1
|
Yu Y, Yang Y, Jia J, Zhou H, Qiu Y, Sun M, Chen H. Changes in microbial composition during flue-cured tobacco aging and their effects on chemical composition: a review. BIORESOUR BIOPROCESS 2025; 12:43. [PMID: 40397057 PMCID: PMC12095124 DOI: 10.1186/s40643-025-00883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
The aging is a crucial stage in tobacco processing, which contributes to the reduction of impurities and irritation, and the stabilization of the internal chemical composition of the leaves. However, it usually takes a long time (2-3 years) for the nature aging process of tobacco (20 °C-30 °C, relative humidity of 65-75%), which seriously affects the processing efficiency of tobacco. Microorganisms play an important role in the change of chemical composition and characteristic aromatic substances of tobacco. Acinetobacter, Sphingomonas Aspergillus, Bacilli, and Pseudonocardia is the main microorganism in the aging process of tobacco, which increasing the aromatic substances (such as alcohols, ketones, and esters) by the action of the enzymes and metabolites, and degrade the harmful components (such as alkaloid, nicotine and nitrosamines in tobacco). This review systematically summarizes recent advancements in understanding the primary microbial composition and the changes in chemical composition during tobacco aging. This knowledge is helpful for screening functional strains, and control the process of tobacco aging by the inoculation of these strains.
Collapse
Affiliation(s)
- Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, No. 218, Pingan Road, Zhengdong-New District, Zhengzhou, 450002, China
| | - Yongfeng Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - JiaTao Jia
- Tianchang International Co., Ltd, Xuchang, 461000, China
| | - Hang Zhou
- College of Tobacco Science, Henan Agricultural University, No. 218, Pingan Road, Zhengdong-New District, Zhengzhou, 450002, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, No. 218, Pingan Road, Zhengdong-New District, Zhengzhou, 450002, China
| | - Mengyao Sun
- College of Tobacco Science, Henan Agricultural University, No. 218, Pingan Road, Zhengdong-New District, Zhengzhou, 450002, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, No. 218, Pingan Road, Zhengdong-New District, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Uddin MJ, Julin K, Overkleeft HS, Johannessen M, Lentz CS. Activity-Based Protein Profiling Identifies an α-Amylase Family Protein Contributing to the Virulence of Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2025; 11:573-583. [PMID: 39916318 PMCID: PMC11915364 DOI: 10.1021/acsinfecdis.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
In search of new putative antimicrobial drug targets in methicillin-resistant Staphylococcus aureus, we aimed to identify and characterize retaining glycosidase activities in this bacterial pathogen. Using activity-based protein profiling (ABPP), a panel of 7 fluorescent probes was screened to detect activities of diverse retaining glycosidase families. Based on this, a cocktail of 3 biotinylated probes (targeting α-glucosidases, β-galactosidases and α-fucosidases) was used for target enrichment and three glycoside hydrolase family proteins were identified by mass-spectrometry: 6-phospho-β-glucosidase (BglA), α-amylase family protein trehalase C (TreC), and autolysin (Atl). The physiological relevance of previously uncharacterized BglA and TreC was addressed in CRISPRi and inhibitor studies with the putative TreC inhibitor α-cyclophellitol-aziridine. Silencing of treC did not affect bacterial growth in rich media, but reduced biofilm formation in vitro, and attenuated virulence during Galleria mellonella infection, warranting future investigations into the biochemical function of this enzyme.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kjersti Julin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mona Johannessen
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Christian S. Lentz
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
3
|
Esemu SN, Nya'Nying SF, Ndip LM, Bessong PO, Tanih NF, Smith SI, Ndip RN. Isolation and characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis in North West Cameroon: public health implications. BMC Res Notes 2024; 17:389. [PMID: 39731175 DOI: 10.1186/s13104-024-07073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen that poses a serious threat to veterinary and public health worldwide. We investigated mastitis milk samples for contamination with MRSA and also characterized the MRSA isolates by investigating antimicrobial resistance and virulence factors. RESULT We confirmed MRSA in 69 of 201 (34.3%) S. aureus isolates recovered from a total of 300 samples. Of the 69 MRSA, 19 (27.5%) were from subclinical cases, while 50 (72.5%) were from clinical cases. The MRSA showed high resistance to penicillin (100%), ampicillin (100%), trimethoprim (69.6%), and tetracycline (69.6%) while susceptibility was observed for gentamicin (100%), vancomycin (95.7%), and ciprofloxacin (91.3%). Most isolates (65.2%, 45/69) were multidrug resistant. Thirteen antibiotypes (A1-A13) were identified and the most prevalent was A8 (TMPRERTETRAMPRPR)). All MRSA produced haemolysins, caseinase, and coagulase. Lipase, gelatinase and lecithinase were found in 97.1%, 94.2% and 91.3% of isolates respectively. Genotyping revealed coa (100%) and spa (68.1%) genes. We recommend educating dairy farmers on the public health implications of consuming unpasteurized raw milk and the implementation of proper hygiene practices in dairy farms.
