and the glycolysis pathway. Based on the metabolic mechanism of different carbon sources and related gene cluster analysis, we found that the final metabolic activities of HG-R7970-41 and Probio-M9 were mainly regulated by PTS-specific membrane embedded permease, carbohydrate kinase and two rate-limiting enzymes (phosphofructokinase and pyruvate kinase) in the glycolysis pathway. The expanded culture test also confirmed that HG-R7970-41 had different metabolic characteristics from original strain. CONCLUSIONS These results suggested that space environment could change carbon metabolism of Probio-M9. The new isolate (HG-R7970-41) showed a different carbon metabolism pattern from the original strain mainly by the regulation of two rate-limiting enzymes.
Collapse
Affiliation(s)
- Yue Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
- College of Food Science and Technology, Wuhan Business University, Wuhan, Hubei province, 430056, China
| | - Xin Su
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Lixia Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Wenjun Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| |
Collapse
|
6
|
Park J, Heo S, Lee G, Kim T, Oh SE, Kwak MS, Jeong DW. The addition of jogi, Micropogonias undulates, affects amino acid content in kimchi fermentation. PLoS One 2024; 19:e0300249. [PMID: 38573994 PMCID: PMC10994411 DOI: 10.1371/journal.pone.0300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
The effects of jogi (the fish Atlantic croaker, Micropogonias undulatus) on the production of physicochemical components, such as color, organic acids, and amino acids, in kimchi, a traditional fermented vegetable food of Korea, were determined. As fermentation progressed, the color change of jogi-added kimchi increased, but in comparison with that of the control group without jogi-added kimchi, was difficult to distinguish with the naked eye. Reducing sugar decreased in all experimental groups, and as fermentation progressed, kimchi with jogi showed a lower value. Acetic acid, citric acid, lactic acid, and ethanol, were highly produced in both types of kimchi, and above all, the jogi-baechu-kimchi group showed higher acetic acid and lactic acid contents than the control group. The increase and decrease of amino acids were similar in both types of kimchi. However, significantly, immediately after manufacture, the savory components aspartic acid and glutamic acid were detected higher than the control group. Subsequently, the fermentation tended to decrease as it progressed, but the content was higher than that of the control group. The above results show that jogi addition has a greater effect on the contents of amino acid, especially the savory component, than on the physicochemical components.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Tao Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Tathode MS, Bonomo MG, Zappavigna S, Mang SM, Bocchetti M, Camele I, Caraglia M, Salzano G. Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Front Microbiol 2024; 15:1268216. [PMID: 38638895 PMCID: PMC11024341 DOI: 10.3389/fmicb.2024.1268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many lactic acid bacteria (LAB) strains are currently gaining attention in the food industry and various biological applications because of their harmless and functional properties. Given the growing consumer demand for safe food, further research into potential probiotic bacteria is beneficial. Therefore, we aimed to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from traditional fermented sausages from the Basilicata region of Southern Italy. Methods In this study, we analyzed the whole genome of the P. pentosaceus DSPZPP1 strain and performed in silico characterization to evaluate its applicability for probiotics and use in the food industry. Results and Discussion The whole-genome assembly and functional annotations revealed many interesting characteristics of the DSPZPP1 strain. Sequencing raw reads were assembled into a draft genome of size 1,891,398 bp, with a G + C content of 37.3%. Functional annotation identified 1930 protein-encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S rRNAs. The analysis shows the presence of genes that encode water-soluble B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, penocin A, adding importance to the food industry for bio-enriched food. The DSPZPP1 genome does not show the presence of plasmids, and no genes associated with antimicrobial resistance and virulence were found. In addition, two intact bacteriophages were identified. Importantly, the lowest probability value in pathogenicity analysis indicates that this strain is non-pathogenic to humans. 16 s rRNA-based phylogenetic analysis and comparative analysis based on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl transferases (GT) as a main class of enzymes followed by glycoside hydrolases (GH). Our study shows several interesting characteristics of the isolated DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as a promising probiotic candidate and making it more appropriate for selection as a future additive in biopreservation.
Collapse
Affiliation(s)
- Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Bonomo
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Giovanni Salzano
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| |
Collapse
|
8
|
Karimzadeh Barenji E, Beglari S, Tahghighi A, Azerang P, Rohani M. Evaluation of Anti-Bacterial and Anti-Biofilm Activity of Native Probiotic Strains of Lactobacillus Extracts. IRANIAN BIOMEDICAL JOURNAL 2023; 28:102-12. [PMID: 38850020 PMCID: PMC11186614 DOI: 10.61186/ibj.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 06/09/2024]
Abstract
Background Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity. Methods Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms. Results The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae. Conclusion This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Elmira Karimzadeh Barenji
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shokufeh Beglari
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Parlindungan E, Jones OAH. Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry. Metabolomics 2023; 19:99. [PMID: 37999908 DOI: 10.1007/s11306-023-02062-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Lactic Acid Bacteria (LAB) are commonly used as starter cultures, probiotics, to produce lactic acid and other useful compounds, and even as natural preservatives. For use in any food product however, LAB need to survive the various stresses they encounter in the environment and during processing. Understanding these mechanisms may enable direction of LAB biochemistry with potential beneficial impact for the food industry. AIM OF REVIEW To give an overview of the use of LAB in the food industry and then generate a deeper biochemical understanding of LAB stress response mechanisms via metabolomics, and methods of screening for robust strains of LAB. KEY SCIENTIFIC CONCEPTS OF REVIEW Uses of LAB in food products were assessed and factors which contribute to survival and tolerance in LAB investigated. Changes in the metabolic profiles of LAB exposed to stress were found to be associated with carbohydrates, amino acids and fatty acid levels and these changes were proposed to be a result of the bacteria trying to maintain cellular homeostasis in response to external conditions and minimise cellular damage from reactive oxygen species. This correlates with morphological analysis which shows that LAB can undergo cell elongation and shortening, as well as thinning and thickening of cell membranes, when exposed to stress. It is proposed that these innate strategies can be utilised to minimise negative effects caused by stress through selection of intrinsically robust strains, genetic modification and/or prior exposure to sublethal stress. This work demonstrates the utility of metabolomics to the food industry.
