1
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025; 19:15189-15219. [PMID: 40249331 PMCID: PMC12045021 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Elendu C, Amaechi DC, Elendu TC, Amaechi EC, Elendu ID, Omeludike JC, Omeludike EK, Onubogu NC, Ogelle EC, Meduoye OOM, Oloyede PO, Ezeh CP, Esangbedo IJ, Adigwe AC, Akuma NM, Okafor SU. Essential information about nanotechnology in cardiology. Ann Med Surg (Lond) 2025; 87:748-779. [PMID: 40110293 PMCID: PMC11918598 DOI: 10.1097/ms9.0000000000002867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025] Open
Abstract
Cardiology, as a medical specialty, addresses cardiovascular diseases (CVDs), a leading cause of global mortality. Nanomaterials offer transformative potential across key areas such as drug delivery, stem cell therapy, imaging, and gene delivery. Nanomaterials improve solubility, bioavailability, and targeted delivery in drug delivery, reducing systemic side effects. Examples include gas microbubbles, liposomal preparations, and paramagnetic nanoparticles, which show promise in treating atherosclerosis. Stem cell therapy benefits from nanotechnology through enhanced cell culture conditions and three-dimensional scaffolds that support cardiomyocyte growth and survival. Gold nanoparticles and poly(lactic-co-glycolic acid)-derived microparticles further improve stem cell viability. In imaging, nanomaterials enable advanced visualization techniques such as magnetic resonance imaging with direct labeling and optical tracking via dye-conjugated nanoparticles. In gene delivery, polymeric nanocarriers like polyethyleneimine, dendrimers, and graphene-based materials offer efficient, non-viral alternatives, with magnetic nanoparticles showing promise in targeted applications. Ongoing research highlights the potential of nanomaterials to revolutionize CVD management by improving therapeutic outcomes and enabling precision medicine. These advancements position nanotechnology as a cornerstone of modern cardiology.
Collapse
|
3
|
Han D, Wang F, Shen D. Nanomedicines as Guardians of the Heart: Unleashing the Power of Antioxidants to Alleviate Myocardial Ischemic Injury. Theranostics 2024; 14:5336-5370. [PMID: 39267789 PMCID: PMC11388064 DOI: 10.7150/thno.99961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Malatesta M. Histochemistry for Molecular Imaging in Nanomedicine. Int J Mol Sci 2024; 25:8041. [PMID: 39125610 PMCID: PMC11311594 DOI: 10.3390/ijms25158041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
5
|
Shao Y, Xu C, Zhu S, Wu J, Sun C, Huang S, Li G, Yang W, Zhang T, Ma XL, Du J, Li P, Xu FJ, Li Y. One Endothelium-Targeted Combined Nucleic Acid Delivery System for Myocardial Infarction Therapy. ACS NANO 2024; 18:8107-8124. [PMID: 38442075 DOI: 10.1021/acsnano.3c11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.
Collapse
Affiliation(s)
- Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianing Wu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Canghao Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Weijie Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
6
|
Li Z, Zhang L, Wang Z, Kang X, Jin H, Zhao W, Zhang J, Su H. Quantification of Phosphatidylserine Molecules on the Surface of Individual Cells Using Single-Molecule Force Spectroscopy. Anal Chem 2024; 96:676-684. [PMID: 38173079 DOI: 10.1021/acs.analchem.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Identification of the phosphatidylserine (PS) discrepancies occurring on the cellular membrane during apoptotic processes is of the utmost importance. However, monitoring the quantity of PS molecules in real-time at a single-cell level currently remains a challenging task. Here, we demonstrate this objective by leveraging the specific binding and reversible interaction exhibited by the zinc(II) dipyridinamine complex (ZnDPA) with PS. Lipoic acid-functionalized ZnDPA (LP-ZnDPA) was subsequently immobilized onto the surface of an atomic force microscopy cantilever to form a force probe, ALP-ZnDPA, enabling a PS-specific dynamic imaging and detection mode. By utilizing this technique, we can not only create a heat map of the expression level of PS with submicron resolution but also quantify the number of molecules present on a single cell's surface with a detection limit of 1.86 × 104 molecules. The feasibility of the proposed method is demonstrated through the analysis of PS expression levels in different cancer cell lines and at various stages of paclitaxel-induced apoptosis. This study represents the first application of a force probe to quantify PS molecules on the surface of individual cells, providing insight into dynamic changes in PS content during apoptosis at the molecular level and introducing a novel dimension to current detection methodologies.