Collapse
Affiliation(s)
- Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon.
- Laboratory for Emerging Infectious Diseases, University of Buea, Box 63, Buea, Cameroon.
| | - Shantal Fuenbi Nya'Nying
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon
| | - Lucy Mande Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Box 63, Buea, Cameroon
| | - Pascal Obong Bessong
- South African Medical Research Council - University of Venda Antimicrobial Resistance and Global Health Research Unit, Thohoyandou, 0950, South Africa
- Center for Global Health Equity, University of Virginia, Charlottesville, USA
| | - Nicoline Fri Tanih
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Box 63, Buea, Cameroon
| | - Stella Ifeanyi Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Box 63, Buea, Cameroon
| |
Collapse
|
4
|
Kothe CI, Carøe C, Mazel F, Zilber D, Cruz-Morales P, Mohellibi N, Evans JD. Novel misos shape distinct microbial ecologies: opportunities for flavourful sustainable food innovation. Food Res Int 2024; 189:114490. [PMID: 38876584 DOI: 10.1016/j.foodres.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Fermentation is resurgent around the world as people seek healthier, more sustainable, and tasty food options. This study explores the microbial ecology of miso, a traditional Japanese fermented paste, made with novel regional substrates to develop new plant-based foods. Eight novel miso varieties were developed using different protein-rich substrates: yellow peas, Gotland lentils, and fava beans (each with two treatments: standard and nixtamalisation), as well as rye bread and soybeans. The misos were produced at Noma, a restaurant in Copenhagen, Denmark. Samples were analysed with biological and technical triplicates at the beginning and end of fermentation. We also incorporated in this study six samples of novel misos produced following the same recipe at Inua, a former affiliate restaurant of Noma in Tokyo, Japan. To analyse microbial community structure and diversity, metabarcoding (16S and ITS) and shotgun metagenomic analyses were performed. The misos contain a greater range of microbes than is currently described for miso in the literature. The composition of the novel yellow pea misos was notably similar to the traditional soybean ones, suggesting they are a good alternative, which supports our culinary collaborators' sensory conclusions. For bacteria, we found that overall substrate had the strongest effect, followed by time, treatment (nixtamalisation), and geography. For fungi, there was a slightly stronger effect of geography and a mild effect of substrate, and no significant effects for treatment or time. Based on an analysis of metagenome-assembled genomes (MAGs), strains of Staphylococccus epidermidis differentiated according to substrate. Carotenoid biosynthesis genes in these MAGs appeared in strains from Japan but not from Denmark, suggesting a possible gene-level geographical effect. The benign and possibly functional presence of S. epidermidis in these misos, a species typically associated with the human skin microbiome, suggests possible adaptation to the miso niche, and the flow of microbes between bodies and foods in certain fermentation as more common than is currently recognised. This study improves our understanding of miso ecology, highlights the potential for developing novel misos using diverse local ingredients, and suggests how fermentation innovation can contribute to studies of microbial ecology and evolution.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - David Zilber
- Novonesis, Hørsholm, Denmark; Restaurant Noma, Copenhagen, Denmark
| | - Pablo Cruz-Morales
- Yeast Natural Products, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Nacer Mohellibi
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, France
| | - Joshua D Evans
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
5
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
6
|
Maduta CS, McCormick JK, Dufresne K. Vaginal community state types (CSTs) alter environmental cues and production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1). J Bacteriol 2024; 206:e0044723. [PMID: 38334326 PMCID: PMC10955855 DOI: 10.1128/jb.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.
