1
|
Cheng Q, Li Z, Li Y, Chen L, Chen D, Zhu J. The Emerging Role and Mechanism of E2/E3 Hybrid Enzyme UBE2O in Human Diseases. Biomedicines 2025; 13:1082. [PMID: 40426910 DOI: 10.3390/biomedicines13051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in determining protein fate, regulating signal transduction, and maintaining cellular homeostasis. Protein ubiquitination, a key post-translational modification, is orchestrated by the sequential actions of three primary enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3), alongside the regulatory influence of deubiquitinases (DUBs) and various cofactors. The process begins with E1, which activates ubiquitin molecules. Subsequently, E2 receives the activated ubiquitin from E1 and transfers it to E3. E3, in turn, recognizes specific target proteins and facilitates the covalent attachment of ubiquitin from E2 to lysine residues on the target protein. Among the E2 enzymes, ubiquitin-conjugating enzyme E2O (UBE2O) stands out as a unique E2-E3 hybrid enzyme. UBE2O directly mediates the ubiquitination of a wide array of substrates, including 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPKα2), MAX interactor 1 (Mxi1), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog (c-Maf), among others. In this narrative review, we will explore the structural characteristics of UBE2O and elucidate its molecular functions. Additionally, we will summarize recent advancements in understanding the role of UBE2O in various tumors, Alzheimer's disease (AD), and metabolic diseases. Finally, we will discuss the potential of targeting UBE2O as a novel therapeutic strategy for the treatment of human diseases.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
- Peking University Institute of Organ Transplantation, Peking University, Beijing 100044, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing 100044, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
- Peking University Institute of Organ Transplantation, Peking University, Beijing 100044, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing 100044, China
| | - Yongjian Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
- Peking University Institute of Organ Transplantation, Peking University, Beijing 100044, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing 100044, China
| | - Lei Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
- Peking University Institute of Organ Transplantation, Peking University, Beijing 100044, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing 100044, China
| | - Dingbao Chen
- Department of Pathology, Peking University People's Hospital, Beijing 100044, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
- Peking University Institute of Organ Transplantation, Peking University, Beijing 100044, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Zhou B, Li L, Zhang F, Huai Q, Zhao L, Tan F, Xue Q, Guo W, Gao S. Real-world long-term outcomes of non-small cell lung cancer patients undergoing neoadjuvant treatment with or without immune checkpoint inhibitors. Chin Med J (Engl) 2025:00029330-990000000-01488. [PMID: 40108795 DOI: 10.1097/cm9.0000000000003551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been included in various neoadjuvant therapy (NAT) regimens for non-small cell lung cancer (NSCLC). However, due to the relatively short period for the use of ICIs in NAT, patients' clinical outcomes with different regimens are uncertain. Our study aims to examine the efficacy of neoadjuvant immunotherapy (NAIT) for NSCLC patients and compare the overall survival (OS) and event-free survival (EFS) of patients receiving different NAT regimens. METHODS This study retrospectively included 308 NSCLC patients treated with different NAT regimens and subsequent surgery in National Cancer Center between August 1, 2016 and July 31, 2022. Kaplan-Meier survival analysis and Cox proportional hazards regression analysis were conducted to evaluate the prognosis of patients. RESULTS With a median follow-up of 27.5 months, the 1-year OS rates were 98.8% and 96.2%, and the 2-year OS rates were 96.6% and 85.8% in patients of the NAIT and neoadjuvant chemotherapy (NACT) group, respectively (hazard ratio [HR], 0.339; 95% confidence interval [CI], 0.160-0.720; P = 0.003). The 1-year EFS rates were 96.0% and 88.0%, and the 2-year EFS rates were 92.0% and 77.7% for patients in the NAIT and NACT groups, respectively (HR, 0.438; 95% CI, 0.276-0.846; P = 0.010). For patients who did not achieve pathological complete response (pCR), significantly longer OS (P = 0.012) and EFS (P = 0.019) were observed in patients receiving NAIT than those receiving NACT. Different NAT regimens had little effect on surgery and the postoperative length of stay (6 [4, 7] days vs. 6 [4, 7] days, Z = -0.227, P = 0.820). CONCLUSIONS NAIT exhibited superior efficacy to NACT for NSCLC, resulting in longer OS and EFS. The OS and EFS benefits were also observed among patients in the NAIT group who did not achieve pCR.
Collapse
Affiliation(s)
- Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Zhang
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qilin Huai
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Guo
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
3
|
Lin H, Hua J, Wang Y, Chen M, Liang Y, Yan L, Zhao W, Luo S, Hong D, Chen X, Pan X, Liu J, Liu Z. Prognostic and predictive values of a multimodal nomogram incorporating tumor and peritumor morphology with immune status in resectable lung adenocarcinoma. J Immunother Cancer 2025; 13:e010723. [PMID: 40050046 PMCID: PMC11887283 DOI: 10.1136/jitc-2024-010723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Current prognostic and predictive biomarkers for lung adenocarcinoma (LUAD) predominantly rely on unimodal approaches, limiting their characterization ability. There is an urgent need for a comprehensive and accurate biomarker to guide individualized adjuvant therapy decisions. METHODS In this retrospective study, data from patients with resectable LUAD (stage I-III) were collected from two hospitals and a publicly available dataset, forming a training dataset (n=223), a validation dataset (n=95), a testing dataset (n=449), and the non-small cell lung cancer (NSCLC) Radiogenomics dataset (n=59). Tumor and peritumor scores were constructed from preoperative CT radiomics features (shape/intensity/texture). An immune score was derived from the density of tumor-infiltrating lymphocytes (TILs) within the cancer epithelium and stroma on hematoxylin and eosin-stained whole-slide images. A clinical score was constructed based on clinicopathological risk factors. A Cox regression model was employed to integrate these scores, thereby constructing a multimodal nomogram to predict disease-free survival (DFS). The adjuvant chemotherapy benefit rate was subsequently calculated based on this nomogram. RESULTS The multimodal nomogram outperformed each of the unimodal scores in predicting DFS, with a C-index of 0.769 (vs 0.634-0.731) in the training dataset, 0.730 (vs 0.548-0.713) in the validation dataset, and 0.751 (vs 0.660-0.692) in the testing dataset. It was independently associated with DFS after adjusting for other clinicopathological risk factors (training dataset: HR=3.02, p<0.001; validation dataset: HR=2.33, p<0.001; testing dataset: HR=2.03, p=0.001). The adjuvant chemotherapy benefit rate effectively distinguished between patients benefiting from adjuvant chemotherapy and those from observation alone (interaction p<0.001). Furthermore, the high-/low-risk groups defined by the multimodal nomogram provided refined stratification of candidates for adjuvant chemotherapy identified by current guidelines (p<0.001). Gene set enrichment analyses using the NSCLC Radiogenomics dataset revealed associations between tumor/peritumor scores and pathways involved in epithelial-mesenchymal transition, angiogenesis, IL6-JAK-STAT3 signaling, and reactive oxidative species. CONCLUSION The multimodal nomogram, which incorporates tumor and peritumor morphology with anti-tumor immune response, provides superior prognostic accuracy compared with unimodal scores. Its defined adjuvant chemotherapy benefit rates can inform individualized adjuvant therapy decisions.
