1
|
Zhang T, Zhou W, Fan T, Yuan Y, Tang X, Zhang Q, Zou J, Li Y. Lactic acid metabolism: gynecological cancer's Achilles' heel. Discov Oncol 2025; 16:657. [PMID: 40314877 PMCID: PMC12048388 DOI: 10.1007/s12672-025-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Lactic acid is significantly expressed in many cancers, including gynecological cancer, and has become a key regulator of the proliferation, development, metastasis and invasion of these cancers. In clinical and experimental studies, the level of lactic acid in gynecological cancer is closely related to metastasis and invasion, tumor recurrence and poor prognosis. Lactic acid can regulate the internal metabolic pathway of gynecological cancer cells and drive the autonomous role of non-cancer cells in gynecological cancer. In addition to being used as a source of energy metabolism by gynecological cancer cells, lactic acid can also be transported from cancer cells to neighboring cancer cells, stroma and vascular endothelial cells (ECs) to further guide metabolic reprogramming. Lactic acid is also involved in promoting inflammation and angiogenesis in gynecologic tumors. Therefore, we reviewed the mechanisms and recent advances in the production and transport of lactic acid in gynecological cancer. These advances and evidence suggest that targeted lactic acid metabolism is a promising cancer treatment.
Collapse
Affiliation(s)
- Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tingyu Fan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
2
|
Liu K, Wei H, Nong W, Peng H, Li Y, Lei X, Zhang S. Nampt/SIRT2/LDHA pathway-mediated lactate production regulates follicular dysplasia in polycystic ovary syndrome. Free Radic Biol Med 2024; 225:776-793. [PMID: 39489197 DOI: 10.1016/j.freeradbiomed.2024.10.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) content has been shown to contribute to metabolic dysfunction during aging, including polycystic ovary syndrome (PCOS). However, the effect of NAD+ on ovulatory dysfunction in PCOS by regulating glycolysis has not been reported. Based on the observations of granulosa cells (GCs) transcriptome data from the Gene Expression Omnibus (GEO) database, the signal pathways including glycolysis and nicotinate-nicotinamide metabolism were significantly enriched, and most genes of the above pathway like LDHA and SIRT2 were down-regulated in PCOS patients. Therefore, the PCOS rat model was established by combining letrozole with a high-fat diet (HFD), we demonstrate that in vivo supplementation of nicotinamide mononucleotide (NMN) significantly improves the ovulatory dysfunction by facilitating the follicular development, promoting luteal formation, as well the fertility in PCOS rats. Furthermore, target energy metabolomics and transcriptome results showed that NMN supplementation ameliorates the lactate production by activating glycolytic process in the ovary. In vitro, when NAD+ synthesis and SIRT2 expression were inhibited, lactate content in KGN cells was decreased and LDHA expression was significantly inhibited. We confirmed that FK866 can enhance the acetylation of LDHA on 293T cells by Co-immunoprecipitation (Co-IP) assay. We also observed that inhibition of NAD+ synthesis can reduce the activity and increase the apoptosis of KGN cells. Overall, these benefits of NMN were elucidated and the Nampt/SIRT2/LDHA pathway mediated lactate production in granulosa cells played an important role in the improvement of follicular development disorders in PCOS. This study will provide experimental evidence for the clinical application of NMN in the treatment of PCOS in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| | - Huimei Wei
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Gynecology Department, Maoming People's Hospital, Maoming, 525000, China.
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Department of Reproductive Medicine Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Huo Peng
- School of Public Health, Guilin Medical University, Guilin, 541001, China.
| | - Youzhu Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| |
Collapse
|
3
|
Chen J, Chen W, Wang Z, Zhou L, Lin Q, Huang Q, Zheng L, You H, Lin S, Shi Q. PGD: Shared gene linking polycystic ovary syndrome and endometrial cancer, influencing proliferation and migration through glycometabolism. Cancer Sci 2024; 115:2908-2922. [PMID: 38979884 PMCID: PMC11462980 DOI: 10.1111/cas.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.
Collapse
Affiliation(s)
- Jia‐ming Chen
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Wei‐Hong Chen
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Zhi‐yi Wang
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Liang‐Yu Zhou
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qiu‐ya Lin
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qiao‐yi Huang
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Ling‐tao Zheng
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Hui‐jie You
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Shu Lin
- Neuroendocrinology GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centre of Neurological and Metabolic ResearchThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qi‐yang Shi
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| |
Collapse
|
4
|
Doma Sherpa D, Dasgupta S, Mitra I, Kanti Das T, Chakraborty P, Joshi M, Sharma S, Kalapahar S, Chaudhury K. PI3K/AKT signaling alters glucose metabolism in uterine microenvironment of women with idiopathic recurrent spontaneous miscarriage. Clin Chim Acta 2024; 561:119834. [PMID: 38944409 DOI: 10.1016/j.cca.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND This study aims to identify metabolomic signatures in uterine fluid of women with idiopathic recurrent spontaneous miscarriage (IRSM) during window of implantation (WOI). Also, glucose transporters GLUT3 and GLUT4 and proteins of PI3K-Akt signaling pathway in endometrial tissue are assessed. METHODS Paired uterine fluid and endometrial biopsies were collected during WOI from women with IRSM (n = 24) and healthy women with azoospermic male partners as controls (n = 15). NMR metabolomics was used to identify the dysregulated metabolites in uterine fluid of IRSM women. Additionally, proteins and glucose transporters were investigated in the endometrial tissue using immunohistochemistry (IHC) and western blotting. RESULTS Uterine fluid metabolomics indicated eleven metabolites to be significantly downregulated in IRSM. While expression levels of PI3K (p85), PI3K (p110), p-Akt (Thr308), p-Akt (Ser473), GLUT3 and GLUT4 were significantly downregulated in endometrial tissue of these women, p-IKK α/β (Ser176/180) and p-NFkBp65 (Ser536) were significantly increased. CONCLUSION Our findings suggest that dysregulation of PI3K/Akt pathway in the uterine microenvironment could be a likely cause of endometrial dysfunction, thereby affecting implantation. Further studies on the downstream effects of the Akt signaling pathway in-vitro for improved understanding of the Akt-mediated cellular responses in IRSM is, therefore, warranted.
Collapse
Affiliation(s)
- Da Doma Sherpa
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | - Imon Mitra
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | | | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
5
|
Kong FS, Feng J, Yao JP, Lu Y, Guo T, Sun M, Ren CY, Jin YY, Ma Y, Chen JH. Dysregulated RNA editing of EIF2AK2 in polycystic ovary syndrome: clinical relevance and functional implications. BMC Med 2024; 22:229. [PMID: 38853264 PMCID: PMC11163819 DOI: 10.1186/s12916-024-03434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junjie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yinghua Lu
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Guo
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Meng Sun
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Toniyan KA, Malkov AA, Biryukov NS, Gorbacheva EY, Boyarintsev VV, Ogneva IV. The Cellular Respiration of Endometrial Biopsies from Patients with Various Forms of Endometriosis. Int J Mol Sci 2024; 25:3680. [PMID: 38612490 PMCID: PMC11011257 DOI: 10.3390/ijms25073680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Endometriosis is one of the leading pathologies of the reproductive system of women of fertile age, which shows changes in cell metabolism in the lesions. We conducted a study of the cellular respiration according to the polarography and the mRNA content of the main metabolic proteins using qRT-PCR of intraoperative endometrial biopsies from patients in the control group and with different localizations of endometriosis (adenomyosis, endometrioma, pelvic peritoneum). In biopsy samples of patients with endometriomas and pelvic peritoneum endometriotic lesions, the rate of oxygen absorption was significantly reduced, and, moreover, in the extragenital case, there was a shift to succinate utilization. The mRNA content of the cytochrome c, cytochrome c oxidase, and ATP synthase was also reduced, but hexokinase HK2 as well as pyruvate kinase were significantly higher than in the control. These oxidative phosphorylation and gene expression profiles suggest the Warburg effect and a shift in metabolism toward glycolysis. For adenomyosis, on the contrary, cellular respiration was significantly higher than in the control group due to the terminal region of the respiratory chain, ATP synthase, and its mRNA was increased as well. These data allow us to suggest that the therapeutic strategies of endometriosis based on modulation energy metabolism should take lesion localization into account.
