1
|
Mukherjee A, Rajput J, Poundarik A, Das B. Development of a bovine gelatin-kappa carrageenan-based dual network biomimetic hydrogel for chondrogenic differentiation of mesenchymal stem cells. Int J Biol Macromol 2025; 309:142553. [PMID: 40203945 DOI: 10.1016/j.ijbiomac.2025.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Direct stem cell delivery for cartilage tissue engineering faces significant drawbacks, including loss of cells via circulation and poor viability in a hostile microenvironment. Hence, scaffold-based approaches for stem cell delivery are gaining significant momentum. In this study, composite hydrogel films composed of gelatin and κ-carrageenan dually crosslinked with glutaraldehyde and potassium chloride have been developed through the solvent casting method. The protein-polysaccharide composite mimics the natural extracellular matrix of native cartilage and the synergistic effects of covalent and ionic crosslinking provide mechanical strength, stability, and satisfactory biological performance. The physicochemical properties of the composite were analyzed using SEM-EDS, AFM, FTIR, XPS, and XRD. Rheological analysis revealed self-healing properties of the film and mechanical analysis demonstrated the ultimate tensile strength to be 13.49 ± 2.89 MPa, which mechanically mimics the native cartilage. The composite film remained stable for approximately 4 weeks in PBS, validating its stability. Biological assessments of the film after 7 days of culture demonstrated its long-term cytocompatibility, showing cell viability of 97.56 ± 0.21 %, cell adhesion was observed using FESEM micrographs, and cell proliferation through Live/Dead assay. The dually crosslinked biomimetic composite films aided in chondrogenic differentiation, as confirmed using collagen II staining and TGF-β expression studies, and hence demonstrate promising potential for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Jayhind Rajput
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Atharva Poundarik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
2
|
Mv S, Parcha SR. In vitro study of dimethyl glutamate incorporated chitosan/microfibrillated cellulose based matrix in addition of H and Zr on osteoblast cells. Int J Biol Macromol 2025; 289:138889. [PMID: 39701256 DOI: 10.1016/j.ijbiomac.2024.138889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Tissue engineering techniques can be utilized to repair or regenerate damaged tissue by promoting the proliferation and differentiation of cells in bone regeneration. A critical component of this process is the scaffold employed, which should ideally support consistent tissue development during bone regeneration. The aim of this study was to evaluate the morphological, physicochemical, and biological characteristics of various scaffolds: S1 (C/MFC), S2 (C/H/MFC), S3 (C/MFC/Zr), S4 (C/MFC/PCL), S5 (C/H/MFC/PCL), S6 (C/PCL/MFC/Zr), and S7 (C/H/MFC/Zr), which are intended for application in bone regeneration. The scaffolds containing microfibrillated cellulose, chitosan, polycaprolactone, zirconium, and hydroxyapatite were fabricated by the freeze-drying method. Conventional methods, including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis, were used to evaluate morphological and physicochemical properties of composite scaffolds. The fabricated scaffolds (S1-S7) had spongy properties that all functional groups were present in the sponge. Biological properties for cell survival were evaluated by the MTT assay, ALP, and ARS activities, respectively. In physicochemical studies, scaffolds showed tunable water absorption, swelling studies, degradation, sustained drug release, and mechanical properties. In biological studies, the cell proliferation and attachment were shown to significantly increase in scaffolds on MG63 cells. After 7 days of cell culture, ALP and ARS activity indicated the enhancement of extracellular calcium deposition of the MG63 cells on the treated scaffolds. In summary, the scaffolds S7 (C/H/MFC/Zr) treated with dimethyl glutamate revealed favorable effects on bone tissues, implying a potential towards the treatment of bone defects and drug delivery.
Collapse
Affiliation(s)
- Sivasankar Mv
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India.
| |
Collapse
|
3
|
Pattanashetti NA, Kariduraganavar MY, Rao AS, Savadi A, Pali M, Sonavane S, Sunita. Effect of solvent on the development of Poly(2-ethyl-2-oxazoline) nanofibrous scaffolds using electrospinning technique for biomedical applications. Heliyon 2025; 11:e41259. [PMID: 39802007 PMCID: PMC11719371 DOI: 10.1016/j.heliyon.2024.e41259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The selection of a biomaterial plays a very important role for the development of scaffolds for biomedical applications. Amidst, the development of nanofibrous scaffolds through electrospinning technique by selecting a suitable polymer is of more importance. Poly (2-ethyl-2-oxazoline) (PEOX) is one among the selected polymers that can be employed for electrospinning for the development of scaffolds for biomedical applications. PEOX is a water-soluble polymer which is highly desirable for biomedical applications. At the same time, PEOX is soluble in the mixture of organic solvents as well. In view of this, the present study is the preliminary study of using PEOX for the development of scaffolds by using electrospinning technique and to check its potentiality for biomedical application like tissue engineering for the future research. The PEOX scaffolds were fabricated using electrospinning process using water and organic solvents, and the effect of solvent was studied on the morphology and physical properties of the developed scaffolds. The Scanning Electron Microscopic results of the scaffolds showed a uniform nanofibrous structure in case of aqueous PEOX solution, whereas microfibrous structure was obtained for organic solvent. Wettability of the scaffolds was observed by contact angle measurement, which revealed that the hydrophilicity of the PEOX (aq.) scaffold was higher with the contact angle of 55.2° as compared to PEOX (org.) scaffold with the contact angle of 70.38°. Further, the mechanical strength of the scaffolds was calculated in terms of Young's modulus values and it was observed that the PEOX (org.) demonstrated a higher tensile strength of 1.9 MPa compared to PEOX (aq.) scaffold with 1.02 MPa respectively. The results thus clearly conclude that the nature of solvents greatly affect the electrospinning process of PEOX and thereby the properties of the developed PEOX scaffolds based on the solvent. Further, we can say that the developed PEOX scaffolds possess suitable properties to be employed for biomedical applications like tissue engineering.
Collapse
Affiliation(s)
- Nandini A. Pattanashetti
- Department of Chemistry, Dayananda Sagar Academy of Technology and Management, Bangalore, 560082, India
| | | | - Arjun Sunil Rao
- Department of Electronics and Communication Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka, 576104, India
| | - Amruta Savadi
- Department of Chemistry, Karnatak University Dharwad, Dharwad, 580003, India
| | - Maruti Pali
- Department of Chemistry, Karnatak University Dharwad, Dharwad, 580003, India
| | - Siddharth Sonavane
- Department of Chemistry, Karnatak University Dharwad, Dharwad, 580003, India
| | - Sunita
- Department of Chemistry, Karnatak University Dharwad, Dharwad, 580003, India
| |
Collapse
|
4
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Cheng G, Wang X, Zhang F, Wang K, Li Y, Guo T, Xu N, Wei W, Yan S. Reparative homing of bone mesenchymal stem cells induced by iMSCs via the SDF-1/CXCR4 axis for articular cartilage defect restoration. Biomed Pharmacother 2024; 181:117649. [PMID: 39536539 DOI: 10.1016/j.biopha.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs. METHODS Based on the establishment of the rat cartilage defect model, the reparative effect of iMSCs on the rat cartilage defect was evaluated. The cartilage repair was evaluated by quantitative score, H&E staining, Masson staining and Safranin-O staining, and the metabolic changes of iMSCs in the joint cavity were detected in vivo. The expression of SOX9, CD29, CD90, ColⅠ, ColⅡ, PCNA, SDF-1, and CXCR4 was detected by immunohistochemistry (IHC), IF, flow cytometry, respectively. After co-culturing iMSCs with BMSCs in vitro, the expression of CXCR4/SDF-1 on the cell membrane surface of BMSCs was detected by western blotting.; The level of p-Akt and p-Erk1/2 in total protein of BMSCs were detected by western blotting. SIGNIFICANCE Our research results provide experimental evidence for the treatment of cartilage defects and endogenous regeneration with iMSCs; This also provides new ideas for the clinical treatment of cartilage defects using iMSCs.