Collapse
Affiliation(s)
- Huan Lin
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Hua
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yumeng Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Mingwei Chen
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Yanting Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - LiXu Yan
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiwei Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Deqing Hong
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xipeng Pan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhou Y, Liu X, Wu B, Li J, Yi Z, Chen C, Wu Y, Liu G, Wang P. AGR, LMR and SIRI are the optimal combinations for risk stratification in advanced patients with non-small cell lung cancer following immune checkpoint blockers. Int Immunopharmacol 2025; 149:114215. [PMID: 39904040 DOI: 10.1016/j.intimp.2025.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Due to drug resistance, a majority of patients with non-small cell lung cancer (NSCLC) experience disease progression following immunotherapy. Therefore, there is an urgent need to develop novel biomarkers to predict the prognosis of NSCLC patients. Clinical data from 544 patients with advanced NSCLC who underwent immune checkpoint blockers (ICBs) at our clinical center were collected in this study. The results indicated that low Albumin-Globulin Ratio (AGR) and Lymphocyte-Monocyte Ratio (LMR) and high Systemic Immune-Inflammation Index (SIRI) were significantly correlated with both poor overall survival (OS) and progression-free survival (PFS) in NSCLC patients (P < 0.01). These three indicators collectively formed the most effective combined model for predicting the prognosis of NSCLC. Importantly, risk stratification based on AGR, LMR and SIRI was better than that based on the TNM stage, and served as an independent predictor of OS and PFS. Notably, the nomogram model developed by risk stratification, sex, age, smoking history, and pathological type demonstrated a good ability to predict the 1 to 5-year OS rates for NSCLC patients. In summary, AGR, LMR, and SIRI represented the optimal combined models for forecasting the prognosis of patients with advanced NSCLC who underwent ICBs, offering promising potential as biomarkers to direct personalized clinical interventions.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Liu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China; The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Biwen Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiajun Li
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Zexin Yi
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Guolong Liu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Zhan T, Wang L, Li Z, Deng H, Huang L. Unraveling the relapse-associated landscape and individualized therapy in stage I lung adenocarcinoma based on immune and mitochondrial metabolism hallmarks via multi-omics analyses. Comput Biol Med 2025; 184:109345. [PMID: 39515270 DOI: 10.1016/j.compbiomed.2024.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is characterized by significant molecular heterogeneity and high recurrence rate even among stage I patients. There is an urgent quest for reliable biomarkers to recognize early-stage patients at high risk and guide potential treatment. Considering the pivotal role of immune and mitochondrial metabolic hallmarks in tumor initiation and progression, we rigorously included four independent cohorts of stage I LUAD patients with or without relapse. A consensus immune and mitochondrial metabolism genes-related signature (IMMS) is then constructed via 101 machine-learning combinations. IMMS classified all patients into high- and low-risk groups and exhibited a leading predicting accuracy compared with 70 previously published signatures. Subsequently, comprehensive analysis of the multi-omics data discovered elevated genomic heterogeneity, cancer stemness, metabolic reprogramming, immune escape, and tolerance to immune therapy in the high-risk group, which promotes the survival and proliferation of tumor cells. After the analysis of multiple drug databases, mitoxantrone is considered a candidate drug for stage I high-risk LUAD patients. The research of single-cell data further supported the tight association between IMMS and tumor cell characteristics. Overall, our study developed a novel signature and emphasized the role of immune escape and metabolic reprogramming hallmarks in recurrence, offering valuable insights into clinical prognosis, molecular mechanism, and individualized therapy for stage I LUAD patients.
Collapse
Affiliation(s)
- Tao Zhan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Second Clinical Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Luyao Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zewei Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Second Clinical Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Huijing Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Second Clinical Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin 2025; 75:10-45. [PMID: 39817679 PMCID: PMC11745215 DOI: 10.3322/caac.21871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025] Open
Abstract
Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2021) and mortality data collected by the National Center for Health Statistics (through 2022). In 2025, 2,041,910 new cancer cases and 618,120 cancer deaths are projected to occur in the United States. The cancer mortality rate continued to decline through 2022, averting nearly 4.5 million deaths since 1991 because of smoking reductions, earlier detection for some cancers, and improved treatment. Yet alarming disparities persist; Native American people bear the highest cancer mortality, including rates that are two to three times those in White people for kidney, liver, stomach, and cervical cancers. Similarly, Black people have two-fold higher mortality than White people for prostate, stomach, and uterine corpus cancers. Overall cancer incidence has generally declined in men but has risen in women, narrowing the male-to-female rate ratio (RR) from a peak of 1.6 (95% confidence interval, 1.57-1.61) in 1992 to 1.1 (95% confidence interval, 1.12-1.12) in 2021. However, rates in women aged 50-64 years have already surpassed those in men (832.5 vs. 830.6 per 100,000), and younger women (younger than 50 years) have an 82% higher incidence rate than their male counterparts (141.1 vs. 77.4 per 100,000), up from 51% in 2002. Notably, lung cancer incidence in women surpassed that in men among people younger than 65 years in 2021 (15.7 vs. 15.4 per 100,000; RR, 0.98, p = 0.03). In summary, cancer mortality continues to decline, but future gains are threatened by rampant racial inequalities and a growing burden of disease in middle-aged and young adults, especially women. Continued progress will require investment in cancer prevention and access to equitable treatment, especially for Native American and Black individuals.
Collapse
Affiliation(s)
- Rebecca L. Siegel
- Cancer Surveillance ResearchAmerican Cancer SocietyAtlantaGeorgiaUSA
| | - Tyler B. Kratzer
- Cancer Surveillance ResearchAmerican Cancer SocietyAtlantaGeorgiaUSA
| | | | - Hyuna Sung
- Cancer Surveillance ResearchAmerican Cancer SocietyAtlantaGeorgiaUSA
| | - Ahmedin Jemal
- Surveillance and Health Equity ScienceAmerican Cancer SocietyAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Fan J, Lin H, Luo J, Chen L. 4‑Methoxydalbergione inhibits the tumorigenesis and metastasis of lung cancer through promoting ferroptosis via the DNMT1/system Xc‑/GPX4 pathway. Mol Med Rep 2025; 31:19. [PMID: 39513605 PMCID: PMC11564907 DOI: 10.3892/mmr.2024.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
Lung cancer is responsible for the highest number of tumor‑related deaths worldwide. A flavonoid extracted from the heartwood of Dalbergia sissoo Roxb., 4‑methoxydalbergione (4‑MD), exhibits potent anticancer activity in multiple malignancies; however, the potential anticancer activity of 4‑MD in lung cancer has not yet been elucidated. In the present study, A549 cells were treated with increasing concentrations of 4‑MD, and cell viability was assessed using a Cell Counting Kit‑8 assay. In addition, colony formation, 5‑ethynyl‑2'‑deoxyuridine, wound healing and Transwell assays were conducted to evaluate cell proliferation, migration and invasion, respectively. Cell morphology was observed using transmission electron microscopy, and ferroptosis was determined using thiobarbituric acid reactive substance, lipid reactive oxygen species (ROS) and iron assays. Moreover, molecular docking was used to verify the potential interaction between 4‑MD and DNA methyltransferase 1 (DNMT1). Tumor‑bearing mice were established and treated with 10 or 30 mg/kg 4‑MD, and tumor volume and weight were recorded. Immunohistochemistry and Prussian blue staining were conducted to examine Ki‑67 expression and iron deposition in tumor tissues, and protein expression was further explored using western blot analysis. The results of the present study revealed that 4‑MD significantly inhibited cell proliferation, migration, invasion and epithelial‑mesenchymal transition in a concentration‑dependent manner. Notably, 4‑MD induced ferroptosis via increased lipid peroxidation, lipid ROS and Fe2+ levels. In addition, it was revealed that 4‑MD can directly bind to DNMT1 to inhibit expression, and inhibit solute carrier family 7 member 11 (SLC7A11; also known as cystine‑glutamate antiporter) and glutathione peroxidase 4 expression. Following DNMT1 overexpression, the observed antitumor activity and ferroptosis‑promoting effects of 4‑MD were partially reversed. Furthermore, 4‑MD significantly inhibited tumor growth in vivo, and reduced tumor volume and weight. In addition, Ki‑67 expression was reduced while iron deposition was increased in the tumor tissues of mice following treatment with 4‑MD. In conclusion, 4‑MD may exhibit anticancer activity through the promotion of DNMT1‑mediated cell ferroptosis. Thus, 4‑MD may have potential as a novel therapeutic agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
8
|
Chen G, Wang S, Zhang Q, Liu J, Zhu W, Song X, Song X. Circulating TERT serves as the novel diagnostic and prognostic biomarker for the resectable NSCLC. Cancer Cell Int 2024; 24:420. [PMID: 39702287 DOI: 10.1186/s12935-024-03605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase and required for cancer development. This study aims to reveal its clinical utility for diagnosis and prognosis of resectable NSCLC. METHODS TERT was quantitatively evaluated by the enzyme-linked immunosorbent assay (ELISA) from 69 patients before and after the surgery. The prognostic value was evaluated by disease-free survival (DFS) and overall survival (OS). RESULTS Circulating TERT in NSCLC patients were significantly higher than that in the healthy group, possessing the AUC of 0.90. Importantly, TERT change between pre- and post- operation was significantly correlated with OS and DFS (p = 0.022, p = 0.046 respectively), acted as the independent prognostic factors for DFS and OS, indicating it can serve as the promising diagnostic and prognostic biomarker for resectable non-small cell lung cancer (NSCLC). CONCLUSIONS TERT change between pre- and post- resection can serve as the promising biomarker for prognosis of resectable NSCLC.