Collapse
Affiliation(s)
- Konstantin A. Toniyan
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
| | - Valery V. Boyarintsev
- Emergency and Extreme Medicine Department, FGBU DPO CGMA UDP RF, 121359 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
7
|
Yang X, A M, Gegen T, Daoerji B, Zheng Y, Wang A. PHLPP1 inhibits the growth and aerobic glycolysis activity of human ovarian granular cells through inactivating AKT pathway. BMC Womens Health 2024; 24:25. [PMID: 38184561 PMCID: PMC10771674 DOI: 10.1186/s12905-023-02872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphologic features, and PCOS is associated with infertility. PH domain Leucine-rich repeat Protein Phosphatase 1 (PHLPP1) has been shown to regulate AKT. The aim of present study is to investigate the role of PHLPP1 in PCOS. METHODS The expression levels of PHLPP1 in dihydrotestosterone (DHT)-treated human ovarian granular KGN cells were determined by qRT-PCR and Western blot. PHLPP1 was silenced or overexpressed using lentivirus. Cell proliferation was detected by CCK-8. Apoptosis and ROS generation were analyzed by flow cytometry. Glycolysis was analyzed by measuring extracellular acidification rate (ECAR). RESULTS DHT treatment suppressed proliferation, promoted apoptosis, enhanced ROS, and inhibited glycolysis in KGN cells. PHLPP1 silencing alleviated the DHT-induced suppression of proliferation and glycolysis, and promotion of apoptosis and ROS in KGN cells. PHLPP1 regulated cell proliferation and glycolysis in human KGN cells via the AKT signaling pathway. CONCLUSIONS Our results showed that PHLPP1 mediates the proliferation and aerobic glycolysis activity of human ovarian granular cells through regulating AKT signaling.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Min A
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Department of Urology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Tana Gegen
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Badema Daoerji
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Yue Zheng
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Aiming Wang
- Department of Obstetrics and Gynaecology, Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
8
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
9
|
Gu R, Dai F, Xiang C, Chen J, Yang D, Tan W, Wang Z, Liu H, Cheng Y. BMP4 participates in the pathogenesis of PCOS by regulating glucose metabolism and autophagy in granulosa cells under hyperandrogenic environment. J Steroid Biochem Mol Biol 2023; 235:106410. [PMID: 37858799 DOI: 10.1016/j.jsbmb.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine disease characterized by ovulation dysfunction with multiple etiologies and manifestations, and it is widely believed that the disorders of hyper-androgen and glucose metabolism play a key role in its progression. There has been evidence that bone morphogenetic protein 4 (BMP4) is essential for the regulation of granulosa cells, but whether it regulates metabolism level of granulosa cells under hyperandrogenic environment remains unclear. In this study, Gene Expression Omnibus, clinical data and serum of PCOS patient were collected to detect androgen and BMP4 levels. KGN cells exposed to androgens as a model for simulating PCOS granulosa cells. Lactate/pyruvate kits, and Extracellular Acidification Rate and Oxygen Consumption Rate assay were performed to detect glycolysis and autophagy levels of granulosa cells. Lentivirus infection was used to investigate the effects of BMP4 on granulosa cells. RNA-seq were performed to explore the special mechanism. We found that BMP4 was increased in PCOS patients with hyper-androgen and granulosa cells with dihydrotestosterone treatment. Mechanically, on the one hand, hyperandrogenemia can up-regulate BMP4 secretion and induce glycolysis and autophagy levels. On the other hand, we found that hyperandrogenic-induced YAP1 upregulation may mediate BMP4 to increase glycolysis level and decrease autophagy, which plays a protective role in granulosa cells to ensure subsequent energy utilization and mitochondrial function. Overall, we innovated on the protective effect of BMP4 on glycolysis and autophagy disorders induced by excessive androgen in granulosa cells. Our study will provide guidance for future understanding of PCOS from a metabolic perspective and for exploring treatment options.
Collapse
Affiliation(s)
- Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Chunrong Xiang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
10
|
Jing YX, Li HX, Yue F, Li YM, Yu X, He JJ, Zhang XH. N6-methyladenosine demethylase FTO related to hyperandrogenism in PCOS via AKT pathway. Gynecol Endocrinol 2023; 39:2276167. [PMID: 37931646 DOI: 10.1080/09513590.2023.2276167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) was known as the common endocrine disease in women, featured as hyperandrogenism, ovulation disorders, etc. Fat mass and obesity-associated protein (FTO), a m6A demethylase, is abnormal in the occurrence of ovarian diseases. However, the mechanism of FTO in the pathogenesis of PCOS is still unclear. METHODS The level of FTO in clinical samples, PCOS rat with hyperandrogenism and granulosa cells (GCs) lines effected by DHT were investigated by ELISA, qRT-PCR, WB, and IHC, while m6A RNA methylation level was studied by m6A Colorimetric and androgen level was tested through ELISA. Changes in steroid hormone synthetase and androgen receptor (AR)/prostate-specific antigen (PSA) levels in vitro were visualized by WB after transient transfection silenced FTO. The effect of DHT combined with FTO inhibitor meclofenamic acid (MA) on FTO, AR/PSA, and AKT phosphorylation were also demonstrated by WB. The co-localization of FTO and AR in KGN cells was analyzed by confocal microscopy, and the physiological interaction between FTO and AR was studied by Co-IP assay. The effect of FTO-specific inhibitor MA, AKT phosphorylation inhibitor LY294002, and the combined them on GCs proliferation and cell cycle were evaluated by drug combination index, EDU assay, and flow cytometry analysis. RESULTS FTO expression was upregulated in follicular fluid and GCs in PCOS patients clinically. The high FTO expression in patients was negative with the level of m6A, but positive with the level of androgen. The upregulation of FTO was accompanied with a decrease in the level of m6A in PCOS rat with hyperandrogenism. Dihydrotestosterone (DHT) promoted the FTO expression and inhibited m6A content as a dose-dependent way in vitro. In contrast, suppression of FTO with siRNA attenuated the expression of steroid hormone synthetase such as CYP11A1, CYP17A1, HSD11B1, HSD3B2 except CYP19A1 synthetase, ultimately inducing the decrease of androgen level. Suppression of FTO also decreased the biological activity of androgen through downregulation AR/PSA. MA treatment as the specific FTO antagonist decreased cell survival in time- and dose-dependent way in GCs lines. Correspondingly, MA treatment decreased the expression of FTO, AR/PSA expression, and AKT phosphorylation in the presence of DHT stimulation. Additionally, we also speculate there is a potential relation between FTO and AR according to FTO was co-localized and interacted with AR in KGN cells. Compared with AKT phosphorylation inhibitor LY294002 or MA alone, LY294002 combined with MA synergistically inhibited cell survival and increased G2/M phase arrest in GC line. CONCLUSIONS We first evaluated the correlation of FTO and m6A in PCOS clinically, and further explored the mechanism between FTO and hyperandrogenism in PCOS animal and cell models. These findings contributed the potential therapy by targeting the FTO for hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Yuan-Xue Jing
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Hong-Xing Li
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Feng Yue
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Yan-Mei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Xiao Yu
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Jia-Jing He
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Xue-Hong Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| |
Collapse
|
11
|