Collapse
Affiliation(s)
- Gang Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Xulei Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Kang Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tingting Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Nuo Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Yan W, Liu J, Xie X, Jin Q, Yang Y, Pan Y, Zhang Y, Zhang F, Wang Y, Liu J, Jin L. Restoration of follicular β-catenin signaling by mesenchymal stem cells promotes hair growth in mice with androgenetic alopecia. Stem Cell Res Ther 2024; 15:439. [PMID: 39563459 PMCID: PMC11575167 DOI: 10.1186/s13287-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is recognized as a promising strategy for the treatment of androgenetic alopecia (AGA). However, the underlying mechanism remains to be explored. Here, we evaluated the therapeutic effects and potential mechanisms of the use of human umbilical cord mesenchymal stem cells (hUCMSCs) in dihydrotestosterone (DHT)-induced AGA models in vivo and in vitro. METHODS Intradermal transplantation of hUCMSCs was performed in AGA model mice and therapeutic effects were evaluated using histological and immunofluorescence staining. Transwell assays were used for co-culture of hUCMSCs and dermal papilla cells (DPCs), and communication was assessed using RT-qPCR, immunofluorescence, and apoptosis analysis. Interactions between DPCs and hair follicle stem cells (HFSCs) were investigated using RT-qPCR, EdU assays, and cell cycle analysis. RESULTS Treatment of AGA mice with hUCMSCs promoted hair growth, HFs density, skin thickness, and anagen phase activation, while inhibiting DPCs apoptosis, and promoting HFSCs proliferation. In vitro, hUCMSCs activated Wnt/β-catenin signaling in DPCs via Wntless (Wls), while stimulating growth factor secretion and HFSCs proliferation. Blocking β-catenin degradation with MSAB increased DPCs apoptosis, reduced growth factor secretion, and retarded HFSCs proliferation. CONCLUSION hUCMSCs promoted hair regeneration in AGA model mice. This was found to be dependent on reducing DPCs apoptosis, thereby relieving the inhibitory effects of DPCs on the growth of HFSCs. The activation of the Wnt/β-catenin signaling pathway was shown to play a crucial role in the promotion of hair growth by hUCMSCs in AGA mice.
Collapse
Affiliation(s)
- Wenjing Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiakun Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuedong Xie
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qianqian Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Wang
- Nanjing Ailote Cell Technology Research Institute Co., Ltd, Nanjing, 211103, China
| | - Jianxing Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Liu YY, Intini C, Dobricic M, O'Brien FJ, LLorca J, Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int J Biol Macromol 2024; 280:135827. [PMID: 39306177 DOI: 10.1016/j.ijbiomac.2024.135827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.
Collapse
Affiliation(s)
- Yu-Yao Liu
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Claudio Intini
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Marko Dobricic
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland.
| | - Javier LLorca
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | |
Collapse
|
8
|
Safi IN, Hussein BMA, Al-Khafaji AM, Fatalla AA, Al-Shammari AM. Evaluation of Random and Aligned Polycaprolactone Nanofibrous Electrospun Scaffold for Human Periodontal Ligament Engineering in Biohybrid Titanium Implants. Int J Dent 2024; 2024:2571976. [PMID: 39450145 PMCID: PMC11502134 DOI: 10.1155/2024/2571976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/05/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Stem cells are introduced to regenerate some living tissue to restore function and longevity. The study aims to isolate in vitro human periodontal ligament stem cells (hPDLSCs) and investigate their proliferation rate on plasma-treated aligned and random polycaprolactone (PCL) nanofibrous scaffolds made via an electrospinning technique to attempt periodontal-like tissue in dental implants. Materials and Methods: hPDLSCs were isolated from extracted human premolars and cultured on plasma-treated or untreated PCL-aligned and random scaffolds to enhance adhesion of periodontal ligament (PDL) cells as well as interaction and proliferation. Cell morphology, adhesion, and proliferation rate were evaluated using field emission scanning electron microscopy (FESEM) and the methyl tetrazolium (MTT) assay. The wettability of PCL scaffolds was tested using a goniometer. Results: The hydrophilicity of plasma-treated scaffolds was significantly increased (p ≤ 0.05) in both aligned and random nanofibers compared to the nontreated nanofibrous scaffold. Cells arranged in different directions on the random nanofiber scaffold, while for aligned scaffold nanofibers, the cells were arranged in a pattern that followed the direction of the aligned electrospun nanofibres. The rate of hPDLSC proliferation on an aligned PCL nanofiber scaffold was significantly higher than on a random PCL nanofibrous scaffold with a continuous, well-arranged monolayer of cells, as shown in FESEM. Conclusion: The aligned PCL nanofiber scaffold is superior to random PCL when used as an artificial scaffold for hPDLSC regeneration in PDL tissue engineering applications.
Collapse
Affiliation(s)
- Ihab N. Safi
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Basima Mohammed Ali Hussein
- Department of Biomedical Applications, Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
| | | | - Abdalbseet A. Fatalla
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ahmed M. Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
9
|
Yang X, Liu H, Cheng S, Pan C, Cai Q, Chu X, Shi S, Wei W, He D, Cheng B, Wen Y, Jia Y, Tinkov AA, Skalny AV, Zhang F. Potential involvement of connective tissue growth factor in chondrocytes apoptosis of Kashin-Beck disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117148. [PMID: 39369662 DOI: 10.1016/j.ecoenv.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Govindaraju DT, Kao HH, Chien YM, Chen JP. Composite Polycaprolactone/Gelatin Nanofiber Membrane Scaffolds for Mesothelial Cell Culture and Delivery in Mesothelium Repair. Int J Mol Sci 2024; 25:9803. [PMID: 39337295 PMCID: PMC11432067 DOI: 10.3390/ijms25189803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
To repair damaged mesothelium tissue, which lines internal organs and cavities, a tissue engineering approach with mesothelial cells seeded to a functional nanostructured scaffold is a promising approach. Therefore, this study explored the uses of electrospun nanofiber membrane scaffolds (NMSs) as scaffolds for mesothelial cell culture and transplantation. We fabricated a composite NMS through electrospinning by blending polycaprolactone (PCL) with gelatin. The addition of gelatin enhanced the membrane's hydrophilicity while maintaining its mechanical strength and promoted cell attachment. The in vitro study demonstrated enhanced adhesion of mesothelial cells to the scaffold with improved morphology and increased phenotypic expression of key marker proteins calretinin and E-cadherin in PCL/gelatin compared to pure PCL NMSs. In vivo studies in rats revealed that only cell-seeded PCL/gelatin NMS constructs fostered mesothelial healing. Implantation of these constructs leads to the regeneration of new mesothelium tissue. The neo-mesothelium is similar to native mesothelium from hematoxylin and eosin (H&E) and immunohistochemical staining. Taken together, the PCL/gelatin NMSs can be a promising scaffold for mesothelial cell attachment, proliferation, and differentiation, and the cell/scaffold construct can be used in therapeutic applications to reconstruct a mesothelium layer.
Collapse
Affiliation(s)
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
12
|
Chu YY, Hikita A, Asawa Y, Hoshi K. Advancements in chondrocyte 3-dimensional embedded culture: Implications for tissue engineering and regenerative medicine. Biomed J 2024; 48:100786. [PMID: 39236979 DOI: 10.1016/j.bj.2024.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cartilage repair necessitates regenerative medicine because of the unreliable healing mechanism of cartilage. To yield a sufficient number of cells for transplantation, chondrocytes must be expanded in culture. However, in 2D culture, chondrocytes tend to lose their distinctive phenotypes and functionalities after serial passage, thereby limiting their efficacy for tissue engineering purposes. The mechanism of dedifferentiation in 2D culture can be attributed to various factors, including abnormal nuclear strength, stress-induced mitochondrial impairment, chromatin remodeling, ERK-1/2 and the p38/mitogen-activated protein kinase (MAPK) signaling pathway. These mechanisms collectively contribute to the loss of chondrocyte phenotype and reduced production of cartilage-specific extracellular matrix (ECM) components. Chondrocyte 3D culture methods have emerged as promising solutions to prevent dedifferentiation. Techniques, such as scaffold-based culture and scaffold-free approaches, provide chondrocytes with a more physiologically relevant environment, promoting their differentiation and matrix synthesis. These methods have been used in cartilage tissue engineering to create engineered cartilage constructs for transplantation and joint repair. However, chondrocyte 3D culture still has limitations, such as low viability and proliferation rate, and also difficulties in passage under 3D condition. These indicate challenges of obtaining a sufficient number of chondrocytes for large-scale tissue production. To address these issues, ongoing studies of many research groups have been focusing on refining culture conditions, optimizing scaffold materials, and exploring novel cell sources such as stem cells to enhance the quality and quantity of engineered cartilage tissues. Although obstacles remain, continuous endeavors to enhance culture techniques and overcome limitations offer a promising outlook for the advancement of more efficient strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Yu-Ying Chu
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Plastic and Reconstructive Surgery, Craniofacial Research Centre, Chang Gung Memorial Hospital at Linko, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
13
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
14
|
Shi J, Liu Y, Ling Y, Tang H. Polysaccharide-protein based scaffolds for cartilage repair and regeneration. Int J Biol Macromol 2024; 274:133495. [PMID: 38944089 DOI: 10.1016/j.ijbiomac.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cartilage repair and regeneration have become a global issue that millions of patients from all over the world need surgical intervention to repair the articular cartilage annually due to the limited self-healing capability of the cartilage tissues. Cartilage tissue engineering has gained significant attention in cartilage repair and regeneration by integration of the chondrocytes (or stem cells) and the artificial scaffolds. Recently, polysaccharide-protein based scaffolds have demonstrated unique and promising mechanical and biological properties as the artificial extracellular matrix of natural cartilage. In this review, we summarize the modification methods for polysaccharides and proteins. The preparation strategies for the polysaccharide-protein based hydrogel scaffolds are presented. We discuss the mechanical, physical and biological properties of the polysaccharide-protein based scaffolds. Potential clinical translation and challenges on the artificial scaffolds are also discussed.