Collapse
Affiliation(s)
- Elvina Parlindungan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Oliver A H Jones
- School of Science, Australian Centre for Research On Separation Science (ACROSS), RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
10
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Loscher C, Brabazon D, Freeland B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients 2023; 15:4754. [PMID: 38004148 PMCID: PMC10675170 DOI: 10.3390/nu15224754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| |
Collapse
|
11
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
12
|
Im H, Pearson ML, Martinez E, Cichos KH, Song X, Kruckow KL, Andrews RM, Ghanem ES, Orihuela CJ. Targeting NAD+ regeneration enhances antibiotic susceptibility of Streptococcus pneumoniae during invasive disease. PLoS Biol 2023; 21:e3002020. [PMID: 36928033 PMCID: PMC10019625 DOI: 10.1371/journal.pbio.3002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Hansol Im
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Madison L. Pearson
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eriel Martinez
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyle H. Cichos
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiuhong Song
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katherine L. Kruckow
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel M. Andrews
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elie S. Ghanem
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
13
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
14
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Raman J, Kim JS, Choi KR, Eun H, Yang D, Ko YJ, Kim SJ. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int J Mol Sci 2022; 23:7784. [PMID: 35887142 PMCID: PMC9322495 DOI: 10.3390/ijms23147784] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are significant groups of probiotic organisms in fermented food and are generally considered safe. LAB regulate soil organic matter and the biochemical cycle, detoxify hazardous chemicals, and enhance plant health. They are found in decomposing plants, traditional fermented milk products, and normal human gastrointestinal and vaginal flora. Exploring LAB identified in unknown niches may lead to isolating unique species. However, their classification is quite complex, and they are adapted to high sugar concentrations and acidic environments. LAB strains are considered promising candidates for sustainable agriculture, and they promote soil health and fertility. Therefore, they have received much attention regarding sustainable agriculture. LAB metabolites promote plant growth and stimulate shoot and root growth. As fertilizers, LAB can promote biodegradation, accelerate the soil organic content, and produce organic acid and bacteriocin metabolites. However, LAB show an antagonistic effect against phytopathogens, inhibiting fungal and bacterial populations in the rhizosphere and phyllosphere. Several studies have proposed the LAB bioremediation efficiency and detoxification of heavy metals and mycotoxins. However, LAB genetic manipulation and metabolic engineered tools provide efficient cell factories tailor-made to produce beneficial industrial and agro-products. This review discusses lactic acid bacteria advantages and limitations in sustainable agricultural development.
Collapse
Affiliation(s)
- Jegadeesh Raman
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Young-Joon Ko
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| |
Collapse
|
16
|
Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati jaanr, Traditional Fermented Rice Porridge. Appl Biochem Biotechnol 2022; 194:5734-5747. [PMID: 35819693 DOI: 10.1007/s12010-022-04041-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Traditional fermented foods are the ideal source of novel probiotic isolates which are known to have significant therapeutic benefits and play a vital role as bioprotective agents. Bhaati jaanr is an ethnic fermented rice beverage popularly consumed in sub-Himalayan regions. The strain UAMS was isolated from Bhaati jaanr based on high butyrate production and evaluated for the potential probiotic characteristics. MALDI-TOF MS and 16 s rRNA gene sequencing revealed the identity of strains as Pediococcus acidilactici. The isolated strain exhibited high tolerance to gastric and bile stress, autoaggregation, hydrophobicity, and adherence to colon cells. Antibiotic susceptibility testing results showed the resistance of the isolated strain toward tested common antibiotics and the pathogenic determinants were absent in PCR-based detection. Moreover, the organism was able to inhibit the growth of Listeria, Salmonella, Staphylococcus, and Enterococcus species. The isolate was found to be a high butyrate producer along with other short-chain fatty acids and exhibited an anti-proliferative effect against colon cancer cells HT29 and SW480. Therefore, our study represents Pediococcus acidilactici UAMS as a potent putative probiotic with bioprotective abilities.
Collapse
|
17
|
Boeck T, Ispiryan L, Hoehnel A, Sahin AW, Coffey A, Zannini E, Arendt EK. Lentil-Based Yogurt Alternatives Fermented with Multifunctional Strains of Lactic Acid Bacteria-Techno-Functional, Microbiological, and Sensory Characteristics. Foods 2022; 11:2013. [PMID: 35885256 PMCID: PMC9317967 DOI: 10.3390/foods11142013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
A milk-alternative produced from lentil protein isolate was fermented with three multifunctional strains of lactic acid bacteria, Leuconostoc citreum TR116, Leuconostoc pseudomesenteroides MP070, and Lacticaseibacillus paracasei FST 6.1. As a control, a commercial starter culture containing Streptococcus thermophilus was used. The metabolic performance of these strains and the techno-functional properties of the resulting yogurt alternatives (YA) were studied. Microbial growth was evaluated by cell counts, acidification, and carbohydrate metabolization. The structure of the YA was investigated by textural and rheological analyses and confocal laser scanning microscopy (CLSM). Production of antifungal compounds, the influence of fermentation on the content of FODMAPs, and typical metabolites were analyzed, and a sensory analysis was performed. The results revealed an exponential microbial growth in the lentil base substrate supported by typical acidification, which indicates a suitable environment for the selected strains. The resulting YA showed a gel-like texture typical for non-stirred yogurts, and high water holding capacity. The tested strains produced much higher levels of antifungal phenolic compounds than the commercial control and are therefore promising candidates as adjunct cultures for shelf-life extension. The Leuconostoc strains produced mannitol from fructose and could thus be applied in sugar-reduced YA. Preliminary sensory analysis showed high acceptance for YA produced with Lacticaseibacillus paracasei FST 6.1, and a yogurt-like flavor not statistically different to that produced by the control. Overall, each tested strain possessed promising functionalities with great potential for application in fermented plant-based dairy-alternatives.