Collapse
Affiliation(s)
- Guanxuan Chen
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji- Yan Road, Jinan, 250117, Shandong Province, PR China
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji- Yan Road, Jinan, 250117, Shandong Province, PR China
- Department of Clinical Laboratory, Jining Public Health Medical Center, Jining, Shandong, PR China
| | - Junyan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Wanqi Zhu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji- Yan Road, Jinan, 250117, Shandong Province, PR China.
| |
Collapse
|
9
|
Jiang Q, Wei Z, Liu P, Li Z, Jiang H, Cao Y, Zhang B, Yan Y, He Y. Global trends and research hotspots in perioperative management of lung cancer: a bibliometric analysis from 2004 to 2024. Front Immunol 2024; 15:1500686. [PMID: 39640262 PMCID: PMC11617563 DOI: 10.3389/fimmu.2024.1500686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This article aims to analyze the current status and research hotspots of literature related to perioperative management of patients with Lung Cancer and provide reference for future research directions. Methods This study conducted a bibliometric analysis of research literature related to perioperative management of Lung Cancer published between 2004 and 2024, retrieved from the Web of Science database. R software and VOSviewer were used for analyzing keyword clusters and research themes, revealing trends and frontiers in this field. Results A total of 4,942 studies on perioperative management of lung cancer were included. In recent years, research in this area has shown a global upward trend, with particular focus on surgical risk assessment, complication prevention, and postoperative management. Perioperative biomarkers before and after surgery have emerged as a central focus due to their impact on diagnosis and treatment. The application of novel therapies, such as targeted drugs and immunotherapy, in perioperative management is also becoming a significant research hotspot. Additionally, China has been a leading contributor to research output in this field, demonstrating strong performance in international collaborations. Conclusion Perioperative management is a critical factor influencing the prognosis of Resectable lung cancer patients. Through a systematic analysis of the current status and research hotspots in perioperative management of lung cancer, this study provides valuable references for future clinical practice and research, particularly regarding the integration of novel therapies to optimize patient outcomes.
Collapse
Affiliation(s)
- Qinling Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zhuheng Wei
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Pingping Liu
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Huiqin Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yilin Cao
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanyuan Yan
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Yulong He
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
10
|
Zhang J, Li C, Li W, Shi Z, Liu Z, Zhou J, Tang J, Ren Z, Qiao Y, Liu D. Mechanism of luteolin against non-small-cell lung cancer: a study based on network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments. Front Oncol 2024; 14:1471109. [PMID: 39582546 PMCID: PMC11582065 DOI: 10.3389/fonc.2024.1471109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Luteolin, a naturally occurring flavonoid compound, demonstrates promising anti-cancer properties. However, its mechanism against non-small-cell lung cancer (NSCLC) remains unknown. This study employed network pharmacology, molecular docking, molecular dynamics simulation (MDS), and in vitro experiments to investigate the potential mechanisms by which luteolin against NSCLC. Methods Initially, the potential targets of luteolin and NSCLC-related targets were identified from public databases such as TCMSP, GeneCards, OMIM, DrugBank, and TTD. Subsequently, the protein-protein interaction (PPI) network screening and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. The binding affinity and stability of luteolin with the core targets were assessed using molecular docking and MDS. Finally, the results were validated by in vitro experiments. Results A total of 56 luteolin targets and 2145 NSCLC-related targets were identified. Six core targets, TP53, EGFR, AKT1, TNF, JUN, and CASP3, were screened via the PPI network. The GO and KEGG analyses indicated that luteolin's activity against NSCLC potentially involves PI3K-Akt, NF-kappa B, and other signaling pathways. Molecular docking revealed that luteolin had high binding affinity with the core targets. MDS confirmed the stable interaction between luteolin and key proteins TP53 and AKT1. in vitro, luteolin significantly inhibited the proliferation and migration of A549 cells, while also inducing apoptosis. In addition, luteolin downregulated the expression of p-Akt (Ser473), MDM2, and Bcl-2 but upregulated the expression of p53 and Bax, which was consistent with the effect of LY294002. Conclusion Luteolin had a good anti-NSCLC effect, and the apoptosis-inducing effect might be related to the Akt/MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Jihang Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Changling Li
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenyi Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenpeng Shi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenguo Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyu Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Tang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zixuan Ren
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Shi Z, Shen Y, Liu X, Zhang S. Sinensetin inhibits the movement ability and tumor immune microenvironment of non-small cell lung cancer through the inactivation of AKT/β-catenin axis. J Biochem Mol Toxicol 2024; 38:e70024. [PMID: 39434434 DOI: 10.1002/jbt.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Although current treatment strategies have improved clinical outcomes of non-small cell lung cancer (NSCLC) patients, side effect and prognosis remain a hindrance. Thus, safer and more effective therapeutical drugs are needed for NSCLC. Sinensetin (Sin) is a flavonoid from citrus fruits, which exhibits antitumor effect on diverse cancers. However, the effect and mechanism of Sin on NSCLC remain unknown. In this study, NSCLC cell lines, and tumor-bearing mice were treated with Sin. The effect and mechanism of Sin were addressed using cell counting kit-8, transwell, enzyme-linked immunosorbent assay, hematoxylin and eosin, immunohistochemistry, and western blot analysis assays in both cell and animal models. Sin reduced the cell viability of A549 and H1299, with the IC50 of 81.46 µM and 93.15 µM, respectively. Sin decreased invaded cell numbers, the expression of N-cadherin and vascular endothelial growth factor A (VEGFA), while increased the E-cadherin level, the cytotoxicity of CD8+ T cells, and the concentration of interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) in NSCLC cells. Mechanistically, Sin declined the expression of protein kinase B (AKT)/β-catenin pathway, which was restored with the application of SC79, an activator of AKT. The inhibitory role of Sin in NSCLC cell proliferation, invasion, epithelial-mesenchymal transition (EMT) and immune escape was reversed by the management of SC79. In vivo, Sin reduced tumor size and weight, and the expression of N-cadherin, VEGFA, and AKT/β-catenin pathway, but enhanced the level of E-cadherin and IFN-γ. Taken together, Sin suppressed cell growth, invasion, EMT and immune escape via AKT/β-catenin pathway in NSCLC.