Collapse
Affiliation(s)
- Jin Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ying Ling
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Veselá B, Bzdúšková J, Ramešová A, Švandová E, Grässel S, Matalová E. Inhibition of caspase-11 under inflammatory conditions suppresses chondrogenic differentiation. Tissue Cell 2024; 89:102425. [PMID: 38875922 DOI: 10.1016/j.tice.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment. The presence of caspase-11 during mouse limb development and in chondrogenic cell cultures was investigated by immunofluorescence detection. Subsequently, the function of caspase-11 was downregulated and the affected molecules investigated. The expression analysis applied for osteo/chondrogenesis associated factors and inflammatory cytokines. Simultaneously, morphological appearance of the micromass cultures was evaluated. The results revealed that caspase-11 is physiologically present during cartilage development, but its inhibition under physiological conditions has no significant effect on chondrogenic differentiation. However, in an inflammatory environment, inhibition and downregulation of caspase-11 leads to reduced differentiation of cartilage nodules. Additionally, reduced expression of several genes including Col2a1 and Sp7 and conversely increased expression of Mmp9 were observed. In the cytokine expression panel, a significant decrease was found in molecules that, along with the inflammatory function, may also be involved in cartilage differentiation. The findings bring new information about caspase-11 in chondrogenesis and show that its downregulation under inflammatory conditions reduces cartilage formation.
Collapse
Affiliation(s)
- Barbora Veselá
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Bzdúšková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramešová
- University of Veterinary Medicine, Vienna Department of Biological Sciences and Pathobiology Centre of Biological Sciences
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Biopark 1, Germany
| | - Eva Matalová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
16
|
Liu K, Zhang B, Zhang X. Promoting Articular Cartilage Regeneration through Microenvironmental Regulation. J Immunol Res 2024; 2024:4751168. [PMID: 39104594 PMCID: PMC11300091 DOI: 10.1155/2024/4751168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, as the aging population continues to grow, osteoarthritis (OA) has emerged as a leading cause of disability, with its incidence rising annually. Current treatments of OA include exercise and medications in the early stages and total joint replacement in the late stages. These approaches only relieve pain and reduce inflammation; however, they have significant side effects and high costs. Therefore, there is an urgent need to identify effective treatment methods that can delay the pathological progression of this condition. The changes in the articular cartilage microenvironment, which are complex and diverse, can aggravate the pathological progression into a vicious cycle, inhibiting the repair and regeneration of articular cartilage. Understanding these intricate changes in the microenvironment is crucial for devising effective treatment modalities. By searching relevant research articles and clinical trials in PubMed according to the keywords of articular cartilage, microenvironment, OA, mechanical force, hypoxia, cytokine, and cell senescence. This study first summarizes the factors affecting articular cartilage regeneration, then proposes corresponding treatment strategies, and finally points out the future research direction. We find that regulating the opening of mechanosensitive ion channels, regulating the expression of HIF-1, delivering growth factors, and clearing senescent cells can promote the formation of articular cartilage regeneration microenvironment. This study provides a new idea for the treatment of OA in the future, which can promote the regeneration of articular cartilage through the regulation of the microenvironment so as to achieve the purpose of treating OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| | - Bingjun Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoling Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
17
|
Hong C, Chung H, Lee G, Kim D, Jiang Z, Kim SH, Lee K. Remendable Cross-Linked Alginate/Gelatin Hydrogels Incorporating Nanofibers for Wound Repair and Regeneration. Biomacromolecules 2024; 25:4344-4357. [PMID: 38917335 DOI: 10.1021/acs.biomac.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Wound dressings made from natural-derived polymers are highly valued for their biocompatibility, biodegradability, and biofunctionality. However, natural polymer-based hydrogels can come with their own set of limitations, such as low mechanical strength, limited cell affinity, and the potential cytotoxicity of cross-linkers, which delineate the boundaries of their usage and hamper their practical application. To overcome the limitation of natural-derived polymers, this study utilized a mixture of oxidized alginate and gelatin with 5 mg/mL polycaprolactone (PCL):gelatin nanofiber fragments at a ratio of 7:3 (OGN-7) to develop a hydrogel composite wound dressing that can be injected and has the ability to be remended. The in situ formation of the remendable hydrogel is facilitated by dual cross-linking of oxidized alginate chains with gelatin and PCL/gelatin nanofibers through Schiff-base mechanisms, supported by the physical integration of nanofibers, thereby obviating the need for additional cross-linking agents. Furthermore, OGN-7 exhibits increased stiffness (γ = 79.4-316.3%), reduced gelation time (543 ± 5 to 475 ± 5 s), improved remendability of the hydrogel, and excellent biocompatibility. Notably, OGN-7 achieves full fusion within 1 h of incubation and maintains structural integrity under external stress, effectively overcoming the inherent mechanical weaknesses of natural polymer-based dressings and enhancing biofunctionality. The therapeutic efficacy of OGN-7 was validated through a full-thickness in vivo wound healing analysis, which demonstrated that OGN-7 significantly accelerates wound closure compared to alginate-based dressings and control groups. Histological analysis further revealed that re-epithelialization and collagen deposition were markedly enhanced in the regenerating skin of the OGN-7 group, confirming the superior therapeutic performance of OGN-7. In summary, OGN-7 optimized the synergistic effects of natural polymers, which enhances their collective functionality as a wound dressing and expands their utility across diverse biomedical applications.
Collapse
Affiliation(s)
- Changgi Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeun Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Saeed U, Mahmood R, Fatima B, Hussain D, Liaqat S, Imran M, Ali Chohan T, Saqib Khan M, Akhter S, Najam-Ul-Haq M. Novel thymohydroquinone gallate derivative loaded ligand modified quantum dots as pH-sensitive multi-modal theragnostic agent for cancer treatment. Eur J Pharm Biopharm 2024; 200:114312. [PMID: 38735345 DOI: 10.1016/j.ejpb.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 μg/mL is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer treatment.
Collapse
Affiliation(s)
- Ummama Saeed
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sana Liaqat
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Tahir Ali Chohan
- Department of Biochemistry, University of Veterinary and Animal Science, Lahore, Pakistan
| | | | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
19
|
Olăreț E, Dinescu S, Dobranici AE, Ginghină RE, Voicu G, Mihăilescu M, Curti F, Banciu DD, Sava B, Amarie S, Lungu A, Stancu IC, Mastalier BSM. Osteoblast responsive biosilica-enriched gelatin microfibrillar microenvironments. BIOMATERIALS ADVANCES 2024; 161:213894. [PMID: 38796956 DOI: 10.1016/j.bioadv.2024.213894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface. The presence of biosilica generated composite structures with lower swelling degrees and higher stiffness when compared to gelatin fibers. Increasing DE content led to higher Young modulus, while the stability of the protein matrix in PBS, at 37 °C, over 21 was significantly decreased by the presence of diatomite loadings. The best preosteoblast response was obtained for FG_DE3, with enhanced mineralization during the osteogenic differentiation when compared to the control sample without diatomite. 5 % DE in FG_DE5 proved to negatively influence cells' metabolic activity and morphology. Hence, the obtained composite microfibrillar scaffolds might find application as osteoblast-responsive materials for bone tissue engineering.