Collapse
Affiliation(s)
- Zhirong Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Lulu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhanzhong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Xiongli Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Huiying Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Wenjie Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Jun Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Haiquan Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
7
|
Qian B, Shen A, Huang S, Shi H, Long Q, Zhong Y, Qi Z, He X, Zhang Y, Hai W, Wang X, Cui Y, Chen Z, Xuan H, Zhao Q, You Z, Ye X. An Intrinsically Magnetic Epicardial Patch for Rapid Vascular Reconstruction and Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303033. [PMID: 37964406 PMCID: PMC10754083 DOI: 10.1002/advs.202303033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Indexed: 11/16/2023]
Abstract
Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.
Collapse
Affiliation(s)
- Bei Qian
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Ao Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yanna Cui
- Department of Pharmacology and Chemical BiologyShanghai Jiaotong University School of MedicineShanghai200000China
| | - Ziheng Chen
- School of Mechatronics Engineering and AutomationShanghai UniversityShanghai200000China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| |
Collapse
|
8
|
Jiang H, Tian H, Wang Z, Li B, Chen R, Luo K, Lu S, Nice EC, Zhang W, Huang C, Zhou Y, Zheng S, Gao F. Laser-activatable oxygen self-supplying nanoplatform for efficiently overcoming colorectal cancer resistance by enhanced ferroptosis and alleviated hypoxic microenvironment. Biomater Res 2023; 27:92. [PMID: 37742011 PMCID: PMC10518107 DOI: 10.1186/s40824-023-00427-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most deadly cancer worldwide, with chemo-resistance remaining a major obstacle in CRC treatment. Notably, the imbalance of redox homeostasis-mediated ferroptosis and the modulation of hypoxic tumor microenvironment are regarded as new entry points for overcoming the chemo-resistance of CRC. METHODS Inspired by this, we rationally designed a light-activatable oxygen self-supplying chemo-photothermal nanoplatform by co-assembling cisplatin (CDDP) and linoleic acid (LA)-tailored IR820 via enhanced ferroptosis against colorectal cancer chemo-resistance. In this nanoplatform, CDDP can produce hydrogen peroxide in CRC cells through a series of enzymatic reactions and subsequently release oxygen under laser-triggered photothermal to alleviate hypoxia. Additionally, the introduced LA can add exogenous unsaturated fatty acids into CRC cells, triggering ferroptosis via oxidative stress-related peroxidized lipid accumulation. Meanwhile, photothermal can efficiently boost the rate of enzymatic response and local blood flow, hence increasing the oxygen supply and oxidizing LA for enhanced ferroptosis. RESULTS This nanoplatform exhibited excellent anti-tumor efficacy in chemo-resistant cell lines and showed potent inhibitory capability in nude mice xenograft models. CONCLUSIONS Taken together, this nanoplatform provides a promising paradigm via enhanced ferroptosis and alleviated hypoxia tumor microenvironment against CRC chemo-resistance.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- The First Hospital of Ningbo University, Ningbo, 315020, China
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuping Zhou
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| | - Shaojiang Zheng
- Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
9
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
11
|
Mao Q, Pan H, Zhang Y, Zhang Y, Zhu Q, Hong Y, Huang Z, Li Y, Feng X, Fang Y, Chen W, Chen P, Shen B, Ouyang H, Liang Y. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Bioact Mater 2023; 19:251-267. [PMID: 35510173 PMCID: PMC9046703 DOI: 10.1016/j.bioactmat.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier. Due to the poor remission effect and severe adverse events associated with current clinical medications, IBD remains an incurable disease. Here, we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating. The molecular coating is composed of o-nitrobenzaldehyde (NB)-modified Gelatin (GelNB), which can strongly bond with -NH2 on the intestinal surface of tissue to form a thin biophysical barrier. We found that this molecular coating was able to stay on the surface of the intestine for long periods of time, effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora. In addition, our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration, but also achieved a better outcome of IBD by reducing intestinal inflammation. Moreover, the in vivo experiments showed that the GelNB was better than the classic clinical medication-mesalazine. Therefore, our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengze Huang