Collapse
Affiliation(s)
- Theresa Boeck
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Andrea Hoehnel
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
18
|
Protective effect of the stressed supernatant from Lactococcus lactis subsp. lactis and its metabolic analysis. Arch Microbiol 2022; 204:428. [PMID: 35751720 DOI: 10.1007/s00203-022-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
There are numerous factors restricting wide application of lactic acid bacteria (LAB) in dairy industry, causing urgent demands for novel bioprotectants. Protective effects and metabolites of Lactococcus lactis subsp. lactis (L. lactis) from ultraviolet (UV)-induced supernatant were investigated and the protective mechanism was explored. The strain viability of the group treated with the supernatant of continuous UV irradiation (V1) and the group with intermittent UV irradiation (V2) was 8.45 and 14.13 times of the control group, respectively. Further exploration on the protective of L. lactis supernatant, under different dose of UV treatment, showed it was dose-dependent. The condition for the supernatant with best protective effect was vertical distance 50.00 cm, horizontal distance 25.00 cm, intermittent UV irradiation (30 s interval 30 s) for 4.5 min (V2), which was chose for untargeted metabolite analysis. And that in V1 was for comparative study. There were 181 up-regulated metabolites in V1 and 161 up-regulated metabolites in V2, respectively. Most of the up-regulated metabolites were related to secondary metabolite synthesis, environmental microbial metabolism, antibiotic synthesis and amino acid biosynthesis. Notably, production of dithiothreitol (DTT) in V2 was 65.2-fold higher than that in the control group. Trehalose in ABC transporter pathway was also up-regulated in the metabolites induced by UV. Results indicated that L. lactis could adapt to the UV stress by adjusting metabolic pathways and producing special metabolites to protect itself. This research offers the basis for robust strain development and contributes to initial study on potential bioprotectant.
Collapse
|
19
|
Mutlu C, Candal-Uslu C, Özhanlı H, Arslan-Tontul S, Erbas M. Modulating of food glycemic response by lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
21
|
Mhatre A, Shinde S, Jha AK, Rodriguez A, Wardak Z, Jansen A, Gladden JM, George A, Davis RW, Varman AM. Corynebacterium glutamicum as an Efficient Omnivorous Microbial Host for the Bioconversion of Lignocellulosic Biomass. Front Bioeng Biotechnol 2022; 10:827386. [PMID: 35433642 PMCID: PMC9011048 DOI: 10.3389/fbioe.2022.827386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Corynebacterium glutamicum has been successfully employed for the industrial production of amino acids and other bioproducts, partially due to its native ability to utilize a wide range of carbon substrates. We demonstrated C. glutamicum as an efficient microbial host for utilizing diverse carbon substrates present in biomass hydrolysates, such as glucose, arabinose, and xylose, in addition to its natural ability to assimilate lignin-derived aromatics. As a case study to demonstrate its bioproduction capabilities, L-lactate was chosen as the primary fermentation end product along with acetate and succinate. C. glutamicum was found to grow well in different aromatics (benzoic acid, cinnamic acid, vanillic acid, and p-coumaric acid) up to a concentration of 40 mM. Besides, 13C-fingerprinting confirmed that carbon from aromatics enter the primary metabolism via TCA cycle confirming the presence of β-ketoadipate pathway in C. glutamicum. 13C-fingerprinting in the presence of both glucose and aromatics also revealed coumarate to be the most preferred aromatic by C. glutamicum contributing 74 and 59% of its carbon for the synthesis of glutamate and aspartate respectively. 13C-fingerprinting also confirmed the activity of ortho-cleavage pathway, anaplerotic pathway, and cataplerotic pathways. Finally, the engineered C. glutamicum strain grew well in biomass hydrolysate containing pentose and hexose sugars and produced L-lactate at a concentration of 47.9 g/L and a yield of 0.639 g/g from sugars with simultaneous utilization of aromatics. Succinate and acetate co-products were produced at concentrations of 8.9 g/L and 3.2 g/L, respectively. Our findings open the door to valorize all the major carbon components of biomass hydrolysate by using C. glutamicum as a microbial host for biomanufacturing.
Collapse
Affiliation(s)
- Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Somnath Shinde
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Alberto Rodriguez
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Zohal Wardak
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - John M. Gladden
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Anthe George
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States
| | - Ryan W. Davis
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| | - Arul M. Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| |
Collapse
|
22
|
Meruvu H, Harsa ST. Lactic acid bacteria: isolation-characterization approaches and industrial applications. Crit Rev Food Sci Nutr 2022; 63:8337-8356. [PMID: 35348017 DOI: 10.1080/10408398.2022.2054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current state-of-art research pertaining to lactic acid bacteria (LAB) calls for the screening and isolation of robust LAB strains to achieve holistic exploitation of LAB and their metabolites of marketable importance. Hence it is imperative to comprehend LAB sources, growth requisites, isolation and characterization strategies necessary for featured cataloging and appropriate culturing. This review comprehensively describes various growth media and biomasses used for supporting LAB sustenance, assay procedures needed for the isolation and characterization of LAB strains, and their application in diverse sectors. The various industrial patents and their summarized claims about novel LAB strains isolated and identified, methods and media (used for detection/screening, isolation, adaptation, culturing, preservation, growth improvement), the techniques and/or methodologies supporting LAB fermentation, and applications of produced industrial metabolites in various market scenarios are detailed.