Collapse
Affiliation(s)
- Elena Olăreț
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| | - Alexandra-Elena Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Raluca-Elena Ginghină
- Research and Innovation Center for CBRN Defense and Ecology, 041327 Bucharest, Romania
| | - Georgeta Voicu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Mona Mihăilescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Filis Curti
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Zentiva SA, 50, Theodor Pallady, 032266 Bucharest, Romania
| | - Daniel Dumitru Banciu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | | | | | - Adriana Lungu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
| | - Bogdan Stelian Manolescu Mastalier
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania; Department of General Surgery, Colentina Clinical Hospital, 072202 Bucharest, Romania
| |
Collapse
|
20
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
21
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
22
|
Govindasamy C, El Newehy AS, Hussein-Al-Ali SH, Arulselvan P, Bharathi M, Parthasarathy S. Investigation of antiproliferative efficacy and apoptosis induction in leukemia cancer cells using irinotecan-loaded liposome-embedded nanofibers constructed from chitosan. Int J Biol Macromol 2024; 270:132284. [PMID: 38734353 DOI: 10.1016/j.ijbiomac.2024.132284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Liposomes and nanofibers have been implemented as efficacious vehicles for delivering anticancer drugs. With this view, this study explores the antiproliferative efficacy and apoptosis induction in leukemia cancer cells utilizing irinotecan-loaded liposome-embedded nanofibers fabricated from chitosan, a biological source. Specifically, we investigate the effectiveness of poly(ε-caprolactone) (PCL)/chitosan (CS) (core)/irinotecan (CPT)nanofibers (termed PCL-CS10 CPT), PCL/chitosan/irinotecan (core)/PCL/chitosan (shell) nanofibers (termed CS/CPT/PCL/CS), and irinotecan-coloaded liposome-incorporated PCL/chitosan-chitosan nanofibers (termed CPT@Lipo/CS/PCL/CS) in releasing irinotecan in a controlled manner and treating leukemia cancer. The fabricated formulations were characterized utilizing Fourier transform infrared analysis, transmission electron microscopy, scanning electron microscopy, dynamic light scattering, zeta potential, and polydispersity index. Irinotecan was released in a controlled manner from nanofibers filled with liposomes over 30 days. The cell viability of the fabricated nanofibrous materials toward Human umbilical vein endothelial cells (HUVECs) non-cancerous cells after 168 h was >98 % ± 1 %. The CPT@Lipo/CS/PCL/CS nanofibers achieved maximal cytotoxicity of 85 % ± 2.5 % against K562 leukemia cancer cells. The CPT@Lipo/CS/PCL/CS NFs exhibit a three-stage drug release pattern and demonstrate significant in vitro cytotoxicity. These findings indicate the potential of these liposome-incorporated core-shell nanofibers for future cancer therapy.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ahmed S El Newehy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Muruganantham Bharathi
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Surya Parthasarathy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
23
|
Zhou Z, Feng W, Moghadas BK, Baneshi N, Noshadi B, Baghaei S, Dehkordi DA. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell 2024; 88:102390. [PMID: 38663113 DOI: 10.1016/j.tice.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 06/17/2024]
Abstract
Despite advancements in medical care, the management of bone injuries remains one of the most significant challenges in the fields of medicine and sports medicine globally. Bone tissue damage is often associated with aging, reduced quality of life, and various conditions such as trauma, cancer, and infection. While bone tissue possesses the natural capacity for self-repair and regeneration, severe damage may render conventional treatments ineffective, and bone grafting may be limited due to secondary surgical procedures and potential disease transmission. In such cases, bone tissue engineering has emerged as a viable approach, utilizing cells, scaffolds, and growth factors to repair damaged bone tissue. This research shows a comprehensive review of the current literature on the most important and effective methods and materials for improving the treatment of these injuries. Commonly employed cell types include osteogenic cells, embryonic stem cells, and mesenchymal cells, while scaffolds play a crucial role in bone tissue regeneration. To create an effective bone scaffold, a thorough understanding of bone structure, material selection, and examination of scaffold fabrication techniques from inception to the present day is necessary. By gaining insights into these three key components, the ability to design and construct appropriate bone scaffolds can be achieved. Bone tissue engineering scaffolds are evaluated based on factors such as strength, porosity, cell adhesion, biocompatibility, and biodegradability. This article examines the diverse categories of bone scaffolds, the materials and techniques used in their fabrication, as well as the associated merits and drawbacks of these approaches. Furthermore, the review explores the utilization of various scaffold types in bone tissue engineering applications.
Collapse
Affiliation(s)
- Zeng Zhou
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China
| | - Wei Feng
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China.
| | - B Kamyab Moghadas
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - N Baneshi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - B Noshadi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eastern Mediterranean University, via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkey
| | - Sh Baghaei
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| | - D Abasi Dehkordi
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
24
|
Wang W, Zhu Y, Liu Y, Chen B, Li M, Yuan C, Wang P. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Tissue Cell 2024; 88:102418. [PMID: 38776731 DOI: 10.1016/j.tice.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bioprinting technology promotes innovation of fabricating tissue engineered constructs. Dental pulp stem cells (DPSCs) have significant advantages over classical bone mesenchymal stem cells (BMSCs) and are a promising seed cell candidate for bone engineering bioprinting. However, current reports about bioprinted DPSCs for bone regeneration are incomprehensive. The objective of this study was to investigate the osteogenic potential of DPSCs in methacrylate gelatin (GelMA) hydrogels bioprinted scaffolds in vitro and in vivo. Firstly, we successfully bioprinted GelMA with different concentrations embedded with or without DPSCs. Printability, physical features and biological properties of the bioprinted constructs were evaluated. Then, osteogenic differentiation levels of DPSCs in bioprinted constructs with various concentrated GelMA were compared. Finally, effects of bioprinted constructs on cranial bone regeneration were evaluated in vivo. The results of our study demonstrated that 10% GelMA had higher compression modulus, smaller pores, lower swelling and degradation rate than 3% GelMA. Twenty-eight days after printing, DPSCs in three groups of bioprinted structures still maintained high cell activities (>90%). Moreover, DPSCs in 10% GelMA showed an upregulated expression of osteogenic markers and a highly activated ephrinB2/EphB4 signaling, a signaling involved in bone homeostasis. In vivo experiments showed that DPSCs survived at a higher rate in 10% GelMA, and more new bones were observed in DPSC-laden 10% GelMA group, compared with GelMA of other concentrations. In conclusion, bioprinted DPSC-laden 10% GelMA might be more appropriate for bone regeneration application, in contrast to GelMA with other concentrations.
Collapse
Affiliation(s)
- Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China
| | - Yaru Zhu
- Quanzhou Women 's and Children's Hospital, NO.700 Fengze Street, Quanzhou, Fujian 362000, China
| | - Ya Liu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Banghui Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mengying Li
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
25
|
Saravana Karthikeyan B, Madhubala MM, Rajkumar G, Dhivya V, Kishen A, Srinivasan N, Mahalaxmi S. Physico-chemical and biological characterization of synthetic and eggshell derived nanohydroxyapatite/carboxymethyl chitosan composites for pulp-dentin tissue engineering. Int J Biol Macromol 2024; 271:132620. [PMID: 38795888 DOI: 10.1016/j.ijbiomac.2024.132620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 μm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.
Collapse
Affiliation(s)
- Balasubramanian Saravana Karthikeyan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India.
| | - Manavalan Madhana Madhubala
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India
| | - G Rajkumar
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - V Dhivya
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Ontario M5G 1X3, Canada
| | | | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Chennai, SRM Institute of Science and Technology, Tamil Nadu, India.
| |
Collapse
|
26
|
Li SG, Guo ZL, Tao SY, Han T, Zhou J, Lin WY, Guo X, Li CX, Diwas S, Hu XW. In vivo study on osteogenic efficiency of nHA/ gel porous scaffold with nacre water-soluble matrix. Tissue Cell 2024; 88:102347. [PMID: 38489914 DOI: 10.1016/j.tice.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND/PURPOSE Nano-hydroxyapatite (nHA)/ gel porous scaffolds loaded with WSM carriers are promising bone replacement materials that can improve osseointegration ability. This investigation aimed to evaluate the osteoinductive activity by implanting the composition of nano-hydroxyapatite (nHA)/ Gel porous scaffolds as a carrier of WSM via an animal model. MATERIALS AND METHODS WSM was extracted and nHA was added to the matrix to construct porous composite scaffolds. The dose-effect curve of WSM concentration and alkaline phosphatase (ALP) activity was made by culturing rat osteoblasts and examining the absorbance. Three different materials were implanted into critical size defects (CSD) in the skulls of rats, which were further divided into four groups: WSM nHA /Gel group, n-WSM nHA /Gel group, HA powder group, and control group. RESULTS WSM (150 μg/mL-250μg/mL) effectively improved the activity of ALP in rat osteoblasts. All rats in each group had normal healing. WSM-loaded nHA /Gel group showed better performance on newly-formed bone tissue of rat skull and back at 4th week and 8th week, respectively. At the 4th week, the network of woven bone formed in the WSM-loaded nHA/Gel scaffold material. At 8th week, the reticular trabecular bone in the WSM-loaded scaffold material became dense lamellar bone, and the defect was mature lamellar bone. In the subcutaneous implantation experiment, WSM-loaded nHA/Gel scaffold material showed a better performance of heterotopic ossification than the pure nHA/Gel scaffold material. CONCLUSION WSM promotes osteoblast differentiation and bone mineralization. The results confirm that the nHA/ Gel Porous Scaffold with Nacre Water-Soluble Matrix has a significant bone promoting effect and can be used as a choice for tissue engineering to repair bone defects.