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
| | - Yang Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - WenChao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
| |
Collapse
|
12
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
13
|
Upconversion Nanostructures Applied in Theranostic Systems. Int J Mol Sci 2022; 23:ijms23169003. [PMID: 36012269 PMCID: PMC9409402 DOI: 10.3390/ijms23169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
Collapse
|
14
|
Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022; 10:943009. [PMID: 35873037 PMCID: PMC9301085 DOI: 10.3389/fchem.2022.943009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The alarming mortality and morbidity rate of myocardial infarction (MI) is becoming an important impetus in the development of early diagnosis and appropriate therapeutic approaches, which are critical for saving patients' lives and improving post-infarction prognosis. Despite several advances that have been made in the treatment of MI, current strategies are still far from satisfactory. Nanomaterials devote considerable contribution to tackling the drawbacks of conventional therapy of MI by improving the homeostasis in the cardiac microenvironment via targeting, immune modulation, and repairment. This review emphasizes the strategies of nanomaterials-based MI treatment, including cardiac targeting drug delivery, immune-modulation strategy, antioxidants and antiapoptosis strategy, nanomaterials-mediated stem cell therapy, and cardiac tissue engineering. Furthermore, nanomaterials-based diagnosis strategies for MI was presented in term of nanomaterials-based immunoassay and nano-enhanced cardiac imaging. Taken together, although nanomaterials-based strategies for the therapeutics and diagnosis of MI are both promising and challenging, such a strategy still explores the immense potential in the development of the next generation of MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
16
|
Liu C, Fan Z, He D, Chen H, Zhang S, Guo S, Zheng B, Cen H, Zhao Y, Liu H, Wang L. Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics 2022; 14:pharmaceutics14040758. [PMID: 35456592 PMCID: PMC9025700 DOI: 10.3390/pharmaceutics14040758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction is a major global health problem, and the repair of damaged myocardium is still a major challenge. Myocardial injury triggers an inflammatory response: immune cells infiltrate into the myocardium while activating myofibroblasts and vascular endothelial cells, promoting tissue repair and scar formation. Fragments released by cardiomyocytes become endogenous “danger signals”, which are recognized by cardiac pattern recognition receptors, activate resident cardiac immune cells, release thrombin factors and inflammatory mediators, and trigger severe inflammatory responses. Inflammatory signaling plays an important role in the dilation and fibrosis remodeling of the infarcted heart, and is a key event driving the pathogenesis of post-infarct heart failure. At present, there is no effective way to reverse the inflammatory microenvironment in injured myocardium, so it is urgent to find new therapeutic and diagnostic strategies. Nanomedicine, the application of nanoparticles for the prevention, treatment, and imaging of disease, has produced a number of promising applications. This review discusses the treatment and challenges of myocardial injury and describes the advantages of functional nanoparticles in regulating the myocardial inflammatory microenvironment and overcoming side effects. In addition, the role of inflammatory signals in regulating the repair and remodeling of infarcted hearts is discussed, and specific therapeutic targets are identified to provide new therapeutic ideas for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Chunping Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China;
| | - Dongyue He
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Huiqi Chen
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Shihui Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Sien Guo
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Bojun Zheng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Huan Cen
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Yunxuan Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China
- Correspondence: (H.L.); (L.W.)