Collapse
Affiliation(s)
- Zhenliang Shi
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yimeng Shen
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Xin Liu
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Sipei Zhang
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Luan Y, Xian D, Zhao C, Qing X, He H, Zheng K, Song W, Jiang T, Wang W, Duan C. Therapeutic targets for lung cancer: genome-wide Mendelian randomization and colocalization analyses. Front Pharmacol 2024; 15:1441233. [PMID: 39529882 PMCID: PMC11551539 DOI: 10.3389/fphar.2024.1441233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Lung cancer, categorized into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge. The development of drug resistance and the heterogeneity of the disease necessitate the identification of novel therapeutic targets to improve patient outcomes. Methods We conducted a genome-wide Mendelian randomization (MR) and colocalization analysis using a comprehensive dataset of 4,302 druggable genes and cis-expressed quantitative trait loci (cis-eQTLs) from 31,884 blood samples. The study integrated genomic analysis with eQTL data to identify key genes associated with lung cancer risk. Results The analysis revealed five actionable therapeutic targets for NSCLC, including LTB4R, LTBP4, MPI, PSMA4, and TCN2. Notably, PSMA4 demonstrated a strong association with both NSCLC and SCLC risks, with odds ratios of 3.168 and 3.183, respectively. Colocalization analysis indicated a shared genetic etiology between these gene expressions and lung cancer risk. Conclusion Our findings contribute to precision medicine by identifying druggable targets that may be exploited for subtype-specific lung cancer therapies.
Collapse
Affiliation(s)
- Yi Luan
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Desheng Xian
- State Key Laboratory of Chemical Resource Engineering and Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, University of Chemical Technology, Beijing, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering and Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, University of Chemical Technology, Beijing, China
| | - Xin Qing
- Westchina Hospital, Sichuan University, Chengdu, China
| | - Hanlin He
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaixuan Zheng
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Song
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Taijiao Jiang
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjian Wang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Chaohui Duan
- Laboratory Testing and Diagnosis Technology Department of Guangzhou National Laboratory, Clinical Laboratory of Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Li Z, Wu L, Wang C, Wang S, Chen Q, He W. Outcomes After Neoadjuvant Therapy With or Without Immunotherapy Followed By Pneumonectomy in Non-Small Cell Lung Cancer Patients. Ann Thorac Surg 2024:S0003-4975(24)00879-8. [PMID: 39490501 DOI: 10.1016/j.athoracsur.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND There are limited data concerning pneumonectomy after preoperative induction therapy. Our study aimed to evaluate feasibility and safety of pneumonectomy after neoadjuvant immunotherapy in patients with non-small cell lung cancer by assessing postoperative outcomes. METHODS A total of 1187 patients who underwent pneumonectomy for non-small cell lung cancer were retrospectively analyzed from 3 hospitals in China. Propensity score matching was adopted to form a balanced cohort between neoadjuvant therapy and non-neoadjuvant therapy groups. Univariable and multivariable logistic regression analyses were used to identify risk factors for postoperative morbidity. Efficacy and survival were compared for neoadjuvant therapy with or without immunotherapy. RESULTS The neoadjuvant group had larger tumors (4.7 ± 2.2 cm vs 3.9 ± 1.9 cm [P < .001]; cT4, 36.3% vs 19.1% [P < .001]), had a greater rate of N2 metastases (64.5% vs 33.3%; P < .001), and were at a more advanced clinical TNM stage (stage III, 89.4% vs 58.6%; P < .001). No significant difference in postoperative morbidity was observed between the groups before and after propensity score matching (43.5% vs 42.9% [P = .975]; 49.4% vs 41.9% [P = .162]). The complete pathologic response rate of neoadjuvant chemoimmunotherapy was significantly superior to that of chemotherapy alone (27.7% vs 2.0%; P < .001), and no significant difference in postoperative morbidity was observed in neoadjuvant therapy with or without immunotherapy. The neoadjuvant chemoimmunotherapy group also obtained a survival benefit with a 3-year overall survival (79.8% vs 67.5%; P = .001) and a 3-year event-free survival (63.3% vs 41.2%; P = .004). CONCLUSIONS After neoadjuvant therapy with immunotherapy, pneumonectomy can be safely performed in selected patients without increased postoperative morbidity.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Leilei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qiankun Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
14
|
Zhai W, Yang W, Ge J, Xiao X, Wu K, She K, Zhou Y, Kong Y, Wu L, Luo S, Pu X. ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway. Biol Direct 2024; 19:94. [PMID: 39415271 PMCID: PMC11483991 DOI: 10.1186/s13062-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear. METHODS ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays. RESULTS Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway. CONCLUSIONS We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wensheng Yang
- Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 36, Hongqi Road, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Jing Ge
- Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuelian Xiao
- Department of Medical Administration, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Kang Wu
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Kelin She
- Department of Thoracic Surgery, Hunan Provincial Pecople's Hospital, The First Affiliated Hospital of Huan Nomal University, No. 61, Jiefang West Road, Furong District, Changsha, 410013, Hunan, China
| | - Yu Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yi Kong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Shiya Luo
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
15
|
Hu SY, Lin TH, Chen CY, He YH, Huang WC, Hsieh CY, Chen YH, Chang WC. Stephania tetrandra and Its Active Compound Coclaurine Sensitize NSCLC Cells to Cisplatin through EFHD2 Inhibition. Pharmaceuticals (Basel) 2024; 17:1356. [PMID: 39458997 PMCID: PMC11510146 DOI: 10.3390/ph17101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Adjuvant chemotherapy, particularly cisplatin, is recommended for non-small cell lung carcinoma (NSCLC) patients at high risk of recurrence. EF-hand domain-containing protein D2 (EFHD2) has been recently shown to increase cisplatin resistance and is significantly associated with recurrence in early-stage NSCLC patients. Natural products, commonly used as phytonutrients, are also recognized for their potential as pharmaceutical anticancer agents. RESULT In this study, a range of Chinese herbs known for their antitumor or chemotherapy-enhancing properties were evaluated for their ability to inhibit EFHD2 expression in NSCLC cells. Among the herbs tested, Stephania tetrandra (S. tetrandra) exhibited the highest efficacy in inhibiting EFHD2 and sensitizing cells to cisplatin. Through LC-MS identification and functional assays, coclaurine was identified as a key molecule in S. tetrandra responsible for EFHD2 inhibition. Coclaurine not only downregulated EFHD2-related NOX4-ABCC1 signaling and enhanced cisplatin sensitivity, but also suppressed the stemness and metastatic properties of NSCLC cells. Mechanistically, coclaurine disrupted the interaction between the transcription factor FOXG1 and the EFHD2 promoter, leading to a reduction in EFHD2 transcription. Silencing FOXG1 further inhibited EFHD2 expression and sensitized NSCLC cells to cisplatin. CONCLUSIONS S. tetrandra and its active compound coclaurine may serve as effective adjuvant therapies to improve cisplatin efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Shu-Yu Hu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
| | - Tsai-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan;
| | - Yu-Hao He
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
- School of Pharmacy, China Medical University, Taichung 404333, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of internal medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
| |
Collapse
|
16
|
Ocaña-Tienda B, Eroles-Simó A, Pérez-Beteta J, Arana E, Pérez-García VM. Growth dynamics of lung nodules: implications for classification in lung cancer screening. Cancer Imaging 2024; 24:113. [PMID: 39187900 PMCID: PMC11346294 DOI: 10.1186/s40644-024-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Lung nodules observed in cancer screening are believed to grow exponentially, and their associated volume doubling time (VDT) has been proposed for nodule classification. This retrospective study aimed to elucidate the growth dynamics of lung nodules and determine the best classification as either benign or malignant. METHODS Data were analyzed from 180 participants (73.7% male) enrolled in the I-ELCAP screening program (140 primary lung cancer and 40 benign) with three or more annual CT examinations before resection. Attenuation, volume, mass and growth patterns (decelerated, linear, subexponential, exponential and accelerated) were assessed and compared as classification methods. RESULTS Most lung cancers (83/140) and few benign nodules (11/40) exhibited an accelerated, faster than exponential, growth pattern. Half (50%) of the benign nodules versus 26.4% of the malignant ones displayed decelerated growth. Differences in growth patterns allowed nodule malignancy to be classified, the most effective individual variable being the increase in volume between two-year-interval scans (ROC-AUC = 0.871). The same metric on the first two follow-ups yielded an AUC value of 0.769. Further classification into solid, part-solid or non-solid, improved results (ROC-AUC of 0.813 in the first year and 0.897 in the second year). CONCLUSIONS In our dataset, most lung cancers exhibited accelerated growth in contrast to their benign counterparts. A measure of volumetric growth allowed discrimination between benign and malignant nodules. Its classification power increased when adding information on nodule compactness. The combination of these two meaningful and easily obtained variables could be used to assess malignancy of lung cancer nodules.