Collapse
Affiliation(s)
- SiRi-GuLeng Li
- Department of Dentistry, Guangzhou Health Science College, Guangzhou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Tao Han
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Wan-Yun Lin
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Sunchuri Diwas
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Xiao-Wen Hu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong provincial key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
27
|
Rahmani K, Zahedi P, Shahrousvand M. Potential use of a bone tissue engineering scaffold based on electrospun poly (ɛ-caprolactone) - Poly (vinyl alcohol) hybrid nanofibers containing modified cockle shell nanopowder. Heliyon 2024; 10:e31360. [PMID: 38813180 PMCID: PMC11133941 DOI: 10.1016/j.heliyon.2024.e31360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Today, the construction of scaffolds promoting the differentiation of stem cells is an intelligent innovation that accelerates the differentiation toward the target tissue. The use of calcium and phosphate compounds is capable of elevating the precision and efficiency of the osteogenic differentiation of stem cells. In this research, osteoconductive electrospun poly (ɛ-caprolactone) (PCL) - poly (vinyl alcohol) (PVA) hybrid nanofibrous scaffolds containing modified cockle shell (CS) nanopowder were prepared and investigated. In this regard, the modified CS nanopowder was prepared by grinding and modifying with phosphoric acid, and it was then added to PVA nanofibers at different weight percentages. Based on the SEM images, the optimum content of the modified CS nanopowder was set at 7 wt %, since reaching the threshold of agglomeration restricted this incorporation. In the second step, the PVA-CS7 nanofibrous sample was hybridized with different PCL ratios. Concerning the hydrophilicity and mechanical strength, the sample named PCL50-PVA50-CS7 was ultimately selected as the optimized and suitable candidate scaffold for bone tissue application. The accelerated hydrolytic degradation of the sample was also studied by FTIR and SEM analyses, and the results confirmed that the mineral deposits of CS are available approximately 7 days for mesenchymal stem cells. Moreover, Alizarin red staining illustrated that the presence of CS in the PCL50-PVA50-CS7 hybrid nanofibrous scaffold may potentially lead to an increase in calcium deposits with high precipitates, authenticating the differentiation of stem cells towards osteogenic cells.
Collapse
Affiliation(s)
- Kimiya Rahmani
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| |
Collapse
|
28
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
29
|
Ma R, Li Y, Dong X, Zhang Y, Chen X, Zhang Y, Zou H, Wang Y. PAX6/CXCL14 regulatory axis promotes the repair of corneal injury by enhancing corneal epithelial cell proliferation. J Transl Med 2024; 22:458. [PMID: 38750454 PMCID: PMC11094923 DOI: 10.1186/s12967-024-05270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Corneal injuries, often leading to severe vision loss or blindness, have traditionally been treated with the belief that limbal stem cells (LSCs) are essential for repair and homeostasis, while central corneal epithelial cells (CCECs) were thought incapable of such repair. However, our research reveals that CCECs can fully heal and maintain the homeostasis of injured corneas in rats, even without LSCs. We discovered that CXCL14, under PAX6's influence, significantly boosts the stemness, proliferation, and migration of CCECs, facilitating corneal wound healing and homeostasis. This finding introduces CXCL14 as a promising new drug target for corneal injury treatment. METHODS To investigate the PAX6/CXCL14 regulatory axis's role in CCECs wound healing, we cultured human corneal epithelial cell lines with either increased or decreased expression of PAX6 and CXCL14 using adenovirus transfection in vitro. Techniques such as coimmunoprecipitation, chromatin immunoprecipitation, immunofluorescence staining, western blot, real-time PCR, cell colony formation, and cell cycle analysis were employed to validate the axis's function. In vivo, a rat corneal epithelial injury model was developed to further confirm the PAX6/CXCL14 axis's mechanism in repairing corneal damage and maintaining corneal homeostasis, as well as to assess the potential of CXCL14 protein as a therapeutic agent for corneal injuries. RESULTS Our study reveals that CCECs naturally express high levels of CXCL14, which is significantly upregulated by PAX6 following corneal damage. We identified SDC1 as CXCL14's receptor, whose engagement activates the NF-κB pathway to stimulate corneal repair by enhancing the stemness, proliferative, and migratory capacities of CCECs. Moreover, our research underscores CXCL14's therapeutic promise for corneal injuries, showing that recombinant CXCL14 effectively accelerates corneal healing in rat models. CONCLUSION CCECs play a critical and independent role in the repair of corneal injuries and the maintenance of corneal homeostasis, distinct from that of LSCs. The PAX6/CXCL14 regulatory axis is pivotal in this process. Additionally, our research demonstrates that the important function of CXCL14 in corneal repair endows it with the potential to be developed into a novel therapeutic agent for treating corneal injuries.
Collapse
Affiliation(s)
- Ruijue Ma
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Yingxi Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoli Dong
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Yiming Zhang
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaosu Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Zhang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Haohan Zou
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
30
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
31
|
Wang J, Fan W, Liu B, Pu N, Wu H, Xue R, Li S, Song Z, Tao Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol Res 2024; 203:107159. [PMID: 38554790 DOI: 10.1016/j.phrs.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).
Collapse
Affiliation(s)
- Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Liu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Rongyue Xue
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| |
Collapse
|
32
|
Xu H, Li Y, Song J, Zhou L, Wu K, Lu X, Zhai X, Wan Z, Gao J. Highly active probiotic hydrogels matrixed on bacterial EPS accelerate wound healing via maintaining stable skin microbiota and reducing inflammation. Bioact Mater 2024; 35:31-44. [PMID: 38304916 PMCID: PMC10831122 DOI: 10.1016/j.bioactmat.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Skin microbiota plays an important role in wound healing, but skin injuries are highly susceptible to wound infections, leading to disruption of the skin microbiota. However, conventional antibacterial hydrogels eliminate both probiotics and pathogenic bacteria, disrupting the balance of the skin microbiota. Therefore, it is important to develop a wound dressing that can fend off foreign pathogenic bacteria while preserving skin microbiota stability. Inspired by live bacteria therapy, we designed a probiotic hydrogel (HAEPS@L.sei gel) with high viability for promoting wound healing. Lactobacillus paracasei TYM202 encapsulated in the hydrogel has the activity of promoting wound healing, and the hydrogel matrix EPS-M76 has the prebiotic activity that promotes the proliferation and metabolism of Lactobacillus paracasei TYM202. During the wound healing process, HAEPS@L.sei gel releases lactic acid and acetic acid to resist the growth of pathogenic bacteria while maintaining Firmicutes and Proteobacteria balance at the phylum level, thus preserving skin microbiota stability. Our results showed that live probiotic hydrogels reduce the incidence of inflammation during wound healing while promoting angiogenesis and increasing collagen deposition. This study provides new ideas for developing wound dressings predicated on live bacterial hydrogels.
Collapse
Affiliation(s)
- Hongtao Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiangping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Liuyang Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kaizhang Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoNing Zhai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
33
|
Tariq S, Shah SA, Hameed F, Mutahir Z, Khalid H, Tufail A, Akhtar H, Chaudhry AA, Khan AF. Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. Int J Biol Macromol 2024; 263:130371. [PMID: 38423439 DOI: 10.1016/j.ijbiomac.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.
Collapse
Affiliation(s)
- Sana Tariq
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Saqlain A Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fareeha Hameed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Zeeshan Mutahir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asma Tufail
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hafsah Akhtar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
34
|
Li P, Jin Q, Zeng K, Niu C, Xie Q, Dong T, Huang Z, Dou X, Feng C. Amino acid-based supramolecular chiral hydrogels promote osteogenesis of human dental pulp stem cells via the MAPK pathway. Mater Today Bio 2024; 25:100971. [PMID: 38347936 PMCID: PMC10859303 DOI: 10.1016/j.mtbio.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.