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Correspondence: (H.L.); (L.W.)
| |
Collapse
|
17
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021; 9:686684. [PMID: 34513807 PMCID: PMC8424111 DOI: 10.3389/fbioe.2021.686684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of mortality worldwide. Because of the limited regenerative capacity of adult myocardium to compensate for the loss of heart tissue after ischemic infarction, scientists have been exploring the possible mechanisms involved in the pathological process of ASCVD and searching for alternative means to regenerate infarcted cardiac tissue. Although numerous studies have pursued innovative solutions for reversing the pathological process of ASCVD and improving the effectiveness of delivering therapeutics, the translation of those advances into downstream clinical applications remains unsatisfactory because of poor safety and low efficacy. Recently, nanomaterials (NMs) have emerged as a promising new strategy to strengthen both the efficacy and safety of ASCVD therapy. Thus, a comprehensive review of NMs used in ASCVD treatment will be useful. This paper presents an overview of the pathophysiological mechanisms of ASCVD and the multifunctional mechanisms of NM-based therapy, including antioxidative, anti-inflammation and antiapoptosis mechanisms. The technological improvements of NM delivery are summarized and the clinical transformations concerning the use of NMs to treat ASCVD are examined. Finally, this paper discusses the challenges and future perspectives of NMs in cardiac regeneration to provide insightful information for health professionals on the latest advancements in nanotechnologies for ASCVD treatment.
Collapse
Affiliation(s)
- Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Jing Xu
- Department of Cardiac Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
19
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
20
|
New Insights and Novel Therapeutic Potentials for Macrophages in Myocardial Infarction. Inflammation 2021; 44:1696-1712. [PMID: 33866463 PMCID: PMC8460536 DOI: 10.1007/s10753-021-01467-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) has long been the leading cause of death worldwide, and myocardial infarction (MI) accounts for the greatest proportion of CVD. Recent research has revealed that inflammation plays a major role in the pathogenesis of CVD and other manifestations of atherosclerosis. Overwhelming evidence supports the view that macrophages, as the basic cell component of the innate immune system, play a pivotal role in atherosclerosis initiation and progression. Limited but indispensable resident macrophages have been detected in the healthy heart; however, the number of cardiac macrophages significantly increases during cardiac injury. In the early period of initial cardiac damage (e.g., MI), numerous classically activated macrophages (M1) originating from the bone marrow and spleen are rapidly recruited to damaged sites, where they are responsible for cardiac remodeling. After the inflammatory stage, the macrophages shift toward an alternatively activated phenotype (M2) that promotes cardiac repair. In addition, extensive studies have shown the therapeutic potential of macrophages as targets, especially for emerging nanoparticle-mediated drug delivery systems. In the present review, we focused on the role of macrophages in the development and progression of MI, factors regulating macrophage activation and function, and the therapeutic potential of macrophages in MI.
Collapse
|
21
|
Klein ME, Rieckmann M, Sedding D, Hause G, Meister A, Mäder K, Lucas H. Towards the Development of Long Circulating Phosphatidylserine (PS)- and Phosphatidylglycerol (PG)-Enriched Anti-Inflammatory Liposomes: Is PEGylation Effective? Pharmaceutics 2021; 13:pharmaceutics13020282. [PMID: 33669803 PMCID: PMC7922817 DOI: 10.3390/pharmaceutics13020282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
The anionic phospholipids (PLs) phosphatidylserine (PS) and phosphatidylglycerol (PG) are endogenous phospholipids with anti-inflammatory and immunomodulatory activity. A potential clinical use requires well-defined systems and for several applications, a long circulation time is desirable. Therefore, we aimed the development of long circulating liposomes with intrinsic anti-inflammatory activity. Hence, PS- and PG-enriched liposomes were produced, whilst phosphatidylcholine (PC) liposomes served as control. Liposomes were either formulated as conventional or PEGylated formulations. They had diameters below 150 nm, narrow size distributions and composition-dependent surface charges. Pharmacokinetics were assessed non-invasively via in vivo fluorescence imaging (FI) and ex vivo in excised organs over 2 days. PC liposomes, conventionally formulated, were rapidly cleared from the circulation, while PEGylation resulted in prolongation of liposome circulation robustly distributing among most organs. In contrast, PS and PG liposomes, both as conventional or PEGylated formulations, were rapidly cleared. Non-PEGylated PS and PG liposomes did accumulate almost exclusively in the liver. In contrast, PEGylated PS and PG liposomes were observed mainly in liver and spleen. In summary, PEGylation of PS and PG liposomes was not effective to prolong the circulation time but caused a higher uptake in the spleen.