Pak JN, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Khil JH, Shim B, Kim B, Kim SH. Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells. Phytother Res 2023; 37:4224-4235. [PMID: 37235481 DOI: 10.1002/ptr.7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
To elucidate the underlying antitumor mechanism of lambertianic acid (LA) derived from Pinus koraiensis, the role of cancer metabolism related molecules was investigated in the apoptotic effect of LA in DU145 and PC3 prostate cancer cells. MTT assay for cytotoxicity, RNA interference, cell cycle analysis for sub G1 population, nuclear and cytoplasmic extraction, lactate, Glucose and ATP assay by ELISA, Measurement of reactive oxygen species (ROS) generation, Western blotting, and immunoprecipitation assay were conducted in DU145 and PC3 prostate cancer cells. Herein LA exerted cytotoxicity, increased sub G1 population and attenuated the expression of pro-Caspase3 and pro-poly (ADP-ribose) polymerase (pro-PARP) in DU145 and PC3 cells. Also, LA reduced the expression of lactate dehydrogenase A (LDHA), glycolytic enzymes such as hexokinase 2 and pyruvate kinase M2 (PKM2) with reduced production of lactate in DU145 and PC3 cells. Notably, LA decreased phosphorylation of PKM2 on Tyr105 and inhibited the expression of p-STAT3, cyclin D1, C-Myc, β-catenin, and p-GSK3β with the decrease of nuclear translocation of p-PKM2. Furthermore, LA disturbed the binding of p-PKM2 and β-catenin in DU145 cells, which was supported by Spearman coefficient (0.0463) of cBioportal database. Furthermore, LA generated ROS in DU145 and PC3 cells, while ROS scavenger NAC (N-acetyl L-cysteine) blocked the ability of LA to reduce p-PKM2, PKM2, β-catenin, LDHA, and pro-caspase3 in DU145 cells. Taken together, these findings provide evidence that LA induces apoptosis via ROS generation and inhibition of PKM2/β-catenin signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Ji-Na Pak
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Ho Khil
- Institute of Sports Science, Kyung Hee University, Yongin, Republic of Korea
| | - Bumsang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Siemers KM, Klein AK, Baack ML. Mitochondrial Dysfunction in PCOS: Insights into Reproductive Organ Pathophysiology. Int J Mol Sci 2023; 24:13123. [PMID: 37685928 PMCID: PMC10488260 DOI: 10.3390/ijms241713123] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, but relatively common endocrine disorder associated with chronic anovulation, hyperandrogenism, and micro-polycystic ovaries. In addition to reduced fertility, people with PCOS have a higher risk of obesity, insulin resistance, and metabolic disease, all comorbidities that are associated with mitochondrial dysfunction. This review summarizes human and animal data that report mitochondrial dysfunction and metabolic dysregulation in PCOS to better understand how mitochondria impact reproductive organ pathophysiology. This in-depth review considers all the elements regulating mitochondrial quantity and quality, from mitochondrial biogenesis under the transcriptional regulation of both the nuclear and mitochondrial genome to the ultrastructural and functional complexes that regulate cellular metabolism and reactive oxygen species production, as well as the dynamics that regulate subcellular interactions that are key to mitochondrial quality control. When any of these mitochondrial functions are disrupted, the energetic equilibrium within the cell changes, cell processes can fail, and cell death can occur. If this process is ongoing, it affects tissue and organ function, causing disease. The objective of this review is to consolidate and classify a broad number of PCOS studies to understand how various mitochondrial processes impact reproductive organs, including the ovary (oocytes and granulosa cells), uterus, placenta, and circulation, causing reproductive pathophysiology. A secondary objective is to uncover the potential role of mitochondria in the transgenerational transmission of PCOS and metabolic disorders.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Physician Scientist (MD/Ph.D.) Program, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Abigail K. Klein
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Lee Medical Building, 414 E. Clark St., Sioux Falls, SD 57069, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
13
|
Zhong X, Li Y, Liang W, Hu Q, Zeng A, Ding M, Chen D, Xie M. Clinical and metabolic characteristics of endometrial lesions in polycystic ovary syndrome at reproductive age. BMC Womens Health 2023; 23:236. [PMID: 37149578 PMCID: PMC10164315 DOI: 10.1186/s12905-023-02339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/08/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND We aimed to explore the clinical and metabolic characteristics in polycystic ovary syndrome (PCOS) patients with different endometrial lesions. METHODS 234 PCOS patients who underwent hysteroscopy and endometrial biopsy were categorized into four groups: (1) normal endometrium (control group, n = 98), (2) endometrial polyp (EP group, n = 92), (3) endometrial hyperplasia (EH group, n = 33), (4) endometrial cancer (EC group, n = 11). Serum sex hormone levels, 75 g oral glucose tolerance test, insulin release test, fasting plasma lipid, complete blood count and coagulation parameters were measured and analyzed. RESULTS Body mass index and triglyceride level of the EH group were higher while average menstrual cycle length was longer in comparison with the control and EP group. Sex hormone-binding globulin (SHBG) and high density lipoprotein were lower in the EH group than that in the control group. 36% of the patients in the EH group suggested obesity, higher than the other three groups. Using multivariant regression analysis, patients with free androgen index > 5 had higher risk of EH (OR 5.70; 95% CI 1.05-31.01), while metformin appeared to be a protective factor for EH (OR 0.12; 95% CI 0.02-0.80). Metformin and hormones (oral contraceptives or progestogen) were shown to be protective factors for EP (OR 0.09; 95% CI 0.02-0.42; OR 0.10; 95% CI 0.02-0.56). Hormones therapy appeared to be a protective factor for EC (OR 0.05; 95% CI 0.01-0.39). CONCLUSION Obesity, prolonged menstrual cycle, decreased SHBG, and dyslipidemia are risk factors for EH in patients with PCOS. Oral contraceptives, progestogen and metformin are recommended for prevention and treatment of endometrial lesions in PCOS patients.
Collapse
Affiliation(s)
- Xiaozhu Zhong
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weiying Liang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiyue Hu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Anqi Zeng
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Miao Ding
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Dongmei Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Meiqing Xie
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Wu X, Zhang K, Zhong X, Huo X, Zhang J, Tian W, Yang X, Zhang Y, Wang Y. Androgens in endometrial carcinoma: the killer or helper? J Endocrinol Invest 2023; 46:457-464. [PMID: 36583833 PMCID: PMC9938034 DOI: 10.1007/s40618-022-01916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of this review is to discuss the role of androgens in the progression of endometrial carcinoma (EC) with particular focus on the different kinds of androgenic hormones, androgen receptor (AR) and intracrine androgen metabolism. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to androgens and EC were reviewed. RESULTS There are different kinds of androgenic hormones, and different kinds of androgens may have different effects. Elevated androgens (especially testosterone) have been associated with an increased EC risk in postmenopausal women. 5α-reductases (5α-Reds) and 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2) pathway may inhibit the progression of EC mediated by dihydrotestosterone (DHT), but aromatases stimulate further progression of EC. The most of studies accessing the prognostic value of AR have found that AR expression may be a favorable prognostic indicator. CONCLUSION Androgens may have both oncogenic and tumor suppressive roles. Androgen-specific biases in metabolism and the expression of AR may contribute to the different prognosis of patients with EC.