Collapse
Affiliation(s)
- Haritha Meruvu
- CEO, Revathi Hospital, Revathi Firm, Rajahmundry, Andhra Pradesh, India
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sebnem Tellioglu Harsa
- Faculty of Engineering, Department of Food Engineering, İzmir Institute of Technology, Gulbahçe Campus, Urla, İzmir, Turkey
| |
Collapse
|
23
|
Guan C, Yuan Y, Ma Y, Wang X, Zhang C, Lu M, Gu R, Chen D. Development of a novel expression system in lactic acid bacteria controlled by a broad-host-range promoter P srfA. Microb Cell Fact 2022; 21:23. [PMID: 35168614 PMCID: PMC8845276 DOI: 10.1186/s12934-022-01754-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/02/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Latic acid bacteria (LAB) are exploited for development of gene expression system owing to its health promoting properties and a high degree of safety status. Most of the expression systems were constructed in Lactobacillus lactis with inducible promoters. It is necessary to exploit novel promoters to develop LAB host platforms which are indispensable in dairy and health application to satisfy the production demand of increased number of target-genes. Previously, promoter PsrfA had been displayed broad host range and used to construct auto-inducible expression system in B. subtilis and E. coli. In this work, the feasibility of PsrfA in LAB was estimated. RESULTS Plasmid with the green fluorescent protein (GFP) inserting downstream of PsrfA was transformed into L. casei 5257, L. plantarum 97, L. fermentum 087 and Weissella confusa 10, respectively. The recombinant strains grew well and displayed different fluorescence which could be detected by spectrophotometer and laser scanning confocal microscope. Moreover, the promoter activity was strain- specifically influenced by particular carbon and nitrogen sources. Heterologous laccase CotA could be expressed by PsrfA in L. casei 5257-05 and L. plantarum 97-06. By adjusting the pH value from 4.5 to 6.5 during incubation, the CotA activity detected from L. plantarum 97-05 and L. casei 5257-05 was increased by 137.7% and 61.5%, respectively. Finally, the fermentation pH was variably up-regulated along with the production of NADH oxidase which was controlled by the PsrfA and its derivative mutated with core regions. CONCLUSIONS These data suggested that PsrfA was valid for gene expression in different species of LAB. Moreover, PsrfA could be used as an attractive candidate for fine-tuning gene expression in a broad range of prokaryotic expression plants.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yuan Yuan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yan Ma
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Xin Wang
- Shandong Yinfeng Life Science Research Institute, Jinan, 250000, Shandong, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Maolin Lu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
24
|
Tian H, Jing Y, Yu H, Huang J, Yuan H, Lou X, Wang B, Xu Z, Chen C. Effect of alsD deletion and overexpression of nox and alsS on diacetyl and acetoin production by Lacticaseibacillus casei during milk fermentation. J Dairy Sci 2022; 105:2868-2879. [DOI: 10.3168/jds.2021-21163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
|
25
|
Bangar SP, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Lee JY, Styczynski MP. Diverse classes of constraints enable broader applicability of a linear programming-based dynamic metabolic modeling framework. Sci Rep 2022; 12:762. [PMID: 35031616 PMCID: PMC8760257 DOI: 10.1038/s41598-021-03934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Current metabolic modeling tools suffer from a variety of limitations, from scalability to simplifying assumptions, that preclude their use in many applications. We recently created a modeling framework, Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA), that addresses a key gap: capturing metabolite dynamics and regulation while retaining a potentially scalable linear programming structure. Key to this framework's success are the linear kinetics and regulatory constraints imposed on the system. However, while the linearity of these constraints reduces computational complexity, it may not accurately capture the behavior of many biochemical systems. Here, we developed three new classes of LK-DFBA constraints to better model interactions between metabolites and the reactions they regulate. We tested these new approaches on several synthetic and biological systems, and also performed the first-ever comparison of LK-DFBA predictions to experimental data. We found that no single constraint approach was optimal across all systems examined, and systems with the same topological structure but different parameters were often best modeled by different types of constraints. However, we did find that when genetic perturbations were implemented in the systems, the optimal constraint approach typically remained the same as for the wild-type regardless of the model topology or parameterization, indicating that just a single wild-type dataset could allow identification of the ideal constraint to enable model predictivity for a given system. These results suggest that the availability of multiple constraint approaches will allow LK-DFBA to model a wider range of metabolic systems.
Collapse
Affiliation(s)
- Justin Y. Lee
- grid.213917.f0000 0001 2097 4943School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Mark P. Styczynski
- grid.213917.f0000 0001 2097 4943School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
27
|
Di Giacomo S, Toussaint F, Ledesma-García L, Knoops A, Vande Capelle F, Fremaux C, Horvath P, Ladrière JM, Ait-Abderrahim H, Hols P, Mignolet J. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6543703. [PMID: 35254446 PMCID: PMC9300618 DOI: 10.1093/femsre/fuac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
Collapse
Affiliation(s)
- Stefano Di Giacomo
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Frédéric Toussaint
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Florence Vande Capelle
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Christophe Fremaux
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Philippe Horvath
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Jean-Marc Ladrière
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | | | - Pascal Hols
- Corresponding author: Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5 (box L7.07.06), B-1348 Louvain-La-Neuve, Belgium. Tel: +3210478896; Fax: +3210472825; E-mail:
| | | |
Collapse
|
28
|
Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin. Foods 2021; 10:foods10092004. [PMID: 34574114 PMCID: PMC8470351 DOI: 10.3390/foods10092004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.
Collapse
|
29
|
Baldewijns S, Sillen M, Palmans I, Vandecruys P, Van Dijck P, Demuyser L. The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Front Microbiol 2021; 12:705779. [PMID: 34276639 PMCID: PMC8282898 DOI: 10.3389/fmicb.2021.705779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Although the vast majority of women encounters at least one vaginal infection during their life, the amount of microbiome-related research performed in this area lags behind compared to alternative niches such as the intestinal tract. As a result, effective means of diagnosis and treatment, especially of recurrent infections, are limited. The role of the metabolome in vaginal health is largely elusive. It has been shown that lactate produced by the numerous lactobacilli present promotes health by limiting the chance of infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although the causality of this relationship is still under debate. In this review, we aim to bring together information on the role of the vaginal metabolome and microbiome in infections caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least once in their life with a significant proportion of women suffering from the recurrent variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of research limits our understanding of the molecular processes involved and restricts the possibility of developing novel treatment strategies.
Collapse
Affiliation(s)
- Silke Baldewijns
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
30
|
Lactic acid production ability of Lactobacillus sp. from four tropical fruits using their by-products as carbon source. Heliyon 2021; 7:e07079. [PMID: 34136681 PMCID: PMC8180611 DOI: 10.1016/j.heliyon.2021.e07079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
The present work was aimed at studying the technological properties of lactobacilli isolated from four tropical fruits (banana, papaya, pineapple, and orange) sold in Dschang (a city of the Menoua Division, West-Cameroon), as well as their ability to produce lactic acid (LA) from by-products of these fruits. After isolation and preliminary identification, homofermentative isolates were investigated for acidifying, amylolytic, cellulolytic activities as well as exopolysaccharides production. The chemical composition of the by-products was determined prior to fermentation assays and the most promising isolates were identified by 16S rRNA gene sequencing. From the 54 homofermentative lactobacilli obtained, 9 isolates were pre-selected based on their higher acidifying activity in MRS-Glucose medium. They all showed amylolytic activity, with the most important activity (54.26 ± 0.10 μg of reducing sugar/ml/min) recorded by isolate O31. Relatively to their cellulolytic activity, isolate 1B9 showed the best activity, displaying a production rate of 7.98 ± 0.40 μg glucose/ml/min, while none of them produced exopolysaccharides. The proximate analysis showed that the fruit-derived by-products contained proteins (0.40 ± 0.06% DM to 1.54 ± 0.06% DM), carbohydrates (61.75 ± 0.75% DM to 71.94 ± 2.02% DM) that are main nutrient needs for bacterial growth. Banana-derived and pineapple-derived by-products showed the highest LA production rates with values, 26.37 ± 0.05 g/l (isolate 3A5) and 26.29 ± 0.38 g/l (isolate 1B9) respectively after 16 h of fermentation. Based on the principal component analysis, isolates O31, 1B9, 3A5, 3A9 and 4O8 were selected as the most promising isolates and were identified as Lactobacillus plantarum strains. According to the obtained results, lactobacilli from tropical fruits displayed properties of commerical interest and can be promising candidates in the valorisation of by-products from tropical fruits through LA production.