Collapse
Affiliation(s)
- Carla S. Maduta
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Merghni A, Hamdi H, Ben Abdallah M, Al-Hasawi ZM, Al-Quwaie DA, Abid-Essefi S. Detection of Methicillin-Resistant Staphylococcus aureus among Foodborne Pathogenic Strains and Assessment of Their Adhesion Ability and Cytotoxic Effects in HCT-116 Cells. Foods 2023; 12:foods12050974. [PMID: 36900491 PMCID: PMC10001405 DOI: 10.3390/foods12050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
- Correspondence:
| | - Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| | - Marwa Ben Abdallah
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Zaki M. Al-Hasawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
8
|
Jia Y, Liu Y, Hu W, Cai W, Zheng Z, Luo C, Li D. Development of Candida autochthonous starter for cigar fermentation via dissecting the microbiome. Front Microbiol 2023; 14:1138877. [PMID: 36910204 PMCID: PMC9998997 DOI: 10.3389/fmicb.2023.1138877] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanrong Hu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Luo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
9
|
Fernandes A, Ramos C, Monteiro V, Santos J, Fernandes P. Virulence Potential and Antibiotic Susceptibility of S. aureus Strains Isolated from Food Handlers. Microorganisms 2022; 10:2155. [PMID: 36363746 PMCID: PMC9696720 DOI: 10.3390/microorganisms10112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus spp. are common members of the normal human flora. However, some Staphylococcus species are recognised as human pathogens due to the production of several virulence factors and enterotoxins that are particularly worrisome in food poisoning. Since many of Staphylococcal food poisoning outbreaks are typically associated with cross-contamination, the detection of S. aureus on food handlers was performed. Hand swabs from 167 food handlers were analysed for the presence of S. aureus. More than 11% of the samples were positive for S. aureus. All S. aureus strains were isolated and analysed for the presence of virulence and enterotoxin genes, namely, sea, seb, sec, sed, seg, sei, tsst-1 and pvl. The same strains were phenotypically characterised in terms of antibiotic susceptibility using the disc diffusion method and antimicrobial agents from 12 different classes. A low prevalence of antibiotic-resistant strains was found, with 55.6% of the strains being sensitive to all of the antimicrobial agents tested. However, a high prevalence of resistance to macrolides was found, with 44.4% of the strains showing resistance to erythromycin. At least one of the virulence or toxin genes was detected in 61.1% of the strains, and seg was the most prevalent toxin gene, being detected in 44.4% of the strains.
Collapse
Affiliation(s)
- Adriana Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Victor Monteiro
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Paulo Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
10
|
Vidyasagar C, Santhosh Kumar P, Vijayakumar P, Alekya S, Umamahesh K, Sarathi Reddy OV. Comparative structural and functional analysis of the PGU1 protein from Saccharomyces bayanus with other Saccharomyces species. Bioinformation 2022; 18:864-869. [PMID: 36945224 PMCID: PMC10024774 DOI: 10.6026/97320630018464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
An endo-poly-galacturonase (PGU1) gene product is responsible for the pectolytic activity in Saccharomyces bayanus. Therefore, it is of interest to document the comparative structural and functional analysis of the PGU1 protein from Saccharomyces bayanus with those in other Saccharomyces related species. The molecular docking analyses of pectin with the different homology models of PGU1 protein from several Saccharomyces species are reported.