Collapse
Affiliation(s)
- X Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - K Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Zhong
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - X Huo
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - J Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - W Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Mao C, Liu X, Guo SW. Decreased Glycolysis at Menstruation is Associated with Increased Menstrual Blood Loss. Reprod Sci 2023; 30:928-951. [PMID: 36042151 DOI: 10.1007/s43032-022-01066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
Heavy menstrual bleeding (HMB) is common and severely affects the quality of life of the afflicted women. While HMB is known to be caused by impaired endometrial repair after menstruation, its more proximate cause remains unknown. To investigate whether glycolysis plays any role in endometrial repair and thus HMB, we conducted two mouse experiments using a mouse model of simulated menstruation. We performed immunohistochemistry analyses of proteins involved in glycolysis as well as pro- and anti-inflammatory cytokines in endometrium from decidualized and non-decidualized uterine horns. We also assessed the extent of endometrial repair by staging endometrial morphology from decidualization to full repair using histological scoring of uterine sections and quantitated the amount of menstrual blood loss (MBL). In addition, we employed the scratch assay and the CCK-8 assay to evaluate the effect of glycolysis suppression on cellular migration and proliferation, respectively. Finally, we performed an immunohistochemistry analysis of HK2 in endometrium from women with adenomyosis who experienced either moderate/heavy or excessive MBL. We found that endometrial repair coincided with increased glycolysis in endometrium and glycolysis suppression delayed endometrial repair, resulting in increased MBL. Additionally, glycolysis suppression significantly inhibited the proliferative and migratory capability of endometrial cells, and disrupted normal endometrial repair even when hypoxia was maintained. Women with adenomyosis who experienced excessive MBL had significantly lower HK2 staining than those who experienced moderate/heavy MBL. Thus, our study highlights the importance of glycolysis as well as inflammation in optimal endometrial repair, and provides clues for the cause of HMB in women with adenomyosis.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Department of Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China. .,Research Institute, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
17
|
Huang P, Fan X, Yu H, Zhang K, Li H, Wang Y, Xue F. Glucose metabolic reprogramming and its therapeutic potential in obesity-associated endometrial cancer. J Transl Med 2023; 21:94. [PMID: 36750868 PMCID: PMC9906873 DOI: 10.1186/s12967-022-03851-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/24/2022] [Indexed: 02/09/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer that endangers women health. Although substantial progresses of EC management have been achieved in recent years, the incidence of EC still remains high. Obesity has been a common phenomenon worldwide that increases the risk of EC. However, the mechanism associating obesity and EC has not been fully understood. Metabolic reprogramming as a remarkable characteristic of EC is currently emerging. As the primary factor of metabolic syndrome, obesity promotes insulin resistance, hyperinsulinemia and hyperglycaemia. This metabolic disorder remodels systemic status, which increases EC risk and is related with poor prognosis. Glucose metabolism in EC cells is complex and mediated by glycolysis and mitochondria to ensure energy requirement. Factors that affect glucose metabolism may have an impact on EC initiation and progression. In this study, we review the glucose metabolic reprogramming of EC not only systemic metabolism but also inherent tumor cell metabolism. In particular, the role of glucose metabolic regulation in malignant properties of EC will be focused. Understanding of metabolic profile and glucose metabolism-associated regulation mechanism in EC may provide novel perspective for treatment.
Collapse
Affiliation(s)
- Pengzhu Huang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangqin Fan
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfei Yu
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Li T, Zhang T, Wang H, Zhang Q, Gao H, Liu R, Yin C. The ADMA-DDAH1 axis in ovarian apoptosis of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2023; 225:106180. [PMID: 36243205 DOI: 10.1016/j.jsbmb.2022.106180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) mainly degrades asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor. Emerging evidence suggested that plasma ADMA is accumulated in patients with polycystic ovary syndrome (PCOS). However, ADMA-DDAH1 involvement in PCOS pathogenesis is unclear. Here, we used dehydroepiandrosterone (DHEA)-induced PCOS rats and the ovarian granulosa cell line KGN to investigate the effect of the ADMA-DDAH1 pathway on ovarian apoptosis. Moreover, we also quantified the ADMA levels and redox status in human serum specimens, Sprague Dawley rats and KGN cells to investigate the effect of ADMA-DDAH1 on redox status and ovarian apoptosis in PCOS. We enrolled 19 women with PCOS and 17 healthy women (controls) in this study. The women with PCOS had increased serum ADMA levels and decreased glutathione peroxidase (GSH-PX) compared with the controls. In Sprague Dawley rats, 21-day DHEA treatment established PCOS and the rat contained higher ADMA levels in serum and lower DDAH1 expression in ovaries. Moreover, the PCOS rat serum and ovaries exhibited increased levels of the oxidative stress marker malondialdehyde (MDA). ADMA treatment of the KGN cells induced reactive oxygen species accumulation and led to apoptosis. Contrastingly, overexpressing DDAH1 in the KGN cells significantly decreased ADMA levels, enhanced cell viability, and inhibited oxidative stress, while the effect was inverse in DDAH1 knockdown cells. Overall, our results demonstrated that PCOS involves elevated ADMA levels and redox imbalance. The ADMA-DDAH1 pathway exerted a marked effect on oxidative stress and ovarian apoptosis in PCOS. Our findings suggested that strategies for increasing DDAH1 activity in ovarian cells may provide a novel approach for ameliorating PCOS.
Collapse
Affiliation(s)
- Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Tingting Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoli Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Huimin Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
19
|
Wen J, Yi Z, Chen Y, Huang J, Mao X, Zhang L, Zeng Y, Cheng Q, Ye W, Liu Z, Liu F, Liu J. Efficacy of metformin therapy in patients with cancer: a meta-analysis of 22 randomised controlled trials. BMC Med 2022; 20:402. [PMID: 36280839 PMCID: PMC9594974 DOI: 10.1186/s12916-022-02599-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate whether metformin monotherapy or adjunctive therapy improves the prognosis in patients with any type of cancer compared to non-metformin users (age ≥18). METHODS Databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) and clinical trial registries ( ClinicalTrials.gov ; the World Health Organization International Clinical Trials Registry Platform) were screened for randomized, controlled trials (RCT) reporting at least progression-free survival (PFS) and/or overall survival (OS). Main outcome measures included hazard ratios (HR), and combined HRs and 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Of the 8419 records screened, 22 RCTs comprising 5943 participants were included. Pooled HRs were not statistically significant in both PFS (HR 0.97, 95% CI 0.82-1.15, I2 = 50%) and OS (HR 0.98, 95% CI 0.86-1.13, I2 = 33%) for patients with cancer between the metformin and control groups. Subgroup analyses demonstrated that metformin treatment was associated with a marginally significant improvement in PFS in reproductive system cancers (HR 0.86, 95% CI 0.74-1.00) and a significantly worse PFS in digestive system cancers (HR 1.45, 95% CI 1.03-2.04). The PFS or OS was observed consistently across maintenance dose, diabetes exclusion, median follow-up, risk of bias, and combined antitumoral therapies. CONCLUSION Metformin treatment was not associated with cancer-related mortality in adults compared with placebo or no treatment. However, metformin implied beneficial effects in the PFS of the patients with reproductive system cancers but was related to a worse PFS in digestive system cancers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42022324672.