Collapse
Affiliation(s)
- Peilun Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Kangrui Zeng
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Pan C, Lu F, Hao X, Deng X, Liu J, Sun K, Hou W, Shang X, Chi R, Guo F, Xu T. Low-intensity pulsed ultrasound delays the progression of osteoarthritis by regulating the YAP-RIPK1-NF-κB axis and influencing autophagy. J Transl Med 2024; 22:286. [PMID: 38493143 PMCID: PMC10943805 DOI: 10.1186/s12967-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1β and in the post-traumatic OA model. RESULTS In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
36
|
Behrangi E, Feizollahi M, Zare S, Goodarzi A, Ghasemi MR, Sadeghzadeh-Bazargan A, Dehghani A, Nouri M, Zeinali R, Roohaninasab M, Nilforoushzadeh MA. Evaluation of the efficacy of mesenchymal stem cells derived conditioned medium in the treatment of striae distensae: a double blind randomized clinical trial. Stem Cell Res Ther 2024; 15:62. [PMID: 38439103 PMCID: PMC10913631 DOI: 10.1186/s13287-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Striae distensae is a disfiguring atrophic skin condition that impairs the body's aesthetic image. Despite the variety of conducted studies, there is controversy regarding the best modalities. Human mesenchymal stem cells are considered a rich source for scar treatment. Skin needling is among the most efficient and safe aesthetic and therapeutic devices. This study aimed to evaluate the efficacy of the combination of needling and intradermal injection of mesenchymal stem cells compared to skin needling alone for treating striae distensae. METHOD This study was a randomized, double-blind clinical trial involving 10 women aged 18-60. Each striae lesion was divided into two parts, with one side receiving needling and intradermal injection of conditioned medium, while the other side received needling and intradermal injection of normal saline. This treatment was administered in three sessions with three-week intervals. Patients were evaluated before the first intervention and three months after the final session. Three months after the completion of the intervention, patients' lesions were evaluated using biometric criteria, physician evaluation, and patient self-assessment. RESULTS The results demonstrated a significant improvement in dermal and complete thickness and skin density in patients treated with microneedling. All skin ultrasound parameters improved significantly in patients receiving the combination of needling and conditioned medium. When comparing the two groups, significantly higher physician and patient satisfaction was observed in the combination group. However, the comparison of biometric indices improvement wasn't significant between these groups. CONCLUSION The combination of human mesenchymal stem cells with microneedling could be considered a novel effective option for stretch marks.
Collapse
Affiliation(s)
- Elham Behrangi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Feizollahi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ghasemi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Dehghani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Zeinali
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| |
Collapse
|
37
|
Shin HH, Park J, Kim YJ, Kim D, Jin EJ, Ryu JH. Hydrophilic/Hydrophobic Janus Nanofibers Containing Compound K for Cartilage Regeneration. Int J Nanomedicine 2024; 19:1683-1697. [PMID: 38445226 PMCID: PMC10913899 DOI: 10.2147/ijn.s435156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells. Thus, it is highly desirable to improve their surface properties with functionality. We aim to design hydrophilic, adhesive, and compound K-loaded nanofibers for treatments of cartilage defects. Methods Hydrophilic and adhesive compound K-containing polycaprolactone nanofibers (CK/PCL NFs) were prepared by coatings of gallic acid-conjugated chitosan (CHI-GA). Therapeutic effects of CHI-GA/CK/PCL NFs were assessed by the expression level of genes involved in the cartilage matrix degradation, inflammatory response, and lipid accumulations in the chondrocytes. In addition, Cartilage damage was evaluated by safranin O staining and immunohistochemistry of interleukin-1β (IL-1β) using OA animal models. To explore the pathway associated with therapeutic effects of CHI-GA/CK/PCL NFs, cell adhesion, phalloidin staining, and the expression level of integrins and peroxisome proliferator-activated receptor (PPARs) were evaluated. Results CHI-GA-coated side of the PCL NFs showed hydrophilic and adhesive properties, whereas the unmodified opposite side remained hydrophobic. The expression levels of genes involved in the degradation of the cartilage matrix, inflammation, and lipogenesis were decreased in CHI-GA/CK/PCL NFs owing to the release of CK. In vivo implantation of CHI-GA/CK/PCL NFs into the cartilage reduced cartilage degradation induced by destabilization of the medial meniscus (DMM) surgery. Furthermore, the accumulation of lipid deposition and expression levels of IL-1β was reduced through the upregulation of PPAR. Conclusion CHI-GA/CK/PCL NFs were effective in the treatments of cartilage defects by inhibiting the expression levels of genes involved in cartilage degradation, inflammation, and lipogenesis as well as reducing lipid accumulation and the expression level of IL-1β via increasing PPAR.
Collapse
Affiliation(s)
- Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang, University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Yeo-Jin Kim
- Department of Carbon Convergence Engineering, Smart Convergence Materials Analysis Center, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Donghyeon Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
- Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Ji Hyun Ryu
- Department of Chemical Engineering, Wonkwang, University, Iksan, Jeonbuk, 54538, Republic of Korea
- Department of Carbon Convergence Engineering, Smart Convergence Materials Analysis Center, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
- Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| |
Collapse
|
38
|
Zhang H, Lin X, Cao X, Wang Y, Wang J, Zhao Y. Developing natural polymers for skin wound healing. Bioact Mater 2024; 33:355-376. [PMID: 38282639 PMCID: PMC10818118 DOI: 10.1016/j.bioactmat.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Natural polymers are complex organic molecules that occur in the natural environment and have not been subjected to artificial synthesis. They are frequently encountered in various creatures, including mammals, plants, and microbes. The aforementioned polymers are commonly derived from renewable sources, possess a notable level of compatibility with living organisms, and have a limited adverse effect on the environment. As a result, they hold considerable significance in the development of sustainable and environmentally friendly goods. In recent times, there has been notable advancement in the investigation of the potential uses of natural polymers in the field of biomedicine, specifically in relation to natural biomaterials that exhibit antibacterial and antioxidant characteristics. This review provides a comprehensive overview of prevalent natural polymers utilized in the biomedical domain throughout the preceding two decades. In this paper, we present a comprehensive examination of the components and typical methods for the preparation of biomaterials based on natural polymers. Furthermore, we summarize the application of natural polymer materials in each stage of skin wound repair. Finally, we present key findings and insights into the limitations of current natural polymers and elucidate the prospects for their future development in this field.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
39
|
Huang Y, Sun M, Lu Z, Zhong Q, Tan M, Wei Q, Zheng L. Role of integrin β1 and tenascin C mediate TGF-SMAD2/3 signaling in chondrogenic differentiation of BMSCs induced by type I collagen hydrogel. Regen Biomater 2024; 11:rbae017. [PMID: 38525326 PMCID: PMC10960929 DOI: 10.1093/rb/rbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024] Open
Abstract
Cartilage defects may lead to severe degenerative joint diseases. Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair. However, the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified. Herein, we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis. Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-β signaling pathway, and integrin-β1 (ITGB1), a receptor of collagen, was highly expressed in bone marrow mesenchymal stem cells (BMSCs). Further analysis showed genes such as COL2A1 and Tenascin C (TNC) that interacted with ITGB1 were significantly enriched in extracellular matrix (ECM) structural constituents in the chondrogenic induction group. Knockdown of ITGB1 led to the downregulation of cartilage-specific genes (SOX9, ACAN, COL2A1), SMAD2 and TNC, as well as the downregulation of phosphorylation of SMAD2/3. Knockdown of TNC also resulted in the decrease of cartilage markers, ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend. Finally, in vitro and in vivo experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration. In summary, we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel. It can activate TGF-SMAD2/3 signaling, followed by impacting TNC expression, which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis. These may provide concernful support for cartilage tissue engineering and biomaterials development.