Collapse
|
31
|
Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021; 10:foods10040707. [PMID: 33810435 PMCID: PMC8066995 DOI: 10.3390/foods10040707] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste and byproducts are generated along the entire food processing and storage chain. The large amount of waste deriving from the whole process represents not only a great economic loss but also an important ethical and environmental issue in terms of failure to recycle potentially reusable materials. New, clear strategies are needed to limit the amount of waste produced and, at the same time, promote its enhancement for further conversion and application to different industrial fields. This review gives an overview of the biological approaches used so far to exploit agri-food wastes and byproducts. The application of solid-state fermentation by different microorganisms (fungi, yeasts, bacteria) to produce several value-added products was analyzed, focusing on the exploitation of lactic acid bacteria as workhorses for the production of flavoring compounds.
Collapse
|
32
|
Paulo Vieira C, Pereira da Costa M, de Melo Silva VL, Frensel Delgado K, da Silva Frasão B, Abrantes Elias T, Chifarelli de Oliveira Nunes YE, de Abreu Gloria MB, Conte-Junior CA. Interactive effect of physicochemical and microbial variables on bioactive amines content during storage of probiotic fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Surachat K, Kantachote D, Deachamag P, Wonglapsuwan M. Genomic Insight into Pediococcus acidilactici HN9, a Potential Probiotic Strain Isolated from the Traditional Thai-Style Fermented Beef Nhang. Microorganisms 2020; 9:microorganisms9010050. [PMID: 33375492 PMCID: PMC7823806 DOI: 10.3390/microorganisms9010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Pediococcus acidilactici HN9 is a beneficial lactic acid bacterium isolated from Nhang, a traditional Thai-style fermented beef. In this study, the molecular properties of P. acidilactici HN9 were characterized to provide insights into its potential probiotic activity. Specifically, this work sought to report the complete genome of P. acidilactici HN9 and perform a comparative genome analysis with other bacterial strains belonging to the genus Pediococcus. Genomic features of HN9 were compared with those of all other bacterial Pediococcus strains to examine the adaptation, evolutionary relationships, and diversity within this genus. Additionally, several bioinformatic approaches were used to investigate phylogenetic relationships, genome stability, virulence factors, bacteriocin production, and antimicrobial resistance genes of the HN9 strain, as well as to ensure its safety as a potential starter culture in food applications. A 2,034,522 bp circular chromosome and two circular plasmids, designated pHN9-1 (42,239-bp) and pHN9-2 (30,711-bp), were detected, and used for pan-genome analysis, as well as for identification of bacteriocin-encoding genes in 129 strains belonging to all Pediococcus species. Two CRISPR regions were identified in P. acidilactici HN9, including type II-A CRISPR/CRISPR-associated (Cas). This study provides an in-depth analysis on P. acidilactici HN9, facilitating a better understanding of its adaptability to different environments and its mechanism to maintain genome stability over time.
Collapse
Affiliation(s)
- Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Correspondence:
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand; (D.K.); (P.D.); (M.W.)
| | - Panchalika Deachamag
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand; (D.K.); (P.D.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand; (D.K.); (P.D.); (M.W.)
| |
Collapse
|
34
|
Abstract
Fermentation processes in foods often lead to changes in nutritional and biochemical quality relative to the starting ingredients. Fermented foods comprise very complex ecosystems consisting of enzymes from raw ingredients that interact with the fermenting microorganisms’ metabolic activities. Fermenting microorganisms provide a unique approach towards food stability via physical and biochemical changes in fermented foods. These fermented foods can benefit consumers compared to simple foods in terms of antioxidants, production of peptides, organoleptic and probiotic properties, and antimicrobial activity. It also helps in the levels of anti-nutrients and toxins level. The quality and quantity of microbial communities in fermented foods vary based on the manufacturing process and storage conditions/durability. This review contributes to current research on biochemical changes during the fermentation of foods. The focus will be on the changes in the biochemical compounds that determine the characteristics of final fermented food products from original food resources.
Collapse
|
35
|
Malaka R, Maruddin F, Dwyana Z, Vargas MV. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci Nutr 2020; 8:1657-1664. [PMID: 32180973 PMCID: PMC7063361 DOI: 10.1002/fsn3.1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this research was to determine the optimal medium for Exopolysaccharides (EPS) production by a Lactobacillus delbrueckii subsp. bulgaricus ropy strain isolated from a locally produced commercial fermented milk, in reconstituted skim milk (RSM) 10% (w/v), milk whey (MW), and soy milk whey (SMW), under optimal growth conditions for this strain. Milk whey was made by coagulating fresh milk using papaya latex 3% (v/v); soy milk whey was obtained from tofu household industry. The chemical composition of the substrate media was determined by proximate analysis, and sterilization was accomplished in an autoclave at 121°C for 15 min. Culture media were inoculated with 1% (v/v) of a starter culture of L. delbrueckii subsp. bulgaricus and then incubated at 30°C for 16 hr. EPS production, lactic acid content, cell counting, and pH were determined after the media were cooled at 5°C. Findings showed that on the basis of the growth characteristics of L. delbrueckii subsp. bulgaricus, the best medium for EPS production was RSM 10% (258.60 ± 26.86 mg/L) compared to the milk whey (69.60 ± 9.48 mg/L) and soy milk whey (49.80 ± 9.04 mg/L).