Collapse
Affiliation(s)
- Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueyi Mao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
21
|
Shu W, Wang Z, Zhao R, Shi R, Zhang J, Zhang W, Wang H. Exploration of the Effect and Potential Mechanism of Echinacoside Against Endometrial Cancer Based on Network Pharmacology and in vitro Experimental Verification. Drug Des Devel Ther 2022; 16:1847-1863. [PMID: 35734366 PMCID: PMC9208491 DOI: 10.2147/dddt.s361955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Ziwei Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Correspondence: Hongbo Wang, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China, Email
| |
Collapse
|
22
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
24
|
Jiang XL, Tai H, Xiao XS, Zhang SY, Cui SC, Qi SB, Hu DD, Zhang LN, Kuang JS, Meng XS, Li SM. Cangfudaotan decoction inhibits mitochondria-dependent apoptosis of granulosa cells in rats with polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2022; 13:962154. [PMID: 36465612 PMCID: PMC9716878 DOI: 10.3389/fendo.2022.962154] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a universal endocrine and metabolic disorder prevalent in reproductive aged women. PCOS is often accompanied with insulin resistance (IR) which is an essential pathological factor. Although there is no known cure for PCOS, cangfudaotan (CFDT) decoction is widely used for the treatment of PCOS; nevertheless, the underlying mechanism is not clear. In this study, 40 Sprague-Dawley (SD) rats (female) were randomized to 4 groups, namely the control group, PCOS group, PCOS+CFDT group, and PCOS+metformin group. The rats in the control group were fed a normal-fat diet, intraperitoneally injected with 0.5% carboxymethyl cellulose (CMC, 1 mL/kg/d) for 21 days and orally given saline (1 mL/kg/d) for the next 4 weeks. The rats in the PCOS group, PCOS+CFDT group, and PCOS+Metformin group were fed a high-fat diet (HFD) and intraperitoneally injected with letrozole (1.0 mg/kg) for 21 days. During this period, we recorded the body weight, estrous cycles, and rate of pregnancy in all rats. We also observed the ovarian ultrastructure. Blood glucose indices, serum hormones, and inflammatory factors were also recorded. Then, we detected apoptotic and mitochondrial function, and observed mitochondria in ovarian granular cells by transmission electron microscopy. We also detected genes of ASK1/JNK pathway at mRNA and protein levels. The results showed that CFDT alleviated pathohistological damnification and apoptosis in PCOS rat model. In addition, CFDT improved ovarian function, reduced inflammatory response, inhibited apoptosis of granular cells, and inhibited the operation of ASK1/JNK pathway. These findings demonstrate the occurrence of ovary mitochondrial dysfunction and granular cell apoptosis in PCOS. CFDT can relieve mitochondria-dependent apoptosis by inhibiting the ASK1/JNK pathway in PCOS rats.
Collapse
Affiliation(s)
- Xiao-lin Jiang
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - He Tai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People’s Armed Police Forces, Shenyang, China
| | - Xuan-si Xiao
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shi-yu Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shi-chao Cui
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Shu-bo Qi
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan-dan Hu
- Department of Internal Medicine, Fujian Provincial Corps Hospital of Chinese People’s Armed Police Forces, Fuzhou, China
| | - Li-na Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jin-song Kuang
- Department of Endocrinology and Metabolism, The Fourth People’s Hospital of Shenyang, Shenyang, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| | - Xian-sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| | - Shun-min Li
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| |
Collapse
|
25
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
26
|
Hu M, Zhang Y, Li X, Cui P, Li J, Brännström M, Shao LR, Billig H. Alterations of endometrial epithelial-mesenchymal transition and MAPK signalling components in women with PCOS are partially modulated by metformin in vitro. Mol Hum Reprod 2021; 26:312-326. [PMID: 32202622 DOI: 10.1093/molehr/gaaa023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidence suggests that epithelial-mesenchymal transition (EMT) and its regulator mitogen-activated protein kinase (MAPK) contribute to endometria-related reproductive disorders. However, the regulation of EMT and MAPK signalling components in the endometrium from polycystic ovary syndrome (PCOS) patients has not been systematically investigated and remains elusive. In humans, how metformin induces molecular alterations in the endometrial tissues under PCOS conditions is not completely clear. Here, we recruited 7 non-PCOS patients during the proliferative phase (nPCOS), 7 non-PCOS patients with endometrial hyperplasia (nPCOSEH), 14 PCOS patients during the proliferative phase (PCOS) and 3 PCOS patients with endometrial hyperplasia (PCOSEH). Our studies demonstrated that compared with nPCOS, PCOS patients showed decreased Claudin 1 and increased Vimentin and Slug proteins. Similar to increased Slug protein, nPCOSEH and PCOSEH patients showed increased N-cadherin protein. Western blot and immunostaining revealed increased epithelial phosphorylated Cytokeratin 8 (p-CK 8) expression and an increased p-CK 8:CK 8 ratio in PCOS, nPCOSEH and PCOSEH patients compared to nPCOS patients. Although nPCOSEH and PCOSEH patients showed increased p-ERK1/2 and/or p38 protein levels, the significant increase in p-ERK1/2 expression and p-ERK1/2:ERK1/2 ratio was only found in PCOS patients compared to nPCOS patients. A significant induction of the membrane ERβ immunostaining was observed in the epithelial cells of PCOS and PCOSEH patients compared to nPCOS and nPCOSEH patients. While in vitro treatment with metformin alone increased Snail and decreased Claudin 1, N-cadherin and α-SMA proteins, concomitant treatment with metformin and E2 increased the expression of CK 8 and Snail proteins and decreased the expression of Claudin 1, ZO-1, Slug and α-SMA proteins. Our findings suggest that the EMT contributes to the switch from a healthy state to a PCOS state in the endometrium, which might subsequently drive endometrial injury and dysfunction. We also provide evidence that metformin differentially modulates EMT protein expression in PCOS patients depending on oestrogenic stimulation.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
27
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|
28
|
Hansda SR, Haldar C. Uterine anomalies in cell proliferation, energy homeostasis and oxidative stress in PCOS hamsters, M. auratus: Therapeutic potentials of melatonin. Life Sci 2021; 281:119755. [PMID: 34175318 DOI: 10.1016/j.lfs.2021.119755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
AIMS Polycystic ovarian syndrome (PCOS) is a reproductive, endocrine and metabolic disorder. Less is known about the mechanism of its effect on uterine function and therapeutic potential of melatonin. Our aim was to evaluate uterine dysfunction(s) in letrozole induced PCOS and its possible rectification by melatonin. MAIN METHODS Adult female golden hamsters were divided into groups of Control (C), Melatonin (M; 1 mg/kg b.w.), Letrozole (L; 3 mg/kg b.w.) and combination of Letrozole+Melatonin (L + M; 3 mg/kg b.w. + 1 mg/kg b.w.) which were treated for 40 days. Analysis of serum testosterone/estradiol/progesterone/leptin/insulin, uterine histomorphometry, immunohistochemistry for proliferation cell nuclear antigen (PCNA), homeostatic assessment model of insulin resistance (HOMA-IR), western blotting for PCNA, androgen receptor (AR), insulin receptor (InsR), glucose tansporter-4 (GLUT-4), nuclear factor-kappa B (NFκB), cyclooxygenase-2 (COX-2) and biochemical analysis of superoxide dismutase (SOD)/catalase/lipid peroxidation (LPO) were done. KEY FINDINGS Serum testosterone, leptin and insulin increased while uterine InsR/GLUT-4 expression decreased in L group indicating metabolic abnormalities. Endometrial hyperplasia, increased expression of PCNA and AR indicated abnormal proliferation in L compared to C. Increased uterine oxidative load (SOD/catalase/LPO) and inflammatory markers NFκB/COX-2 expression in L was responsible for high tissue oxidative stress and inflammation. M administration normalized all the above parameters suggesting its ameliorative effect in L + M group. SIGNIFICANCE We report PCOS induced uterine dysfunction in Mesocricetus auratus for the first time. M administration restores uterine functions modulating cellular dynamicity, metabolic status, decreased oxidative and inflammatory load in PCOS hamsters. Therefore, we suggest the therapeutic potential of M against PCOS led uterine abnormalities to restore female fertility.