Collapse
Affiliation(s)
- Beatriz Ocaña-Tienda
- Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Alba Eroles-Simó
- Instituto de Instrumentación para la Imagen Molecular (i3M), Universitat Politécnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| | - Julián Pérez-Beteta
- Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Estanislao Arana
- Department of Radiology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
17
|
Wang S, Wang R, Hu D, Zhang C, Cao P, Huang J, Wang B. Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer. Cancer Cell Int 2024; 24:200. [PMID: 38840243 PMCID: PMC11155022 DOI: 10.1186/s12935-024-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Shun Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Ruohuang Wang
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Caoxu Zhang
- State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics, Department of Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Cao
- Department of Interventional Pulmonology,Anhui Chest Hospital, Hefei, 230022, China
| | - Jie Huang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Baoqing Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
18
|
Goto E, Taki T, Nomura K, Miyakami Y, Miyoshi T, Tane K, Samejima J, Aokage K, Nagamine M, Sakashita S, Sakamoto N, Kojima M, Suzuki K, Tsuboi M, Ishii G. Clinicopathological differences between EGFR mutated and EGFR wild-type lung adenocarcinoma with papillary predominant pattern. Lung Cancer 2024; 192:107830. [PMID: 38805901 DOI: 10.1016/j.lungcan.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVES We aimed to reveal the clinicopathological differences between epidermal growth factor receptor (EGFR)-mutated and wild-type (WT) lung adenocarcinoma (LUAD) focusing on the predominant subtype. METHODS This study included 352 with EGFR mutation and 370 with WT patients in consecutive stage I LUAD classified by the predominant subtype, and their clinicopathological characteristics and prognosis were analyzed. Using the Cancer Genome Atlas Program (TCGA) cohort, we analyzed differences in gene expression between EGFR mutation and WT groups. Furthermore, we performed immunohistochemical evaluations for 46 with EGFR mutation and 47 with WT patients in consecutive stage I papillary predominant adenocarcinoma (PPA). RESULTS Compared to the PPA with WT [n = 115], those with EGFR mutation [n = 99] exhibited smaller invasive size (p = 0.03) and less frequent vessel invasion (p < 0.01). However, PPA with EGFR mutation showed significantly worse 5-ys recurrence-free survival (RFS) rates compared to those with WT (70.6 % versus 83.3 %, p = 0.03). Contrarily, no significant differences were observed in other predominant subtypes. In the TCGA cohort, PPA with EGFR mutation tended to show higher expression of galectin-3, which is associated with tumor metastasis and resistance to anoikis, compared to those with WT (p = 0.06). Immunohistochemical evaluation revealed that galectin-3 expression was significantly higher in PPA with EGFR mutation than in those with WT (p < 0.01). CONCLUSIONS The prognosis of PPA with EGFR mutation proved to be less favorable compared to that with WT, and galectin-3 is highly expressed in EGFR-mutated PPA.
Collapse
Affiliation(s)
- Eisuke Goto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Department of Thoracic Surgery, National Cancer Center Hospital East Japan; Department of General Thoracic Surgery, Juntendo University School of Medicine, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan; Department of General Thoracic Surgery, Juntendo University School of Medicine, Japan
| | - Yuko Miyakami
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Department of Pathology and Laboratory Medicine, Institution of Biomedical Science, Tokushima University Graduated School, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan
| | - Michiko Nagamine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East Japan; Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
| |
Collapse
|
19
|
Wang XY, Wang YJ, Guo BW, Hou ZL, Zhang GX, Han Z, Liu Q, Yao GD, Song SJ. 13-Oxyingenol-dodecanoate inhibits the growth of non-small cell lung cancer cells by targeting ULK1. Bioorg Chem 2024; 147:107367. [PMID: 38626492 DOI: 10.1016/j.bioorg.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.
Collapse
Affiliation(s)
- Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bo-Wen Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
20
|
Yang H, Shi Y, Lin A, Qi C, Liu Z, Cheng Q, Miao K, Zhang J, Luo P. PESSA: A web tool for pathway enrichment score-based survival analysis in cancer. PLoS Comput Biol 2024; 20:e1012024. [PMID: 38717988 PMCID: PMC11078417 DOI: 10.1371/journal.pcbi.1012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
The activation levels of biologically significant gene sets are emerging tumor molecular markers and play an irreplaceable role in the tumor research field; however, web-based tools for prognostic analyses using it as a tumor molecular marker remain scarce. We developed a web-based tool PESSA for survival analysis using gene set activation levels. All data analyses were implemented via R. Activation levels of The Molecular Signatures Database (MSigDB) gene sets were assessed using the single sample gene set enrichment analysis (ssGSEA) method based on data from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), The European Genome-phenome Archive (EGA) and supplementary tables of articles. PESSA was used to perform median and optimal cut-off dichotomous grouping of ssGSEA scores for each dataset, relying on the survival and survminer packages for survival analysis and visualisation. PESSA is an open-access web tool for visualizing the results of tumor prognostic analyses using gene set activation levels. A total of 238 datasets from the GEO, TCGA, EGA, and supplementary tables of articles; covering 51 cancer types and 13 survival outcome types; and 13,434 tumor-related gene sets are obtained from MSigDB for pre-grouping. Users can obtain the results, including Kaplan-Meier analyses based on the median and optimal cut-off values and accompanying visualization plots and the Cox regression analyses of dichotomous and continuous variables, by selecting the gene set markers of interest. PESSA (https://smuonco.shinyapps.io/PESSA/ OR http://robinl-lab.com/PESSA) is a large-scale web-based tumor survival analysis tool covering a large amount of data that creatively uses predefined gene set activation levels as molecular markers of tumors.