Collapse
Affiliation(s)
| | | | | | - Saggam Alekya
- Department of Biochemistry, S.V. University, Tirupati 517 502, India
| | - Katike Umamahesh
- Department of Biochemistry, S.V. University, Tirupati 517 502, India
| | | |
Collapse
|
11
|
Saravanakumar K, Sriram B, Sathiyaseelan A, Mariadoss AVA, Hu X, Han KS, Vishnupriya V, MubarakAli D, Wang MH. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J Biol Macromol 2021; 182:1409-1418. [PMID: 33965484 DOI: 10.1016/j.ijbiomac.2021.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The present work reported synthesis, characterization, and biocompatibility of starch encapsulated silver nanoparticles (St-PF-AgNPs) and their antibacterial activity. The synthesis of St-PF-AgNPs involved in two steps: (i) synthesis of the biogenic silver nanoparticles using the fungal extracts (PF-AgNPs); and, (ii) encapsulation of starch in PF-AgNPs (St-PF-AgNPs). The surface plasmon resonance was found at 420 nm for the PF-AgNPs while it was at 260 and 420 nm for the St-PF-AgNPs. FTIR spectrum demonstrated the capping and encapsulation of the fungal extracts and starch in PF-AgNPs and St-PF-AgNPs. The XRD and TEM-EDS confirmed the crystalline nature, spherical-shaped , and polydispersed- PF-AgNPs and St-PF-AgNPs with strong signals of Ag. The St-PF-AgNPs showed a Z-average size of 115.2 d.nm and zeta potential of -17.8 (mV) as indicated by DLS and zeta potentials. The cytotoxicity results demonstrated higher toxicity of PF-AgNPs than St-PF-AgNPs in HEK293 cells. The antibacterial activity of St-PF-AgNPs were higher than PF-AgNPs in S. aureus. Overall, this work concluded that the starch encapsulation significantly increased the antibacterial activity of PF-AgNPs and this opens a new avenue for the treatment of bacterial infections through the sustained release of PF-AgNPs to target pathogenic bacterial cells.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bhaskaran Sriram
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | - Xiaowen Hu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ki-Seok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
12
|
Jenkins CL, Bean HD. Dependence of the Staphylococcal Volatilome Composition on Microbial Nutrition. Metabolites 2020; 10:metabo10090347. [PMID: 32867100 PMCID: PMC7569959 DOI: 10.3390/metabo10090347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 01/09/2023] Open
Abstract
In vitro cultivation of staphylococci is fundamental to both clinical and research microbiology, but few studies, to-date, have investigated how the differences in rich media can influence the volatilome of cultivated bacteria. The objective of this study was to determine the influence of rich media composition on the chemical characteristics of the volatilomes of Staphylococcus aureus and Staphylococcus epidermidis. S. aureus (ATCC 12600) and S. epidermidis (ATCC 12228) were cultured in triplicate in four rich complex media (brain heart infusion (BHI), lysogeny broth (LB), Mueller Hinton broth (MHB), and tryptic soy broth (TSB)), and the volatile metabolites produced by each culture were analyzed using headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). When comparing the chemical compositions of the staph volatilomes by the presence versus absence of volatiles produced in each medium, we observed few differences. However, when the relative abundances of volatiles were included in the analyses, we observed that culturing staph in media containing free glucose (BHI and TSB) resulted in volatilomes dominated by acids and esters (67%). The low-glucose media (LB and MHB) produced ketones in greatest relative abundances, but the volatilome compositions in these two media were highly dissimilar. We conclude that the staphylococcal volatilome is strongly influenced by the nutritional composition of the growth medium, especially the availability of free glucose, which is much more evident when the relative abundances of the volatiles are analyzed, compared to the presence versus absence.