Collapse
Affiliation(s)
- Shruti R Hansda
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
29
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
30
|
Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reprod Sci 2021; 29:680-694. [PMID: 33826098 DOI: 10.1007/s43032-021-00516-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, affecting approximately 5-20% of women of reproductive age. PCOS is a multifactorial, complex, and heterogeneous disease, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, which may lead to impaired fertility. Besides the reproductive outcomes, multiple comorbidities, such as metabolic disturbances, insulin resistance, obesity, diabetes, and cardiovascular disease, are associated with PCOS. In addition to the clear genetic basis, epigenetic alterations may also play a central role in PCOS outcomes, as environmental and hormonal alterations directly affect clinical manifestations and PCOS development. Here, we highlighted the epigenetic modifications in the multiplicity of clinical manifestations, as well as environmental epigenetic disruptors, as intrauterine hormonal and metabolic alterations affecting embryo development and the adulthood lifestyle, which may contribute to PCOS development. Additionally, we also discussed the new approaches for future studies and potential epigenetic biomarkers for the treatment of associated comorbidities and improvement in quality of life of women with PCOS.
Collapse
Affiliation(s)
- Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Daniel Pascoalino Pinheiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, 60430-275, CE, Brazil
| | - Kalil Andrade Mubarac Romcy
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil. .,Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
31
|
Xu Y, Pan CS, Li Q, Zhang HL, Yan L, Anwaier G, Wang XY, Yan LL, Fan JY, Li D, Han JY. The Ameliorating Effects of Bushen Huatan Granules and Kunling Wan on Polycystic Ovary Syndrome Induced by Dehydroepiandrosterone in Rats. Front Physiol 2021; 12:525145. [PMID: 33762961 PMCID: PMC7982847 DOI: 10.3389/fphys.2021.525145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Aim To investigate the effects of Bushen Huatan Granules (BHG) and Kunling Wan (KW), the two Chinese medicines, on the regulation of polycystic ovary syndrome (PCOS) and their underlying mechanisms. Materials and Methods PCOS rat model was established by subcutaneous injection of dehydroepiandrosterone (DHEA) (6 mg/100 g/day) for 20 days, followed by treatment with BHG (0.75, 1.49, and 2.99 g/kg) or KW (0.46, 0.91, and 1.82 g/kg) by gavage for 4 weeks. Estrous cycle was detected by vaginal smears. Follicles development was assessed by histology. Levels of testosterone and insulin in serum were tested by ELISA. Apoptosis of Granulosa cells (GCs) was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. Pathways associated with apoptosis were detected with western blot. Pregnancy outcome was also assessed. GCs were pre-treated with 10–5 M testosterone in vitro for 24 h, then incubated with serum from rats receiving BHG (1.49 g/kg) or KW (1.82 g/kg). The parameters concerning apoptosis, mitochondrial function and endoplasmic reticulum stress were assessed. Results Post-treatment with either BHG or KW ameliorated DHEA-induced irregular estrous cycles, follicles development abnormalities, increase of testosterone and insulin in serum, and the apoptosis of GCs. Post-treatment with BHG decreased the expression of cleaved caspase-9/caspase 9, release of cytochrome C from mitochondria, and mitochondria reactive oxygen species production, increased activities of complex I, II, IV of ovarian tissue. Post-treatment with KW decreased the levels of caspase-12, GRP78, C/EBP homologous protein, phosphorylation of IRE-I, x-box-binding protein 1s, as well as phosphorylation of proline-rich receptor-like protein kinase, phosphorylation of eukaryotic translation initiation factor 2α and ATF4 of ovarian tissue and GCs. Both BHG and KW ameliorated pregnancy outcome. Conclusion This study demonstrated BHG or KW as a potential strategy for treatment of PCOS induced by DHEA, and suggested that the beneficial role of the two medicines were mediated by different pathway with the effect of BHG being correlated with the regulation of mitochondria, while the effect of KW being attributable to protection of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Yang Xu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gulinigaer Anwaier
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiao-Yi Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
32
|
Molecular Mechanisms of Endometrial Functioning in Women with Polycystic Ovary Syndrome. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Yumiceba V, López-Cortés A, Pérez-Villa A, Yumiseba I, Guerrero S, García-Cárdenas JM, Armendáriz-Castillo I, Guevara-Ramírez P, Leone PE, Zambrano AK, Paz-y-Miño C. Oncology and Pharmacogenomics Insights in Polycystic Ovary Syndrome: An Integrative Analysis. Front Endocrinol (Lausanne) 2020; 11:585130. [PMID: 33329391 PMCID: PMC7729301 DOI: 10.3389/fendo.2020.585130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. Epidemiological findings revealed that women with PCOS are prone to develop certain cancer types due to their shared metabolic and endocrine abnormalities. However, the mechanism that relates PCOS and oncogenesis has not been addressed. Herein, in this review article the genomic status, transcriptional and protein profiles of 264 strongly PCOS related genes (PRG) were evaluated in endometrial cancer (EC), ovarian cancer (OV) and breast cancer (BC) exploring oncogenic databases. The genomic alterations of PRG were significantly higher when compared with a set of non-diseases genes in all cancer types. PTEN had the highest number of mutations in EC, TP53, in OC, and FSHR, in BC. Based on clinical data, women older than 50 years and Black or African American females carried the highest ratio of genomic alterations among all cancer types. The most altered signaling pathways were p53 in EC and OC, while Fc epsilon RI in BC. After evaluating PRG in normal and cancer tissue, downregulation of the differentially expressed genes was a common feature. Less than 30 proteins were up and downregulated in all cancer contexts. We identified 36 highly altered genes, among them 10 were shared between the three cancer types analyzed, which are involved in the cell proliferation regulation, response to hormone and to endogenous stimulus. Despite limited PCOS pharmacogenomics studies, 10 SNPs are reported to be associated with drug response. All were missense mutations, except for rs8111699, an intronic variant characterized as a regulatory element and presumably binding site for transcription factors. In conclusion, in silico analysis revealed key genes that might participate in PCOS and oncogenesis, which could aid in early cancer diagnosis. Pharmacogenomics efforts have implicated SNPs in drug response, yet still remain to be found.