Collapse
Affiliation(s)
- Hong Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong, China
| | - Ying Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| | - Chang Qi
- Institute of Logic and Computation, TU Wien, Austria
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Zhang Q, Xia Y, Wang F, Yang D, Liang Z. Induction of ferroptosis by natural products in non-small cell lung cancer: a comprehensive systematic review. Front Pharmacol 2024; 15:1385565. [PMID: 38751790 PMCID: PMC11094314 DOI: 10.3389/fphar.2024.1385565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
22
|
Wang RR, Li MJ, Peng Q, Huang ZY, Wu LL, Xie D. Validation of the 9th edition of the TNM staging system for non-small cell lung cancer with lobectomy in stage IA-IIIA. Eur J Cardiothorac Surg 2024; 65:ezae071. [PMID: 38426334 DOI: 10.1093/ejcts/ezae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES The 9th edition of tumour-node-metastasis (TNM) staging for lung cancer was announced by Prof Hisao Asamura at the 2023 World Conference on Lung Cancer in Singapore. The purpose of this study was to externally validate and compare the latest staging of lung cancer. METHODS We collected 19 193 patients with stage IA-IIIA non-small cell lung cancer (NSCLC) who underwent lobectomy from the Surveillance, Epidemiology and End Results database. Survival analysis by TNM stages was compared using the Kaplan-Meier method and further analysed using univariable and multivariable Cox regression analyses. Receiver operating characteristic curves were used to assess model accuracy, Akaike information criterion, Bayesian information criterion and consistency index were used to compare the prognostic, predictive ability between the current 8th and 9th edition TNM classification. RESULTS The 9th edition of the TNM staging system can better distinguish between IB and IIA patients on the survival curve (P < 0.0001). In both univariable and multivariable regression analysis, the 9th edition of the TNM staging system can differentiate any 2 adjacent staging patients more evenly than the 8th edition. The 9th and the 8th edition TNM staging have similar predictive power and accuracy for the overall survival of patients with NSCLC [TNM 9th vs 8th, area under the curve: 62.4 vs 62.3; Akaike information criterion: 166 182.1 vs 166 131.6; Bayesian information criterion: 166 324.3 vs 166 273.8 and consistency index: 0.650 (0.003) vs 0.651(0.003)]. CONCLUSIONS Our external validation demonstrates that the 9th edition of TNM staging for NSCLC is reasonable and valid. The 9th edition of TNM staging for NSCLC has near-identical prognostic accuracy to the 8th edition.
Collapse
Affiliation(s)
- Rang-Rang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Ming-Jun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Qiao Peng
- School of Medicine, Tongji University, Shanghai, P. R. China
| | - Zhi-Ye Huang
- School of Medicine, Tongji University, Shanghai, P. R. China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
23
|
Abstract
Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2020) and mortality data collected by the National Center for Health Statistics (through 2021). In 2024, 2,001,140 new cancer cases and 611,720 cancer deaths are projected to occur in the United States. Cancer mortality continued to decline through 2021, averting over 4 million deaths since 1991 because of reductions in smoking, earlier detection for some cancers, and improved treatment options in both the adjuvant and metastatic settings. However, these gains are threatened by increasing incidence for 6 of the top 10 cancers. Incidence rates increased during 2015-2019 by 0.6%-1% annually for breast, pancreas, and uterine corpus cancers and by 2%-3% annually for prostate, liver (female), kidney, and human papillomavirus-associated oral cancers and for melanoma. Incidence rates also increased by 1%-2% annually for cervical (ages 30-44 years) and colorectal cancers (ages <55 years) in young adults. Colorectal cancer was the fourth-leading cause of cancer death in both men and women younger than 50 years in the late-1990s but is now first in men and second in women. Progress is also hampered by wide persistent cancer disparities; compared to White people, mortality rates are two-fold higher for prostate, stomach and uterine corpus cancers in Black people and for liver, stomach, and kidney cancers in Native American people. Continued national progress will require increased investment in cancer prevention and access to equitable treatment, especially among American Indian and Alaska Native and Black individuals.
Collapse
Affiliation(s)
- Rebecca L Siegel
- Surveillance Research, American Cancer Society, Atlanta, Georgia, USA
| | | | - Ahmedin Jemal
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Wu Y, Hu L, Zhang S, Zhang H. The Value of Perioperative Immunotherapy for Non-Small Cell Lung Cancer: A Pool- and Meta-Analysis. Technol Cancer Res Treat 2024; 23:15330338241258164. [PMID: 38872482 PMCID: PMC11179512 DOI: 10.1177/15330338241258164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose: This study aimed to analyze the efficacy and safety of neoadjuvant and adjuvant immunotherapies for non-small cell lung cancer (NSCLC). Methods: Electronic literature searches were conducted in PubMed, OVID, Web of SCI, Embase, Cochrane Library, and the Chinese National Knowledge Infrastructure databases. The deadline for literature update and retrieval is February 16, 2024. Studies presented at meetings were also screened. Randomized controlled trials (RCTs) and single-arm trials were included, and the data were extracted according to the inclusion and exclusion criteria. Data analysis was performed using Stata (16.0) software. Results: A total of 5850 patients in 11 RCTs and 6 single-arm trial studies involving neoadjuvant and/or adjuvant immune checkpoint inhibitor (ICI)-based therapies were included. Regarding neoadjuvant therapy, the overall complication rate after surgery reached 35% (95% CI, 0.21-0.49). Higher rates of pathological complete response (OR = 7.83; 95% CI, 5.95-10.31; P < .001) and major pathological response (OR = 5.13; 95% CI, 3.56-7.40; P < .001) were found in the resectable NSCLC patients who received neoadjuvant therapy with ICIs combined with chemotherapy compared with patients treated with chemotherapy alone. Of note, compared with chemotherapy, neoadjuvant ICIs combined with chemotherapy significantly improved the overall survival (OS) (HR = 0.65; 95% CI, 0.52-0.82; P < .001) and event-free survival (EFS) (HR = 0.59; 95% CI, 0.52-0.67; P < .001) in patients with resectable NSCLC. Regarding adjuvant therapy, a lower risk of disease progression or death (HR = 0.78; 95% CI, 0.69-0.90; P < .001) was found in the adjuvant ICI group compared with the adjuvant chemotherapy-alone group. In terms of safety, perioperative immunotherapy combined with chemotherapy did not increase toxicity compared with chemotherapy alone. Conclusion: In patients with resectable NSCLC, perioperative immunotherapy was safe and efficacious. Perioperative immunotherapy combined with chemotherapy improved the pathologic response and EFS/DFS/OS over chemotherapy alone without increasing toxicity.
Collapse
Affiliation(s)
- Yanmeng Wu
- China Medical University, Shenyang, China
| | - Lin Hu
- China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Zhang
- Traditional Chinese Medicine Department, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Fang F, Jin X, Meng J, He J, Wang J, Wang C, Xie S, Shi W. Jiedu Fuzheng decoction improves the proliferation, migration, invasion and EMT of non-small cell lung cancer via the Wnt/β-catenin pathway. Cell Div 2023; 18:22. [PMID: 38104091 PMCID: PMC10725601 DOI: 10.1186/s13008-023-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the effect of Jiedu Fuzheng decoction (JFD) in non-small cell lung cancer (NSCLC) and its potential therapeutic mechanism. RESULTS We prepared JFD-medicated serum from rats and treated NSCLC cells (A549 and NCI-H1650) with 0.5, 1, and 2 mg/mL JFD-medicated serum. CCK-8 and colony formation assays were used to detect cell proliferation. Transwell assays showed that JFD attenuated cell migration and invasion. JFD and SKL2001 (Wnt/β-catenin activator) were simultaneously used to treat NSCLC cells to verify that JFD regulated the biological behavior of NSCLC via Wnt/β-catenin signaling. It was found that 2 mg/mL JFD had the most significant effect on the activity of NSCLC cells. JFD attenuated proliferation and metastasis but increased the proportion of apoptotic cells. At the same time, JFD downregulated N-cadherin, vimentin and β-catenin protein expression in cancer cells. SKL2001 could restore the improvement of JFD on proliferation, metastasis and apoptosis. CONCLUSION This study confirmed that JFD suppressed the occurrence and development of NSCLC by regulating Wnt/β-catenin signaling and provided a novel therapeutic scheme for NSCLC.