Collapse
Affiliation(s)
- Yuanjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Miao Sun
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Qiuling Zhong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
40
|
Mohammadi A, Koruji M, Azami M, Shabani R, Mohandesnezhad S, Bashiri Z, Asgari H. Polycaprolactone/Testicular Extracellular Matrix/Graphene Oxide-Based Electrospun Tubular Scaffolds for Reproductive Medicine: Biomimetic Architecture of Seminiferous Tubules. Macromol Biosci 2024; 24:e2300342. [PMID: 37729950 DOI: 10.1002/mabi.202300342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Numerous scaffolds are developed in the field of testicular bioengineering. However, effectively replicating the spatial characteristics of native tissue, poses a challenge in maintaining the requisite cellular arrangement essential for spermatogenesis. In order to mimic the structural properties of seminiferous tubules, the objective is to fabricate a biocompatible tubular scaffold. Following the decellularization process of the testicular tissue, validation of cellular remnants' elimination from the specimens is conducted using 4',6-diamidino-2-phenylindole staining, hematoxylin and eosin staining, and DNA content analysis. The presence of extracellular matrix (ECM) components is confirmed through Alcian blue, Orcein, and Masson's trichrome staining techniques. The electrospinning technique is employed to synthesize the scaffolds using polycaprolactone (PCL), extracted ECM, and varying concentrations of graphene oxide (GO) (0.5%, 1%, and 2%). Subsequently, comprehensive evaluations are performed to assess the properties of the synthetic scaffolds. These evaluations encompass Fourier-transform infrared spectroscopy, scanning electron microscopy imaging, scaffold degradation testing, mechanical behavior analysis, methylthiazolyldiphenyl-tetrazolium bromide assay, and in vivo biocompatibility assessment. The PCL/decellularized extracellular matrix with 0.5% GO formulation exhibits superior fiber morphology and enhanced mechanical properties, and outperforms other groups in terms of in vitro biocompatibility. Consequently, these scaffolds present a viable option for implementation in "in vitro spermatogenesis" procedures, holding promise for future sperm production from spermatogonial cells.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 88770048, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 88770048, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sanam Mohandesnezhad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, 6517789971, Iran
- Omid Fertility & Infertility Clinic, Hamedan, 6516796198, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 88770048, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| |
Collapse
|
41
|
Xu M, Chen A, Chen D, Wu S, Deng Z, Wen H, Zhong H, Lu K, Tang J, Ma D, Zhang H. Preparation, characterization, and in vitro/vivo evaluation of a multifunctional electrode coating for cochlear implants. BIOMATERIALS ADVANCES 2024; 157:213736. [PMID: 38128170 DOI: 10.1016/j.bioadv.2023.213736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cochlear implantation (CI) is the primary intervention for patients with sensorineural hearing loss to restore their hearing. However, approximately 90 % of CI recipients experience unexpected fibrosis around the inserted electrode arrays due to acute and chronic inflammation. This fibrosis leads to progressive residual hearing loss. Addressing this complication is crucial for enhancing CI outcomes, yet an effective treatment has not yet been found. In this study, we developed a multifunctional dexamethasone (DXM)-loaded polytrimethylene carbonate (PTMC) electrode coating to mitigate inflammatory reactions and fibrosis after CI. This thin and flexible coating could preserve the mechanical performance of the electrode and reduce the implantation resistance for CI. The in vitro release studies demonstrated the DXM-PTMC coating's efficient drug loading and sustained release capability over 90 days. DXM-PTMC also showed long-term stability, high biocompatibility, and effective anti-inflammatory effects in vitro and in vivo. Compared with the uncoated group, DXM-PTMC coating significantly inhibited the expression of inflammatory factors, such as NO, TNF-α, IL-1β, and IL-6. DXM-PTMC coating suppressed fibrosis in rat implantation models for 3 weeks by reducing both acute and chronic inflammation. Our findings suggest that DXM-PTMC coating is a novel strategy to improve the outcomes of CI.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shengquan Wu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhipeng Deng
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hang Wen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huiling Zhong
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kejin Lu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
42
|
Hausen MDA, Moraes ADS, Pedrini F, Grabarz F, Camilli JA, Duek EADR. Crosslinked Collagen-Hyaluronic Acid Scaffold Enhances Interleukin-10 Under Co-Culture of Macrophages And Adipose-Derived Stem Cells. Macromol Biosci 2024; 24:e2300270. [PMID: 37700543 DOI: 10.1002/mabi.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
The skin, the human body's largest organ, possesses a protective barrier that renders it susceptible to various injuries, including burns. Following burn trauma, the inflammatory process triggers both innate and adaptive immune responses, leading to the polarization of macrophages into two distinct phenotypes: the pro-inflammatory M1 and the anti-inflammatory M2. This dual response sets the stage for wound healing and subsequent tissue regeneration. Contributing to this transition from M1 to M2 polarization are human adipose-derived stem cells (ASCs), which employ paracrine signaling and inflammation suppression to enhance the remodeling phase. ASCs, when combined with biocompatible polymers, can be integrated into functional scaffolds. This study introduces an 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-crosslinked (EDC-crosslinked) collagen-hyaluronic acid (Col-HA) scaffold assembled with ASCs, designed as a natural biomaterial device to modulate macrophage behavior in vitro under co-culture conditions. This innovation aims to improve wound healing processes. The EDC-crosslinked Col-HA scaffold favored the release of anti-inflammatory cytokines by ASCs, which indicated the M2 prevalence. In tissue engineering, a critical objective lies in the development of functional biomaterials capable of guiding specific tissue responses, notably the control of inflammatory processes. Thus, this research not only presents original findings but also points toward a promising avenue within regenerative medicine.
Collapse
Affiliation(s)
- Moema de Alencar Hausen
- Surgery Department, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Postgraduate Program in Biomaterials and Regenerative Medicine (PPBMR), Laboratory of Biomaterials, Sorocaba, 18030-070, Brazil
| | - Ariana de Souza Moraes
- Surgery Department, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Postgraduate Program in Biomaterials and Regenerative Medicine (PPBMR), Laboratory of Biomaterials, Sorocaba, 18030-070, Brazil
| | - Flavia Pedrini
- Surgery Department, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Postgraduate Program in Biomaterials and Regenerative Medicine (PPBMR), Laboratory of Biomaterials, Sorocaba, 18030-070, Brazil
- Center of Sciences and Technology for Sustainability, Federal University of São Carlos, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, 18052-780, Brazil
| | - Felipe Grabarz
- Biotechnology Center, Butantan Institute, Laboratory of Vaccine Development, Sorocaba, 05508-040, Brazil
| | - José Angelo Camilli
- Department of Functional and Structural Biology, University of Campinas, Institute of Biology, Laboratory of Bone Regeneration and Plasticity, São Paulo, 13083-970, Brazil
| | - Eliana Aparecida de Rezende Duek
- Surgery Department, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Postgraduate Program in Biomaterials and Regenerative Medicine (PPBMR), Laboratory of Biomaterials, Sorocaba, 18030-070, Brazil
- Center of Sciences and Technology for Sustainability, Federal University of São Carlos, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, 18052-780, Brazil
| |
Collapse
|
43
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
44
|
He Y, Liu X, Lei J, Ma L, Zhang X, Wang H, Lei C, Feng X, Yang C, Gao Y. Bioactive VS 4-based sonosensitizer for robust chemodynamic, sonodynamic and osteogenic therapy of infected bone defects. J Nanobiotechnology 2024; 22:31. [PMID: 38229126 PMCID: PMC10792985 DOI: 10.1186/s12951-023-02283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Most bone defects caused by bone disease or trauma are accompanied by infection, and there is a high risk of infection spread and defect expansion. Traditional clinical treatment plans often fail due to issues like antibiotic resistance and non-union of bones. Therefore, the treatment of infected bone defects requires a strategy that simultaneously achieves high antibacterial efficiency and promotes bone regeneration. RESULTS In this study, an ultrasound responsive vanadium tetrasulfide-loaded MXene (VSM) Schottky junction is constructed for rapid methicillin-resistant staphylococcus aureus (MRSA) clearance and bone regeneration. Due to the peroxidase (POD)-like activity of VS4 and the abundant Schottky junctions, VSM has high electron-hole separation efficiency and a decreased band gap, exhibiting a strong chemodynamic and sonodynamic antibacterial efficiency of 94.03%. Under the stimulation of medical dose ultrasound, the steady release of vanadium element promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The in vivo application of VSM in infected tibial plateau bone defects of rats also has a great therapeutic effect, eliminating MRSA infection, then inhibiting inflammation and improving bone regeneration. CONCLUSION The present work successfully develops an ultrasound responsive VS4-based versatile sonosensitizer for robust effective antibacterial and osteogenic therapy of infected bone defects.
Collapse
Affiliation(s)
- Yaqi He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunchi Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Salmanin Amiri M, Ghadi A, Sharifzadeh Baei M. Design of bio-scaffold conjugated with chitosan-PEG nano-carriers containing bio-macromolecules of Verbascum sinuatum L. to differentiate human adipose-derived stem cells into dermal keratinocytes. Int J Biol Macromol 2024; 255:127520. [PMID: 37865358 DOI: 10.1016/j.ijbiomac.2023.127520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Regenerative medicine and drug delivery systems provide promising approaches for the treatment of skin lesions. However, the design of engineered substrates containing therapeutic agents for cell proliferation and its differentiation into skin cells, with skin-like patterns, is the major challenge. Here, to overcome this problem, a hybrid scaffold conjugated with nanoparticles containing the extract of Verbascum sinuatum L. flowers (HE) was designed. To this end, (chitosan-PEG)-based nanocarriers (Chi-PEG) were first prepared in the volume ratios of 90:10, 80:20, 70:30, and 50:50 v/v. The results indicated that the 70:30 ratio possessed better physical/morphologic properties along with more suitable stability than other nanoparticles (encapsulation-efficiency:86.34 %, zeta-potential:21.2 mV, and PDI:0.30). Afterward, PCL-collagen biologic scaffold (PCL-Coll) were prepared by the lyophilization method, then conjugated with selected nanoparticles(Chi-PEG70:30-HE). Notably, in addition to PCL-Coll/Chi-PEG-HE, two scaffolds of PCL-Coll and PCL-Coll/Chi-PEG were prepared to evaluate the role of conjugation in the release behavior of herbal bio-macromolecules. Based on the results, the conjugation process was led to a more stable release, compared to unconjugated nanoparticles. The mentioned process also created an integrated network along with better physicomechanical properties [modulus:12.31 MPa, tensile strength:4.44 MPa, smaller pore size(2 μm), and better swelling (100.27 %) with a symmetrical wettability on the surface]. PCL-Coll/Chi-PEG-HE scaffold was also resulted in higher expression levels of K10 and K14 keratinocytes with biomimetic patterns than PCL-Coll/Chi-PEG scaffold. This could be due to the active ingredients of V. sinuatum extract like alkaloids, flavonoids, and triterpenoids which imparts the wound healing (anti-inflammatory, anti-bacterial, anti-oxidant) properties to this scaffold. It seems that the use of bioactive materials like herbal extracts, in the form of encapsulated into polymeric nanocarriers, in the structure of engineered scaffolds can be a promising option for regenerating damaged skin without scarring. Hence, this study can provide innovative insights into the combination of two techniques of drug delivery and tissue engineering to design bio-scaffolds containing bioactive molecules with better therapeutic approaches.