Collapse
Affiliation(s)
- Verónica Yumiceba
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Andy Pérez-Villa
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Iván Yumiseba
- Centro de Atención Ambulatorio, Hospital del Día El Batán, Instituto Ecuatoriano de Seguridad Social (IESS), Quito, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Jennyfer M. García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Isaac Armendáriz-Castillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Paola E. Leone
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
34
|
Li N, Zhan X. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. MASS SPECTROMETRY REVIEWS 2020; 39:471-498. [PMID: 32020673 DOI: 10.1002/mas.21618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The prominent characteristics of mitochondria are highly dynamic and regulatory, which have crucial roles in cell metabolism, biosynthetic, senescence, apoptosis, and signaling pathways. Mitochondrial dysfunction might lead to multiple serious diseases, including cancer. Therefore, identification of mitochondrial proteins in cancer could provide a global view of tumorigenesis and progression. Mass spectrometry-based quantitative mitochondrial proteomics fulfils this task by enabling systems-wide, accurate, and quantitative analysis of mitochondrial protein abundance, and mitochondrial protein posttranslational modifications (PTMs). Multiple quantitative proteomics techniques, including isotope-coded affinity tag, stable isotope labeling with amino acids in cell culture, isobaric tags for relative and absolute quantification, tandem mass tags, and label-free quantification, in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides, increase flexibility for researchers to study mitochondrial proteomes. This article reviews isolation and purification of mitochondria, quantitative mitochondrial proteomics, quantitative mitochondrial phosphoproteomics, mitochondrial protein-involved signaling pathway networks, mitochondrial phosphoprotein-involved signaling pathway networks, integration of mitochondrial proteomic and phosphoproteomic data with whole tissue proteomic and transcriptomic data and clinical information in ovarian cancers (OC) to in-depth understand its molecular mechanisms, and discover effective mitochondrial biomarkers and therapeutic targets for predictive, preventive, and personalized treatment of OC. This proof-of-principle model about OC mitochondrial proteomics is easily implementable to other cancer types. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
35
|
Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of Metformin With Pregnancy Outcomes in Women With Polycystic Ovarian Syndrome Undergoing In Vitro Fertilization: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2011995. [PMID: 32744629 PMCID: PMC7399751 DOI: 10.1001/jamanetworkopen.2020.11995] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Metformin is widely used among women with polycystic ovary syndrome (PCOS). However, its associations with outcomes of in vitro fertilization or intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) in women with PCOS remain controversial. OBJECTIVE To assess whether metformin is associated with improved outcomes of IVF/ICSI-ET in women with PCOS. DATA SOURCES PubMed, Embase, and Cochrane were searched from database inception to January 31, 2020. STUDY SELECTION Only randomized clinical trials (RCTs) were included. Eligible studies enrolled women with PCOS undergoing infertility treatment with IVF/ICSI-ET and reported at least 1 outcome of IVF/ICSI-ET. DATA EXTRACTION AND SYNTHESIS This study followed the Preferred Reporting Items for Systematic Reviews and Meta analyses guidelines. Two authors independently extracted the data. Study quality was evaluated using the GRADE system. Treatment effect was quantified using odds ratios (ORs) with 95% CIs using random-effect models with the Mantel-Haenszel method. MAIN OUTCOMES AND MEASURES Ovarian hyperstimulation syndrome (OHSS), clinical pregnancy rate, and live birth rate. RESULTS A total of 12 RCTs, which collectively included 1123 women with PCOS undergoing infertility treatment with IVF/ICSI-ET, were identified. The risk of OHSS in women randomized to metformin was lower than in women not randomized to metformin (OR, 0.43; 95% CI, 0.24-0.78), although this difference was not significant for women with PCOS with a body mass index of less than 26 (OR, 0.67; 95% CI, 0.30-1.51). There was no significant difference in clinical pregnancy rate (OR, 1.24; 95% CI, 0.82-1.86) or live birth rate (OR, 1.23; 95% CI, 0.74-2.04) in the total population studied. However, in a post hoc analysis among women with a body mass index of 26 or greater, metformin treatment was associated with increased clinical pregnancy rates (OR, 1.71; 95% CI, 1.12-2.60). CONCLUSIONS AND RELEVANCE In this study, metformin treatment was associated with a decreased risk of OHSS but had no association with the overall clinical pregnancy rate or live birth rate among women with PCOS undergoing IVF/ICSI-ET. Metformin treatment should be carefully considered for women with PCOS undergoing IVF/ICSI-ET and may be more preferred for women with a body mass index greater than 26.
Collapse
Affiliation(s)
- Yiqing Wu
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Women’s Hospital, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yun Huang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Women’s Hospital, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Women’s Hospital, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Women’s Hospital, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Zhang S, Tu H, Yao J, Le J, Jiang Z, Tang Q, Zhang R, Huo P, Lei X. Combined use of Diane-35 and metformin improves the ovulation in the PCOS rat model possibly via regulating glycolysis pathway. Reprod Biol Endocrinol 2020; 18:58. [PMID: 32493421 PMCID: PMC7268382 DOI: 10.1186/s12958-020-00613-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disease with unknown pathogenesis. However, the treatment of Diane-35 combined with metformin can improve the endocrine and ovulation of PCOS. In this study, we investigated the effects of Diane-35 combined with metformin (DM) treatment on ovulation and glucose metabolism in a PCOS rat model. METHODS Sprague Dawley rats were divided into 3 groups, control group, model group (PCOS group) and Diane-35 combined with metformin (PCOS + DM group). The mRNA expression levels were determined by qRT-PCR. The hormone levels were determined by enzyme-linked immunosorbent assay. Immunostaining detected the protein levels of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2) and sirtuin 1 (SIRT1) in the ovarian tissues. TNUEL assay was performed to determine cell apoptosis in the PCOS rats. The metabolites in the ovarian tissues were analyzed by liquid chromatography with tandem mass spectrometry. RESULTS PCOS rats showed an increased in body weight, levels of luteinizing hormone and testosterone and insulin resistance, which was significantly attenuated by the DM treatment. The DM treatment improved disrupted estrous cycle and increased the granulosa cells of the ovary in the PCOS rats. The decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats were significantly reversed by the DM treatment. The analysis of metabolics revealed that ATP and lactate levels were significantly decreased in PCOS rats, which was recovered by the DM treatment. Furthermore, the expression of LDH-A, PKM2 and SIRT1 was significantly down-regulated in ovarian tissues of the PCOS rats; while the DM treatment significantly increased the expression of LDH-A, PKM2 and SIRT1 in the ovarian tissues of the PCOS rats. CONCLUSION In conclusion, our study demonstrated that Diane-35 plus metformin treatment improved the pathological changes in the PCOS rats. Further studies suggest that Diane-35 plus metformin can improve the energy metabolism of the ovary via regulating the glycolysis pathway. The mechanistic studies indicated that the therapeutic effects of Diane-35 plus metformin treatment in the PCOS rats may be associated with the regulation of glycolysis-related mediators including PKM2, LDH-A and SIRT1.
Collapse
Affiliation(s)
- Shun Zhang
- grid.452806.dDepartment of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001 China
| | - Haoyan Tu
- grid.452806.dDepartment of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001 China
| | - Jun Yao
- grid.452806.dDepartment of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001 China
| | - Jianghua Le
- grid.452806.dDepartment of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001 China
| | - Zhengxu Jiang
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Qianqian Tang
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Rongrong Zhang
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Peng Huo
- grid.443385.d0000 0004 1798 9548School of Public Health, Guilin Medical University, Guilin, 541004 China
| | - Xiaocan Lei
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001 China
| |
Collapse
|
37
|
Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion 2020; 52:24-39. [PMID: 32081727 DOI: 10.1016/j.mito.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by irregular menstrual cycles, hyperandrogenism and subfertility. Due to its complex manifestation, the pathogenic mechanism of PCOS is not well defined. Cumulative effect of altered genetic and epigenetic factors along with environmental factors may play a role in the manifestation of PCOS leading to systemic malfunction. With failure of genome-wide association study (GWAS) and other studies performed on nuclear genome to provide any clue for precise mechanism of PCOS pathogenesis, attention has been diverted to mitochondria. Mitochondrion plays an important role in cellular metabolic functions and is linked to Insulin Resistance (IR). Recently, increasing reports suggest that mitochondrial dysfunction may be a contributing factor in the pathogenesis of PCOS. Hence, in this review, we have discussed mitochondrial biology in brief and emphasizes on genetic and epigenetic aspects of mitochondrial dysfunction studied in PCOS women and PCOS-like animal models. We also highlight underlying mechanism behind mitochondrial dysfunction contributing to PCOS and its related complications such as obesity, diabetes, cardiovascular diseases, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and cancer. Furthermore, contrasting remarks against involvement of mitochondrial dysfunction in PCOS pathophysiology have also been presented. This review enhances our understanding in relation to mitochondrial dysfunction in the etiology of PCOS and stimulates further research to explore a clear link between mitochondrial dysfunction and PCOS pathogenesis and progression. Understanding pathogenic mechanisms underlying PCOS will open new windows to develop promising therapeutic strategies against PCOS.