Collapse
Affiliation(s)
- Ratmawati Malaka
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Fatma Maruddin
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Zaraswati Dwyana
- Laboratory of Microbiology Department of Biology Faculty of Mathematic and Natural Sciences Hasanuddin University Makassar Indonesia
| | - Maynor V Vargas
- Laboratory of Chemistry and Applied Biosciences National Technical University (UTN) Alajuela Costa Rica
| |
Collapse
|
36
|
Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods 2020; 170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
|
37
|
Plavec TV, Berlec A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms 2020; 8:E297. [PMID: 32098042 PMCID: PMC7074969 DOI: 10.3390/microorganisms8020297] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria (LAB) have a long history of use in the food industry. Some species are part of the normal human microbiota and have beneficial properties for human health. Their long-standing use and considerable biotechnological potential have led to the development of various systems for their engineering. Together with novel approaches such as CRISPR-Cas, the established systems for engineering now allow significant improvements to LAB strains. Nevertheless, genetically modified LAB (GM-LAB) still encounter disapproval and are under extensive regulatory requirements. This review presents data on the prospects for LAB to obtain 'generally recognized as safe' (GRAS) status. Genetic modification of LAB is discussed, together with problems that can arise from their engineering, including their dissemination into the environment and the spread of antibiotic resistance markers. Possible solutions that would allow the use of GM-LAB are described, such as biocontainment, alternative selection markers, and use of homologous DNA. The use of GM-LAB as cell factories in closed systems that prevent their environmental release is the least problematic aspect, and this is also discussed.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Durán IR, Vanslambrouck S, Chevallier P, Hoesli CA, Laroche G. Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules. Colloids Surf B Biointerfaces 2020; 189:110847. [PMID: 32086024 DOI: 10.1016/j.colsurfb.2020.110847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
The use of polylactic acid (PLA) has attracted growing interest, particularly in recent years, for biomedical applications because of its mechanical properties, biocompatibility, and biodegradability. Despite this, features such as surface hydrophobicity and the absence of suitable functional groups for covalent immobilization of bioactive molecules, make it challenging to endow PLA-based medical devices with additional features and thus broaden their range of applicability. In the present study, we demonstrate the suitability of atmospheric pressure dielectric barrier discharges operating in the Townsend regime as a promising alternative to other surface treatments, such as diazonium and alkali hydrolytic treatments, for carboxyl functionalization of PLA. Chemical changes in PLA surfaces are evaluated by contact angle measurements and by X-ray photoelectron spectroscopy while physical changes are investigated by scanning electron microscopy and atomic force microscopy. The amount of carboxyl groups generated on PLA surfaces is assessed by toluidine blue O assay and substantiated by grafting, through carboxyl groups, a fluorescent probe containing amino functionalities. All of the surface treatments have proven to be very effective in generating carboxylic groups on the PLA surface. Nevertheless, plasma treatment is shown to not degrade the PLA surface, in sharp contrast with diazonium and alkali hydrolytic treatments.
Collapse
Affiliation(s)
- Iván Rodríguez Durán
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, 1065, avenue de la Médecine, Québec City, G1V 0A6, Canada; Axe Médecine Régénératrice, Centre de recherche du CHU de Québec, Hôpital St. François d'Assise, 10, rue de l'Espinay, Québec city, G1L 3L5, Canada
| | - Stéphanie Vanslambrouck
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, 1065, avenue de la Médecine, Québec City, G1V 0A6, Canada; Axe Médecine Régénératrice, Centre de recherche du CHU de Québec, Hôpital St. François d'Assise, 10, rue de l'Espinay, Québec city, G1L 3L5, Canada
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, 1065, avenue de la Médecine, Québec City, G1V 0A6, Canada; Axe Médecine Régénératrice, Centre de recherche du CHU de Québec, Hôpital St. François d'Assise, 10, rue de l'Espinay, Québec city, G1L 3L5, Canada
| | - Corinne A Hoesli
- Stem Cell Bioprocessing Laboratory, Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street, Montreal, H3A 0C5, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, 1065, avenue de la Médecine, Québec City, G1V 0A6, Canada; Axe Médecine Régénératrice, Centre de recherche du CHU de Québec, Hôpital St. François d'Assise, 10, rue de l'Espinay, Québec city, G1L 3L5, Canada.
| |
Collapse
|
39
|
Stedman A, van Vliet AHM, A Chambers M, Gutierrez-Merino J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann N Y Acad Sci 2020; 1467:112-132. [PMID: 32026493 DOI: 10.1111/nyas.14302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom.,The Pirbright Institute, Surrey, United Kingdom
| | | | - Mark A Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Bacteriology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom
| |
Collapse
|
40
|
Towards high-throughput genome engineering in lactic acid bacteria. Curr Opin Biotechnol 2020; 61:181-188. [DOI: 10.1016/j.copbio.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
|
41
|
Vilela A, Bacelar E, Pinto T, Anjos R, Correia E, Gonçalves B, Cosme F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019; 8:E643. [PMID: 31817355 PMCID: PMC6963671 DOI: 10.3390/foods8120643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Flavours and fragrances are especially important for the beverage and food industries. Biosynthesis or extraction are the two main ways to obtain these important compounds that have many different chemical structures. Consequently, the search for new compounds is challenging for academic and industrial investigation. This overview aims to present the current state of art of beverage fragrance biotechnology, including recent advances in sensory and sensor methodologies and statistical techniques for data analysis. An overview of all the recent findings in beverage and food fragrance biotechnology, including those obtained from natural sources by extraction processes (natural plants as an important source of flavours) or using enzymatic precursor (hydrolytic enzymes), and those obtained by de novo synthesis (microorganisms' respiration/fermentation of simple substrates such as glucose and sucrose), are reviewed. Recent advances have been made in what concerns "beverage fragrances construction" as also in their application products. Moreover, novel sensory and sensor methodologies, primarily used for fragrances quality evaluation, have been developed, as have statistical techniques for sensory and sensors data treatments, allowing a rapid and objective analysis.