Collapse
Affiliation(s)
- Carrie L. Jenkins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence:
| |
Collapse
|
13
|
Bioinformatics analysis of four proteins of Leishmania donovani to guide epitopes vaccine design and drug targets selection. Acta Trop 2019; 191:50-59. [PMID: 30582920 DOI: 10.1016/j.actatropica.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
Abstract
Visceral leishmaniasis (VL) is a serious and widespread parasitic disease caused by Leishmania donovani complex. The threat of this fatal disease continues due to the lack of ideal drugs or vaccines. In this study, we selected Amastin, CaNA2, Kmp-11 and PDI proteins of Leishmania donovani for study, which are VL vaccine candidates or possible drug targets. Eleven bioinformatics tools were used to analyze different aspects of these proteins, including amino acid composition, topology, signal peptide, secondary structure, surface properties, phosphorylation sites and kinases, protein binding sites, 3D homology modeling, B cell epitopes, MHC class Ⅰ and Ⅱ epitopes and protein-protein interactions. Finally, the functionally related amino acid sites and dominant epitopes of these proteins were founded. Some possible relationships between protein structure, phosphorylation sites, protein binding sites and epitopes were also discovered. High flexibility and random coils regions of protein have a tendency to be phosphorylated, bind proteins and present epitopes. Since some phosphorylation sites and their kinases are involved in Leishmania invasion and survival in host cells, they may be potential drug targets. Bioinformatics analysis helps us better understand protein function and find dominant epitopes to guide drug design and vaccine development.
Collapse
|
14
|
Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BMC Infect Dis 2018; 18:560. [PMID: 30424731 PMCID: PMC6234561 DOI: 10.1186/s12879-018-3457-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
Background Methicillin resistant Staphylococcus aureus (MRSA) is recognized worldwide as a leading cause of hospital and community infections. Biofilm formation by MRSA is an extremely important virulence factor to be understood. Our aim was to establish phenotypic and genotypic characterization of virulence factors among 43 MRSA clinical isolates in a Tunisian hospital. Methods We investigated enzymatic profiles, biofilm production and prevalences of genes encoding intracellular adhesion molecules (icaA and icaD), Microbial Surface Components Recognizing Adhesive Matrix Molecules genes (fnbA, fnbB and cna) and exoenzymes genes (geh, sspA and sspB). Results Our findings revealed that caseinase, gelatinase, lipase and lecithinase activities were detected in 100%, 100%, 76.6% and 93.3% of cases respectively. This study showed that 23 strains (76.7%) were slime producers on Congo red medium. Furthermore, 46.5% and 53.5% of isolates were respectively highly and moderately biofilm-forming on polystyrene. Significant association was found between both biofilm tests. PCR detection showed that 74.4%, 18.6%, 69.8%, 65.1% and 74.4% of isolates harbored fnbA, fnbB, icaA, icaD and cna genes respectively. In addition, 34.9%, 18.6% and 30.2% of MRSA strains were found positive for sspA, sspB and geh genes respectively. Further, statistical data showed that the presence of the fnbA and fnbB genes was significantly associated with a high biofilm production on polystyrene. However, no statistical association was observed for the icaA, icaD and cna genes. Conclusions This study indicates that the detection of fnbA and fnbB contributing to the first step of biofilm formation has been predictable of high biofilm production. As studied factors contribute to MRSA virulence, this research could be of value in orienting towards the development of new preventive and therapeutic measures.
Collapse
Affiliation(s)
- Ons Haddad
- Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Monastir, Tunisie. .,Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie.
| | - Abderrahmen Merghni
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Aida Elargoubi
- Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Monastir, Tunisie.,Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Hajer Rhim
- Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Monastir, Tunisie.,Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Yosr Kadri
- Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Monastir, Tunisie.,Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Maha Mastouri
- Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Monastir, Tunisie.,Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| |
Collapse
|
15
|
Hiteshi K, Gupta R. Thermal adaptation of α-amylases: a review. Extremophiles 2014; 18:937-44. [DOI: 10.1007/s00792-014-0674-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/06/2014] [Indexed: 11/24/2022]
|
16
|
Merghni A, Ben Nejma M, Hentati H, Mahjoub A, Mastouri M. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity. Microb Pathog 2014; 73:7-12. [DOI: 10.1016/j.micpath.2014.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/16/2022]
|