Collapse
|
38
|
Guo M, Zhou JJ, Huang W. Metformin alleviates endometrial hyperplasia through the UCA1/miR‑144/TGF‑β1/AKT signaling pathway. Int J Mol Med 2019; 45:623-633. [PMID: 31894313 DOI: 10.3892/ijmm.2019.4438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the molecular mechanism underlying the role of metformin (Met) in reducing the risk of endometrial hyperplasia (EH). Reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemistry (IHC) assays were used to study the effects of Met and tamoxifen on the expression levels of urothelial cancer associated 1 (UCA1), microRNA‑144 (miR‑144) and other factors along the transforming growth factor‑β1 (TGF‑β1)/protein kinase B (AKT) signaling pathway. In addition, MTT and flow cytometry assays were performed to detect the effect of Met on cell proliferation and apoptosis. Tamoxifen treatment increased the weight of the uterus and the level of UCA1, while decreasing the expression of miR‑144. In addition, treatment with tamoxifen (2.0 and 3.5 µg) upregulated the protein expression levels of TGF‑β and p‑AKT, while downregulating the protein expression of active Caspase‑3 in a dose‑dependent manner. By contrast, Met reduced cell viability, promoted cell apoptosis, and reduced the expression levels of UCA1, TGF‑β and p‑AKT, while upregulating the expression of miR‑144 and active Caspase‑3 in a dose‑dependent manner. Furthermore, Met also reduced the weight of uterus. However, tamoxifen and Met did not exert any effect on the protein levels of total AKT and total Caspase‑3. The levels of TGF‑β and p‑AKT proteins in the EH group were much higher when compared with those in the sham group, while Met treatment reduced these protein levels to a certain extent. In addition, the expression of active Caspase‑3 in the EH group was much lower than that in the sham group, while Met treatment increased its level to a certain extent. In conclusion, the current study suggested that Met reduces the risk of EH by reducing the expression levels of UCA1, TGF‑β and p‑AKT, while increasing the levels of miR‑144 and active Caspase‑3 in a dose‑dependent manner.
Collapse
Affiliation(s)
- Miao Guo
- Department of Pathology, Xing Yuan (4th) Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Jing-Jing Zhou
- Department of Gynecology, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi 725000, P.R. China
| | - Wei Huang
- Department of Gynecology, Baoji Maternal and Child Health Hospital, Baoji, Shaanxi 721000, P.R. China
| |
Collapse
|
39
|
Zhang G, Ma A, Jin Y, Pan G, Wang C. LncRNA SNHG16 induced by TFAP2A modulates glycolysis and proliferation of endometrial carcinoma through miR-490-3p/HK2 axis. Am J Transl Res 2019; 11:7137-7145. [PMID: 31814916 PMCID: PMC6895515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates the important roles of long noncoding RNA (lncRNA) in the endometrial carcinoma (ECa). Here, we identified the roles of SNHG16 in the ECa proliferation and glycolysis, and revealed the underlying mechanism. Results presented that SNHG16 expression was increased in the ECa tissue and cells, and the ectopic SNHG16 overexpression was closely correlated with the poor survival rate and recurrence free survival of ECa. As regarding the upstream, transcription factor TFAP2A bound with the promotor region of SNHG16 and activated its transcription. In functional experiments, SNHG16 knockdown suppressed the proliferation, glycolysis and tumor growth of ECa cells. In mechanical experiments, SNHG16 upregulated HK2, the target gene of miR-490-3p, by competitively sponging miR-490-3p and then promoted endometrial carcinoma proliferation and glycolysis. In conclusion, this finding illustrates the vital role of SNHG16 via the TFAP2A/SNHG16/miR-490-3p/HK2 axis in the ECa proliferation and glycolysis, providing an interesting insight for the ECa tumorigenesis.
Collapse
Affiliation(s)
- Guangyu Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
| | - Anjun Ma
- The Second Department of Gynecology, The Second People’s Hospital of LiaochengLiaocheng 252601, Shandong, China
| | - Yuqin Jin
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinan 250012, Shandong, China
| | - Guoyou Pan
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinan 250012, Shandong, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinan 250012, Shandong, China
- Shandong Academy of Medical SciencesJinan 250012, Shandong, China
| |
Collapse
|
40
|
Hu M, Zhang Y, Egecioglu E, Li X, Shao LR, Billig H. Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. Biomed Rep 2019; 11:135-144. [PMID: 31565219 PMCID: PMC6759582 DOI: 10.3892/br.2019.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
41
|
Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int J Biol Sci 2019; 15:2497-2508. [PMID: 31595166 PMCID: PMC6775317 DOI: 10.7150/ijbs.37481] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human colorectal cancer (CRC). In the present study, we reported that Hexokinase 2 (HK2) is overexpressed in human CRC tissues and cell lines, knockout of HK2 inhibited cell proliferation, colony formation, and xenograft tumor growth. We demonstrated that the natural compound, xanthohumol, has a profound anti-tumor effect on CRC via down-regulation of HK2 and glycolysis. Xanthohumol suppressed CRC cell growth both in vitro and in vivo. Treatment with xanthohumol promoted the release of cytochrome C and activated the intrinsic apoptosis pathway. Moreover, our results revealed that xanthohumol down-regulated the EGFR-Akt signaling, exogenous overexpression of constitutively activated Akt1 significantly impaired xanthohumol-induced glycolysis suppression and apoptosis induction. Our results suggest that targeting HK2 appears to be a new approach for clinical CRC prevention or treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
42
|
Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance. Life Sci 2019; 232:116681. [PMID: 31344428 DOI: 10.1016/j.lfs.2019.116681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/23/2022]
Abstract
AIM This study aimed to determine whether glucocorticoid receptor (GR) signaling, mitochondrial function, and local inflammation in the ovary and uterus are intrinsically different in rats with hyperandrogenism and insulin resistance compared to controls. MAIN METHODS Female Sprague Dawley rats were exposed to daily injections of human chorionic gonadotropin and/or insulin. KEY FINDINGS In both the ovary and the uterus, decreased expression of the two GR isoforms was concurrent with increased expression of Fkbp51 but not Fkbp52 mRNA in hCG + insulin-treated rats. However, these rats exhibited contrasting regulation of Hsd11b1 and Hsd11b2 mRNAs in the two tissues. Further, the expression of several oxidative phosphorylation-related proteins decreased in the ovary and uterus following hCG and insulin stimulation, in contrast to increased expression of many genes involved in mitochondrial function and homeostasis. Additionally, hCG + insulin-treated rats showed increased expression of ovarian and uterine NFκB signaling proteins and Tnfaip3 mRNA. The mRNA expression of Il1b, Il6, and Mmp2 was decreased in both tissues, while the mRNA expression of Tnfa, Ccl2, Ccl5, and Mmp3 was increased in the uterus. Ovaries and uteri from animals co-treated with hCG and insulin showed increased collagen deposition compared to controls. SIGNIFICANCE Our observations suggest that hyperandrogenism and insulin resistance disrupt ovarian and uterine GR activation and trigger compensatory or adaptive effects for mitochondrial homeostasis, allowing tissue-level maintenance of mitochondrial function in order to limit ovarian and uterine dysfunction. Our study also suggests that hyperandrogenism and insulin resistance activate NFκB signaling resulting in aberrant regulation of inflammation-related gene expression.
Collapse
|