Collapse
Affiliation(s)
- Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Elisete Correia
- CQ-VR, Chemistry Research Centre, Department of Mathematics, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
42
|
Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese. Food Microbiol 2019; 87:103392. [PMID: 31948633 DOI: 10.1016/j.fm.2019.103392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/04/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023]
Abstract
Genetic diversity and metabolic properties of Lactococcus lactis subsp. lactis were explored using phylogenetic, pan-genomic and metatranscriptomic analysis. The genomes, used in the current study, were available and downloaded from the GenBank which were primarily related with microorganisms isolated from dairy products and secondarily from other foodstuffs. To study the genetic diversity of the microorganism, various bioinformatics tools were employed such as average nucleotide identity, digital DNA-DNA hybridization, phylogenetic analysis, clusters of orthologous groups analysis, KEGG orthology analysis and pan-genomic analysis. The results showed that Lc. lactis subsp. lactis strains cannot be sufficiently separated into phylogenetic lineages based on the 16S rRNA gene sequences and core genome-based phylogenetic analysis was more appropriate. Pan-genomic analysis of the strains indicated that the core, accessory and unique genome comprised of 1036, 3146 and 1296 genes, respectively. Considering the results of pan-genomic and KEGG orthology analyses, the metabolic network of Lc. lactis subsp. lactis was rebuild regarding its carbohydrates' metabolic capabilities. Based on the metatranscriptomic data during the ripening of the Swiss-type Maasdam cheese at 20 °C and 5 °C, it was shown that the microorganism performed mixed acid fermentation producing lactate, formate, acetate, ethanol and 2,3-butanediol. Mixed acid fermentation was more pronounced at higher ripening temperatures. At lower ripening temperatures, the genes involved in mixed acid fermentation were repressed while lactate production remained unaffected resembling to a homolactic fermentation. Comparative genomics and metatranscriptomic analysis are powerful tools to gain knowledge on the genomic diversity of the lactic acid bacteria used as starter cultures as well as on the metabolic activities occurring in fermented dairy products.
Collapse
|
43
|
Kristjansdottir T, Bosma EF, Branco Dos Santos F, Özdemir E, Herrgård MJ, França L, Ferreira B, Nielsen AT, Gudmundsson S. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Microb Cell Fact 2019; 18:186. [PMID: 31665018 PMCID: PMC6821008 DOI: 10.1186/s12934-019-1229-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023] Open
Abstract
Background Lactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of experimental data. Results A genome-scale metabolic model of L. reuteri JCM 1112T was reconstructed and the resulting model, Lreuteri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two glycolytic pathways, the phosphoketolase and Embden–Meyerhof–Parnas pathways, varies considerably between LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific utilization of these pathways in the model. We determined experimentally that the Embden–Meyerhof–Parnas pathway carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering strategies. Conclusion We have constructed a manually curated genome-scale metabolic model of L. reuteri JCM 1112T that has been experimentally parameterized and validated and can accurately predict metabolic behavior of this important platform cell factory.
Collapse
Affiliation(s)
- Thordis Kristjansdottir
- Center for Systems Biology, School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107, Reykjavik, Iceland.,Matis, Vinlandsleid 12, 113, Reykjavik, Iceland
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs., Lyngby, Denmark.,Discovery, R&D, Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group of the Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Emre Özdemir
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs., Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs., Lyngby, Denmark
| | - Lucas França
- Biotrend SA - Biocant Park, Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Bruno Ferreira
- Biotrend SA - Biocant Park, Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs., Lyngby, Denmark
| | - Steinn Gudmundsson
- Center for Systems Biology, School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107, Reykjavik, Iceland.
| |
Collapse
|
44
|
Chen J, Vestergaard M, Shen J, Solem C, Dufva M, Jensen PR. Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria. FEMS Microbiol Lett 2019. [DOI: 10.1093/femsle/fny258s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ABSTRACTStrain development is frequently used to improve the performance and functionality of industrially important microbes. As traditional mutagenesis screen is especially utilized by the food industry to improve strains used in food fermentation, high-throughput and cost-effective screening tools are important in mutant selection. The emerging droplet-based microfluidics technology miniaturizes the volume for cell cultivation and phenotype interrogation down to the picoliter scales, which facilitates screening of microbes for improved phenotypical properties tremendously. In this mini review, we present recent application of the droplet-based microfluidics in microbial strain improvement with a focus on its potential use in the screening of lactic acid bacteria.
Collapse
Affiliation(s)
- Jun Chen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Mike Vestergaard
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jing Shen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
45
|
Parlindungan E, May BK, Jones OAH. Metabolic Insights Into the Effects of Nutrient Stress on Lactobacillus plantarum B21. Front Mol Biosci 2019; 6:75. [PMID: 31544106 PMCID: PMC6730488 DOI: 10.3389/fmolb.2019.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus plantarum B21 is a strain of lactic acid bacteria first isolated from a fermented meat product from Vietnam. It is also a promising biopreservative with potential use in the food industry as it is a source of a novel bacteriocin (Plantacyclin B21AG) which has inhibitory effects against a wide range of species, including several pathogenic and spoilage strains. Nutrient stress is known to increase the survivability, storage stability, and bacteriocin production capability of L. plantarum B21 during industrial processing. It is however, unknown what the underlying biochemical responses that control these abilities are. This study therefore investigates the metabolite profiles of L. plantarum B21 using NMR spectroscopy and GC-MS to further understand the biochemical responses of this strain to various stress events. Unstressed cells were found to use glucose as their primary energy source with high concentrations of metabolites involved in glycolysis and organic acid synthesis, such as lactic acid, acetic acid, propanoic acid, malic acid, and 2-butenedioic acid being present in these cells. In contrast, large numbers of metabolites involved in amino acid metabolism including alanine, glutamic acid, aspartic acid, valine, proline, and norleucine were upregulated in glucose stressed cells, indicating that they were using amino acids as their main source of energy. Differences in levels of fatty acids, particularly octadecenoic acid, tetracosanoic acid, and 7-hexadecenoic acid were also observed between stressed and unstressed cells. The results from this study provide insight on the biochemical response of this bacterial strain to stresses commonly found during industrial processing.