Collapse
Affiliation(s)
- Fang Fang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaowei Jin
- Department of Traditional Chinese Medicine, Yunnan Cancer Hospital, Kunming, 650018, Yunnan, People's Republic of China
| | - Jinming Meng
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaqi He
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaxiao Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Changhong Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9, Dongge Road, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Shi
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
26
|
Takada K, Takamori S, Brunetti L, Crucitti P, Cortellini A. Impact of Neoadjuvant Immune Checkpoint Inhibitors on Surgery and Perioperative Complications in Patients With Non-small-cell Lung Cancer: A Systematic Review. Clin Lung Cancer 2023; 24:581-590.e5. [PMID: 37741717 DOI: 10.1016/j.cllc.2023.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Several clinical trials are currently underway to evaluate immune checkpoint inhibitors (ICIs) as neoadjuvant treatment for patients with early-stage non-small-cell lung cancer (NSCLC), and their use in clinical practice is expected to increase in the future. Therefore, a proper assessment of surgical outcomes and perioperative complications after neoadjuvant ICIs is essential to establish recommendations and guidelines. We performed a systematic literature review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (PRISMA), searching the PubMed and Scopus databases from the January 1, 2017, to the July 27, 2023, to identify potentially relevant published trials of neoadjuvant ICIs in patients with reseactable NSCLC with available information on surgical outcomes and perioperative complications. A total of 18 studies were included in the review. The rates of surgery cancellation ranged from 0% to 45.8%. Importantly, adverse events (AEs) were the least reported underlying cause, while disease progression caused from 0% to 75% of cancellations. Surgery delays ranged from 0% to 31.3% with AEs as the most frequently reported underlying cause. However, 6 out of 13 trials (46.2%) reported no surgery delays. Conversion rates from minimally invasive to open chest surgery were available for 7 trials and ranged from 0% to 53.8%. Thirty-day mortality rates ranged from 0% to 5.4%, with 11 out of 16 trials reporting 0%. A few reports described perioperative complications in detail. Considering the limited evidence available, we can preliminarily confirm that preoperative ICIs are safe and well tolerated even from the surgical perspective. Additional details on intraoperative findings from prospective controlled trials are needed to establish and disseminate guidelines and recommendations for thoracic surgeons.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leonardo Brunetti
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Pierfilippo Crucitti
- Thoracic Surgery Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Alessio Cortellini
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK.
| |
Collapse
|
27
|
Chen X, Bai G, Zang R, Song P, Bie F, Huai Q, Li Y, Liu Y, Zhou B, Bie Y, Yang Z, Gao S. Utility of 18F-FDG uptake in predicting major pathological response to neoadjuvant immunotherapy in patients with resectable non‑small cell lung cancer. Transl Oncol 2023; 35:101725. [PMID: 37421908 DOI: 10.1016/j.tranon.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The aim of present study was to investigate the efficiency of 18F-FDG uptake in predicting major pathological response (MPR) in resectable non-small cell lung cancer (NSCLC) patients with neoadjuvant immunotherapy. METHODS A total of 104 patients with stage I-IIIB NSCLC were retrospectively derived from National Cancer Center of China, of which 36 cases received immune checkpoint inhibitors (ICIs) monotherapy (I-M) and 68 cases with ICI combination therapy (I-C). 18F-FDG PET-CT scans were performed at baseline and after neoadjuvant therapy (NAT). Receiver-operating characteristic (ROC) curve analyses were conducted and area under ROC curve (AUC) was calculated for biomarkers including maximum standardized uptake value (SUVmax), inflammatory biomarkers, tumor mutation burden (TMB), PD-L1 tumor proportion score (TPS) and iRECIST. RESULTS Fifty-four resected NSCLC tumors achieved MPR (51.9%, 54/104). In both neoadjuvant I-M and I-C cohorts, post-NAT SUVmax and the percentage changes of SUVmax (ΔSUVmax%) were significantly lower in the patients with MPR versus non-MPR (p < 0.01), and were also negatively correlated with the degree of pathological regression (p < 0.01). The AUC of ΔSUVmax% for predicting MPR was respectively 1.00 (95% CI: 1.00-1.00) in neoadjuvant I-M cohort and 0.94 (95% CI: 0.86-1.00) in I-C cohort. Baseline SUVmax had a statistical prediction value for MPR only in I-M cohort, with an AUC up to 0.76 at the threshold of 17.0. ΔSUVmax% showed an obvious advantage in MPR prediction over inflammatory biomarkers, TMB, PD-L1 TPS and iRECIST. CONCLUSION 18F-FDG uptake can predict MPR in NSCLC patients with neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yifan Bie
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Akinboro O, Drezner N, Amatya A, Runyan J, Fourie-Zirkelbach J, Zhao M, Bi Y, Korsah K, Mixter B, Tang S, Larkins E, Pazdur R, Beaver JA, Singh H. US Food and Drug Administration Approval Summary: Nivolumab Plus Platinum-Doublet Chemotherapy for the Neoadjuvant Treatment of Patients With Resectable Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3249-3259. [PMID: 37141544 PMCID: PMC10256356 DOI: 10.1200/jco.22.02509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 05/06/2023] Open
Abstract
PURPOSE On March 4, 2022, the US Food and Drug Administration (FDA) approved nivolumab plus platinum-doublet chemotherapy for the neoadjuvant treatment of patients with resectable non-small-cell lung cancer (NSCLC). We discuss the FDA's review of the key data and regulatory considerations supporting this approval. PATIENTS AND METHODS The approval was based on the results of CheckMate 816, an international, multiregional, active-controlled trial that randomly assigned 358 patients with resectable NSCLC, stage IB (≥4 cm) to IIIA (N2) per the American Joint Committee on Cancer seventh staging edition to receive either nivolumab plus platinum-doublet or platinum-doublet chemotherapy alone for three cycles before planned surgical resection. The major efficacy end point that supported this approval was event-free survival (EFS). RESULTS At the first planned interim analysis (IA), the hazard ratio (HR) for EFS was 0.63 (95% CI, 0.45 to 0.87; P = .0052; statistical significance boundary = .0262) favoring the nivolumab plus chemotherapy arm; the median EFS was 31.6 months (95% CI, 30.2 to not reached) in the nivolumab plus chemotherapy arm versus 20.8 months (95% CI, 14.0 to 26.7) in the chemotherapy-only arm. At the time of a prespecified IA for overall survival (OS), 26% of patients had died, and the HR for OS was 0.57 (95% CI, 0.38 to 0.87; P = .0079; statistical significance boundary = .0033). Eighty-three percent of patients in the nivolumab-containing arm versus 75% in the chemotherapy-only arm received definitive surgery. CONCLUSION This approval, the first for any regimen for the neoadjuvant treatment of NSCLC in the United States, was supported by a statistically significant and clinically meaningful improvement in EFS with no evidence of detriment in OS or negative impact on patients' receipt and timing of surgery or surgical outcomes.