Collapse
Affiliation(s)
- Mahsa Salmanin Amiri
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran.
| | - Mazyar Sharifzadeh Baei
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran
| |
Collapse
|
46
|
Liu Q, Li Q, Hatakeyama M, Kitaoka T. Proliferation and differential regulation of osteoblasts cultured on surface-phosphorylated cellulose nanofiber scaffolds. Int J Biol Macromol 2023; 253:126842. [PMID: 37703974 DOI: 10.1016/j.ijbiomac.2023.126842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Phosphorus-containing polymers have received much attention for their excellent ability to regulate bone cell differentiation and calcification. Given the increasing concern about environmental issues, it is promising to utilize "green" biomaterials to construct novel cell culture scaffolds for bone tissue engineering. Herein, surface-phosphorylated cellulose nanofibers (P-CNFs) were fabricated as a novel green candidate for osteoblast culture. Compared with native CNF, P-CNFs possessed shorter fiber morphology with tunable phosphate group content (0-1.42 mmol/g). The zeta-potential values of CNFs were enhanced after phosphorylation, resulting in the formation of uniform and stable scaffolds. The cell culture behavior of mouse osteoblast (MC3T3-E1) cells showed a clear phosphate content-dependent cell proliferation. The osteoblast cells adhered well and proliferated efficiently on P-CNF0.78 and P-CNF1.05, with phosphate contents of 0.78 and 1.05 mmol/g, respectively, whereas the cells grown on native CNF substrate formed aggregates due to poor cell attachment and exhibited limited cell proliferation. In addition, the P-CNF substrates with optimal phosphate content provided a favorable cellular microenvironment and significantly promoted osteogenic differentiation and calcification, even in the absence of a differentiation inducer. The bio-based P-CNFs are expected to mimic the bone components and provide a means to regulate osteoblast proliferation and differentiation in bone tissue engineering.
Collapse
Affiliation(s)
- Qimei Liu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Qi Li
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
47
|
Nahumi A, Peymani M, Asadi A, Abdolmaleki A, Panahi Y. Decellularized tracheal scaffold as a promising 3D scaffold for tissue engineering applications. Tissue Cell 2023; 85:102258. [PMID: 37918216 DOI: 10.1016/j.tice.2023.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Tissue engineering is a science that uses the combination of scaffolds, cells, and active biomolecules to make tissue in order to restore or maintain its function and improve the damaged tissue or even an organ in the laboratory. The purpose of this research was to study the characteristics and biocompatibility of decellularized sheep tracheal scaffolds and also to investigate the differentiation of Adipose-derived stem cells (AD-MSCs) into tracheal cells. After the decellularization of sheep tracheas through the detergent-enzyme method, histological evaluations, measurement of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM), they were also evaluated mechanically. Further, In order to check the viability and adhesion of stem cells to the decellularized scaffolds, adipose mesenchymal stem cells were cultured on the scaffolds, and the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay was performed. The expression analysis of the intended genes for the differentiation of mesenchymal stem cells into tracheal cells was evaluated by the real-time PCR method. These results show that the prepared scaffolds are an ideal model for engineering applications, have high biocompatibility, and that the tracheal scaffold provides a suitable environment for the differentiation of ADMSCs. This review provides a basis for future research on tracheal decellularization scaffolds, serves as a suitable model for organ regeneration, and paves the way for their use in clinical medicine.
Collapse
Affiliation(s)
- Aida Nahumi
- Department of Biology, Faculty of Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Yassin Panahi
- Department of Basic Medical Sciences, khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
48
|
Seo JW, Jung WK, Park YH, Bae H. Development of cultivable alginate fibers for an ideal cell-cultivated meat scaffold and production of hybrid cultured meat. Carbohydr Polym 2023; 321:121287. [PMID: 37739499 DOI: 10.1016/j.carbpol.2023.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Slaughtering animals for meat pose several challenges, including environmental pollution and ethical concerns. Scaffold-based cell-cultivated meat has been proposed as a solution to these problems, however, the utilization of animal-derived materials for scaffolding or the high cost of production remains a significant challenge. Alginate is an ideal material for cell-cultivated meat scaffolds but has poor cell adhesion properties. To address this issue, we achieved 82 % cell adhesion coverage by controlling the specific structure generated during the ionic crosslinking process of alginate. Post 11 days of culture; we evaluated cell adhesion, differentiation, and aligned cell networks. The cell growth increased by 12.7 % compared to the initial seeding concentration. Finally, we created hybrid cell-cultivated meat by combining single-cell protein from mycelium and cell-cultivated meat. This is non-animal based, edible, cost-effective, and has a desirable texture by blending cell-cultivated meat with a meat analogue. In summary, the creation of improved alginate fibers can effectively tackle various obstacles encountered in the manufacturing of cell-cultivated meat. This includes enhancing cell adhesion, reducing costs, and streamlining the production procedure.
Collapse
Affiliation(s)
- Jeong Wook Seo
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea; Department of Microbiology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
49
|
Lei T, Tong Z, Zhai X, Zhao Y, Zhu H, Wang L, Wen Z, Song B. Chondroitin Sulfate Improves Mechanical Properties of Gelatin Hydrogel for Cartilage Regeneration in Rats. Adv Biol (Weinh) 2023; 7:e2300249. [PMID: 37635149 DOI: 10.1002/adbi.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Cartilage injury is a common disease in daily life. Especially in aging populations, the incidence of osteoarthritis is increasing. However, due to the poor regeneration ability of cartilage, most cartilage injuries cannot be effectively repaired. Even cartilage tissue engineering still faces many problems such as complex composition and poor integration of scaffolds and host tissues. In this study, chondroitin sulfate, one of the main components of extracellular matrix (ECM), is chosen as the main natural component of the material, which can protect cartilage in a variety of ways. Moreover, the results show that the addition of chondroitin sulfate improves the mechanical properties of gelatin methacrylate (GelMA) hydrogel, making it able to effectively bear mechanical loads in vivo. Further, chondroitin sulfate is modified to obtain the oxidized chondroitin sulfate (OCS) containing aldehyde groups via sodium periodate. This special group improves the interface integration and adhesion ability of the hydrogel to host cartilage tissue through schiff base reactions. In summary, GelMA/OCS hydrogel is a promising candidate for cartilage regeneration with good biocompatibility, mechanical properties, tissue integration ability, and excellent cartilage repair ability.
Collapse
Affiliation(s)
- Tao Lei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Xinrang Zhai
- School of Chemistry and Chemical Engineering, Nanjing University of Science&Technology, Nanjing, 210094, China
| | - Yushuang Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science&Technology, Nanjing, 210094, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Zhengfa Wen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Binghua Song
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| |
Collapse
|
50
|
Bâldea I, Lung I, Opriş O, Stegarescu A, Kacso I, Soran ML. Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations. Gels 2023; 9:901. [PMID: 37998991 PMCID: PMC10671504 DOI: 10.3390/gels9110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Our study aimed to investigate the biological effects of a common-plantain (Plantago major L.) extract, encapsulated in alginate, on dermal human fibroblast cultures in vitro, in view of its potential use as a wound healing adjuvant therapy. Common-plantain extracts were obtained by infusion and ultrasound extraction, and their total polyphenolic content and antioxidant capacity were determined by spectrophotometry. The best extract, which was obtained by infusion, was further encapsulated in sodium alginate in two different formulations. Fourier Transform Infrared Spectroscopy (FTIR) was used to demonstrate the existing interactions in the obtained common-plantain extract in the alginate formulations. The encapsulation efficiency was evaluated based on the total polyphenol content. These alginate gel formulations were further used in vitro to determine their biocompatibility and antioxidant and anti-inflammatory effects by spectrophotometry and ELISA, as well as their ability to stimulate fibroblast migration (scratch test assay) at different time points. In addition, the collagen 1 and 3 levels were determined by Western blot analysis. The data showed that the microencapsulated plantain extract formulations induced an antioxidant, anti-inflammatory effect, enhanced collagen production and increased wound closure in the first 8 h of their application. These results are encouraging for the use of this alginate plantain extract formulation as an adjuvant for skin wound healing.
Collapse
Affiliation(s)
- Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania;
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| |
Collapse
|