Collapse
Affiliation(s)
- Elvina Parlindungan
- School of Science, RMIT University, Melbourne, VIC, Australia
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Bee K. May
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Oliver A. H. Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Bravo M, Combes T, Martinez FO, Cerrato R, Rey J, Garcia-Jimenez W, Fernandez-Llario P, Risco D, Gutierrez-Merino J. Lactobacilli Isolated From Wild Boar ( Sus scrofa) Antagonize Mycobacterium bovis Bacille Calmette-Guerin (BCG) in a Species-Dependent Manner. Front Microbiol 2019; 10:1663. [PMID: 31417502 PMCID: PMC6683848 DOI: 10.3389/fmicb.2019.01663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/04/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Wildlife poses a significant burden for the complete eradication of bovine tuberculosis (bTB). In particular, wild boar (Sus scrofa) is one of the most important reservoirs of Mycobacterium bovis, the causal agent of bTB. Wild boar can display from mild TB lesions, usually found in head lymph nodes, to generalized TB lesions distributed in different anatomical regions; but rarely clinical signs, which complicates the diagnosis of Mycobacterium bovis infection and bTB control. Among the possibilities for this variability in lesion distribution is the influence of the host-beneficial commensal-primed immune barrier. In this respect, beneficial microbes may delay bTB dissemination as a consequence of an antagonistic competition for nutrients and phagocytes. In order to explore this possibility, we have tested whether typical commensals such as lactobacilli have the capacity to reduce the survival rate of the surrogate M. bovis strain Bacillus Calmette-Guerin (BCG); and to modulate its phagocyte intake. Results: Three Lactobacillus species, L. casei, L. plantarum, and L. salivarius, isolated from wild boar feces displayed a pH-dependent inhibitory activity against BCG and influenced its intake by porcine blood phagocytes in a species-dependent manner. All lactobacilli showed a very significant bactericidal effect against BCG at low pH, but only isolates of L. plantarum and L. casei displayed such antimycobacterial activity at neutral pH. The genomes of these isolates revealed the presence of two-peptide bacteriocins whose precursor genes up-regulate in the presence of BCG cells. Furthermore, L. plantarum reduced significantly the BCG phagocytic intake, whereas L. casei had the opposite effect. L. salivarius had no significant influence on the phagocytic response to BCG. Conclusions: Our in vitro results show that lactobacilli isolated from wild boar antagonize BCG as a consequence of their antimycobacterial activity and a competitive phagocytic response. These findings suggest that commensal bacteria could play a beneficial role in influencing the outcome of bTB dissemination. Further work with lactobacilli as a potential competitive pressure to control bTB will need to take into account the complex nature of the commensal microbiome, the specific immunity of the wild boar and the in vivo infection context with pathogenic strains of M. bovis.
Collapse
Affiliation(s)
- Maria Bravo
- Innovación en Gestión y Conservación de Ungulados SL, Cáceres, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Theo Combes
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Fernando O Martinez
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Rosario Cerrato
- Innovación en Gestión y Conservación de Ungulados SL, Cáceres, Spain
| | - Joaquín Rey
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | - David Risco
- Innovación en Gestión y Conservación de Ungulados SL, Cáceres, Spain
| | - Jorge Gutierrez-Merino
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
47
|
Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
48
|
Arum Dalu KC, Nurhayati N, Jayus J. In Vitro Modulation of Fecal Microflora Growth Using Fermented “Pisang Mas” Banana and Red Guava Juices. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2019. [DOI: 10.12944/crnfsj.7.2.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Probiotic drink like yoghurt from dairy milk is one of the most popular functional food. However, some people are not able to consume dairy milk due to lactose intolerance. Thus, a substitute substrate such as fruit juice, is needed. It refers to prebiotic compounds that are found in some of fruits like banana and guava. The aim of this research was to determine the effect of fermented banana and guava juices on the viability of fecal microflora. The juices were made from banana or red guava fermented by Lactobacillus casei (15% v/v). In vitro test was conducted using indigenous human fecal bacteria (1% w/v). The viability of enteropathogens, lactic acid bacteria (LAB), and total microbes was determined by enumeration as well as the prebiotic index of the fermented juices. The in vitro test results showed that both fermented juices could elevate the total microbes and LAB as compared to control sample. The viability of the total microbes and LAB increased by 2.16 log CFU/mL and 2.90 log CFU/mL for fermented banana juice (FBJ), respectively. The same trend was also observed in fermented guava juice (FGJ) with an increase by 1.92 log CFU/mL for total microbes and 2.99 log CFU/mL for LAB. Interestingly, both fermented juice could decrease the population of most enteropathogens compared to control sample. FBJ could decrease the population of E. coli, Klebsiella sp. and Salmonella as low as 3.78, 3.32, and 1.37 log CFU/mL respectively. Meanwhile, FGJ could drop the number of E. coli (1.44 log CFU/mL), and Klebsiella sp. (1.29 log CFU/mL). Moreover, the prebiotic index for FBJ and FGJ were 2.57 and 2.16. In conclusion, both FBJ and FGJ were potential substrate for probiotic drink and had good effect for fecal microflora health.
Collapse
Affiliation(s)
| | - Nurhayati Nurhayati
- Center for Development of Advanced Sciences and Technology, University of Jember, Jember-68121, Indonesia
| | - Jay Jayus
- Department of Agricultural Products Technology, Faculty of Agricultural Technology, University of Jember, Jember-68121, Indonesia
| |
Collapse
|
49
|
Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol 2019; 103:5243-5257. [PMID: 31030287 PMCID: PMC6570704 DOI: 10.1007/s00253-019-09844-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Regular consumption of fermented dairy products helps maintain a healthy microbiota and prevent gut dysbiosis-linked diseases. The lactic acid bacteria (LAB) present in food enhance the digestibility of proteins, moderate the release of fatty acids, and support human health through inhabiting the gastrointestinal tract. These desirable properties of LAB are attributed, in part, to their metabolic processes involving enzymes such as lipases, proteases, and antibacterial proteins. The LAB strains presenting higher enzymatic activities may offer improved functionality for applications in foods. The first aim of this work was to isolate and identify LAB from diverse dairy products and select those with enhanced enzymatic activities. Secondly, this work aimed to investigate the subcellular organization and identity of these enzymes after semi-purification. Out of the total 137 LAB strains isolated and screened, 50.3% and 61.3% of the strains exhibited lipolytic and proteolytic activities, respectively. Seven strains displaying high enzymatic activities were selected and further characterized for the cellular organization of their lipases, proteases, and antibacterial proteins. The lipolytic and proteolytic activities were exhibited predominantly in the extracellular fraction; whereas, the antibacterial activities were found in various cellular fractions and were capable of inhibiting common undesirable microorganisms in foods. In total, two lipases, seven proteases, and three antibacterial proteins were identified by LC-MS/MS. Characterization of LAB strains with high enzymatic activity has potential biotechnological significance in fermentative processes and in human health as they may improve the physicochemical characteristics of foods and displace strains with weaker enzymatic activities in the human gut microbiota.
Collapse
Affiliation(s)
- Israel García-Cano
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Karen Wang
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Erica Kosmerl
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|