Collapse
Affiliation(s)
- Oladimeji Akinboro
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Nicole Drezner
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Anup Amatya
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Jin Runyan
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Jeanne Fourie-Zirkelbach
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Miao Zhao
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Youwei Bi
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Kwadwo Korsah
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Bronwyn Mixter
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Shenghui Tang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Erin Larkins
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Richard Pazdur
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Julia A. Beaver
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Harpreet Singh
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
29
|
Sui Q, Hu Z, Jin X, Bian Y, Liang J, Zhang H, Yang H, Lin Z, Wang Q, Zhan C, Chen Z. The genomic signature of resistance to platinum-containing neoadjuvant therapy based on single-cell data. Cell Biosci 2023; 13:103. [PMID: 37291676 PMCID: PMC10249226 DOI: 10.1186/s13578-023-01061-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) becomes the first-line option for advanced tumors, while patients who are not sensitive to it may not benefit. Therefore, it is important to screen patients suitable for NACT. METHODS Single-cell data of lung adenocarcinoma (LUAD) and esophageal squamous carcinoma (ESCC) before and after cisplatin-containing (CDDP) NACT and cisplatin IC50 data of tumor cell lines were analyzed to establish a CDDP neoadjuvant chemotherapy score (NCS). Differential analysis, GO, KEGG, GSVA and logistic regression models were performed by R. Survival analysis were applied to public databases. siRNA knockdown in A549, PC9, TE1 cell lines, qRT-PCR, western-blot, cck8 and EdU experiments were used for further verification in vitro. RESULTS 485 genes were expressed differentially in tumor cells before and after neoadjuvant treatment for LUAD and ESCC. After combining the CDDP-associated genes, 12 genes, CAV2, PHLDA1, DUSP23, VDAC3, DSG2, SPINT2, SPATS2L, IGFBP3, CD9, ALCAM, PRSS23, PERP, were obtained and formed the NCS score. The higher the score, the more sensitive the patients were to CDDP-NACT. The NCS divided LUAD and ESCC into two groups. Based on differentially expressed genes, a model was constructed to predict the high and low NCS. CAV2, PHLDA1, ALCAM, CD9, IGBP3 and VDAC3 were significantly associated with prognosis. Finally, we demonstrated that the knockdown of CAV2, PHLDA1 and VDAC3 in A549, PC9 and TE1 significantly increased the sensitivity to cisplatin. CONCLUSIONS NCS scores and related predictive models for CDDP-NACT were developed and validated to assist in selecting patients who might benefit from it.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
30
|
Lampridis S, Scarci M. Perioperative systemic therapies for non-small-cell lung cancer: Recent advances and future perspectives. Front Surg 2023; 9:1126486. [PMID: 36743902 PMCID: PMC9895369 DOI: 10.3389/fsurg.2022.1126486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
The mainstay of treatment for early-stage non-small-cell lung cancer (NSCLC) is surgical resection. Traditionally, chemotherapy has been used perioperatively in locally extensive disease to improve the oncologic outcomes of surgery, with a 5-year absolute survival benefit of approximately 5%. In recent years, immunotherapy and molecular targeted therapy have shown excellent results in the treatment of locoregionally advanced and metastatic NSCLC, replacing chemotherapy as first-line treatment in certain cases. Consequently, researchers have been increasingly investigating the use of immunotherapy or targeted therapy in combination with surgery for the treatment of early-stage disease. This growing research interest has resulted in several published and ongoing studies of various size and design. In this mini review, we provide a succinct and up-to-date overview of recently published, phase 3 randomized clinical trials on adjuvant and neoadjuvant immunotherapy or targeted therapy for NSCLC. We subsequently discuss some important unresolved clinical issues, including the optimal duration of treatment, scheduling with respect to surgery, and potential combinations of different systemic therapies. Finally, we reference large, randomized, phase 3 studies that are currently in progress and may give answers to those and other clinical questions.
Collapse
Affiliation(s)
- Savvas Lampridis
- Department of Cardiothoracic Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | |
Collapse
|
31
|
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73:17-48. [PMID: 36633525 DOI: 10.3322/caac.21763] [Citation(s) in RCA: 9451] [Impact Index Per Article: 4725.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.
Collapse
Affiliation(s)
- Rebecca L Siegel
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Kimberly D Miller
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Nikita Sandeep Wagle
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Ahmedin Jemal
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Prognostic score and sex-specific nomograms to predict survival in resectable lung cancer: A French nationwide study from the Epithor cohort database. THE LANCET REGIONAL HEALTH. EUROPE 2022; 26:100566. [PMID: 36591560 PMCID: PMC9794974 DOI: 10.1016/j.lanepe.2022.100566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Background Prognostic assessment in patients undergoing cancer treatments is of paramount importance to plan subsequent management. In resectable lung cancer availability of an easy-to use nomogram to predict long-term outcome would be extremely useful to identify high-risk patients in the era of perioperative targeted and immune therapies. Methods We retrieved clinical, surgical and pathological data of all consecutive patients included in Epithor, the database of French Society of Thoracic and Cardiovascular Surgery, and operated on between 2003 and 2020 for non-small cell lung cancer in a curative intent. The primary endpoint was overall survival up to 5 years. We assessed prognostic significance of available variables using Cox modelling, in the whole dataset, and in men and in women separately, and performed temporal validation. Finally, we constructed two sex-specific nomograms. Survivals by fifths of score were assessed in the development and temporal validation sets. Findings The study included 62,633 patients (43,551 men and 19,082 women). Median survival time was 9.2 years. Nine factors had strong prognostic impact and were used to construct nomograms. The optimism-corrected c statistic for the prognostic score was 0.689 in the development sample, and 0.726 (95% CI 0.718-0.735) in the temporal validation sample. All differences between adjacent fifths of score were significant (P < 0.0001). Figures of 3-year OS by fifths of score were 92.2%, 83.0%, 74.3%, 64.0%, and 43.4%, respectively, in the development set and 93.3%, 88.4%, 81.0%, 73.7%, 55.7% in the temporal validation set. Performance of score was maintained when stratifying by stage of diseases. Interpretation In the present work, we report evidence that long-term overall survival after resection of NSCLC can be predicted by an easy to construct and use composite score taking into account both host and tumour related factors. Funding Epithor is funded by FSTCVS.
Collapse
|
33
|
Wang M, Huang H, Xu Z, Li Z, Shen L, Yu Y, Lu S. Proposal for multiple new lesions as complement of hyperprogressive disease in NSCLC patients treated with PD-1/PD-L1 immunotherapy. Lung Cancer 2022; 173:28-34. [PMID: 36116167 DOI: 10.1016/j.lungcan.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Hyperprogressive disease (HPD) is a progression pattern of rapid increase in tumor burden during immunotherapy. However, current HPD definitions are mainly based on the diameter of target lesions. How to take new lesions into account remains unknown. METHODS In this retrospectively analysis, 393 patients received PD-1/PD-L1 inhibitors monotherapy. 237 patients were eligible for HPD evaluation based on tumor growth rate (TGR) ratio, ΔTGR or tumor growth kinetic (TGK) ratio. Among them, 214 patients were eligible for evaluation of new lesions. The impact of new lesions on overall survival (OS) was investigated by Kaplan-Meier methods. The optimal threshold for new lesion number was investigated by one-year time-dependent receiver operating characteristic (ROC) curves. Developing more than one new lesions (n ≥ 2) was defined as multiple new lesions (MNL). New HPD was redefined as both developing MNL and meeting the requirement of current HPD definitions (TGR ratio, ΔTGR or TGK ratio). The survival difference between the newly defined HPD and non-HPD patients was investigated. RESULTS HPD occurred in 5.1-18.1 % patient based on current definitions (TGR ratio, 15.6 %; ΔTGR, 5.1 %; TGK ratio, 18.1 %). However, there is no significant difference between OS of HPD and non-HPD patient. New lesion was associated with a shorter median OS in PD(with or without HPD) patients (6.1 vs 18.9 months, p = 0.001). Time-dependent ROC analysis suggested that the optimal threshold for new lesion number in survival prediction was two. After the redefinition of HPD, New HPD patients had a significantly shorter median OS compared with non-HPD patients (TGR ratio with MNL: 5.6 vs 11.8 months, p < 0.001; ΔTGR with MNL: 5.0 vs 11.4 months, p = 0.034; TGK ratio with MNL: 5.7 vs 12.3 months, p < 0.001; respectively). CONCLUSIONS Current HPD definitions had a better prognostic value when complemented with MNL. MNL should be integrated into the new definition of HPD.
Collapse
Affiliation(s)
- Mengxiao Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Huayan Huang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhangwendi Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lan Shen
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yongfeng Yu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|