Collapse
Affiliation(s)
- Miriam E. Klein
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Max Rieckmann
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Annette Meister
- Faculty of Biosciences, IWE ZIK HALOmem and Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Karsten Mäder
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Henrike Lucas
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
- Correspondence: ; Tel.: +49-345-552-5133
| |
Collapse
|
22
|
Chang W, Fa H, Xiao D, Wang J. Targeting phosphatidylserine for Cancer therapy: prospects and challenges. Theranostics 2020; 10:9214-9229. [PMID: 32802188 PMCID: PMC7415799 DOI: 10.7150/thno.45125] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Despite major improvements in current therapeutic methods, ideal therapeutic strategies for improved tumor elimination are still lacking. Recently, immunotherapy has attracted much attention, and many immune-active agents have been approved for clinical use alone or in combination with other cancer drugs. However, some patients have a poor response to these agents. New agents and strategies are needed to overcome such deficiencies. Phosphatidylserine (PS) is an essential component of bilayer cell membranes and is normally present in the inner leaflet. In the physiological state, PS exposure on the external leaflet not only acts as an engulfment signal for phagocytosis in apoptotic cells but also participates in blood coagulation, myoblast fusion and immune regulation in nonapoptotic cells. In the tumor microenvironment, PS exposure is significantly increased on the surface of tumor cells or tumor cell-derived microvesicles, which have innate immunosuppressive properties and facilitate tumor growth and metastasis. To date, agents targeting PS have been developed, some of which are under investigation in clinical trials as combination drugs for various cancers. However, controversial results are emerging in laboratory research as well as in clinical trials, and the efficiency of PS-targeting agents remains uncertain. In this review, we summarize recent progress in our understanding of the physiological and pathological roles of PS, with a focus on immune suppressive features. In addition, we discuss current drug developments that are based on PS-targeting strategies in both experimental and clinical studies. We hope to provide a future research direction for the development of new agents for cancer therapy.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
| | - Hongge Fa
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Klein ME, Rieckmann M, Lucas H, Meister A, Loppnow H, Mäder K. Phosphatidylserine (PS) and phosphatidylglycerol (PG) enriched mixed micelles (MM): A new nano-drug delivery system with anti-inflammatory potential? Eur J Pharm Sci 2020; 152:105451. [PMID: 32621969 DOI: 10.1016/j.ejps.2020.105451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS) and phosphatidylglycerol (PG) are naturally occurring phospholipids (PL) with intrinsic anti-inflammatory properties. The therapeutic potential of PS and PG has not been extensively explored and the main focus had been directed towards PS- and PG-liposomes. In order to increase the formulation options, we explored whether mixed micelles (MM) could be an alternative to liposomes. Potential advantages of MM are their thermodynamic stability, small size and ease of manufacture. DOPS- and DOPG-enriched MM were obtained via a co-precipitation technique and physicochemical characterization was performed. The MM, approximately 10 nm in diameter, showed no toxicity on fibroblast cell lines in vitro and virtually no hemolytic activity. The MM suppressed the TNFα-production of mIFNγ/LPS-stimulated mouse peritoneal macrophages (MPM) in vitro similar to DOPS- and DOPG-liposomes. Therefore, DOPS- and DOPG-loaded MM are promising new options for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Elisabeth Klein
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Germany
| | - Max Rieckmann
- University Clinic and Outpatient Clinic for Internal Medicine III, University Medicine Halle (Saale), Martin Luther University Halle-Wittenberg, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Germany
| | - Annette Meister
- IWE ZIK HALOmem and Institute for Biochemistry and Biotechnology, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Germany
| | - Harald Loppnow
- University Clinic and Outpatient Clinic for Internal Medicine III, University Medicine Halle (Saale), Martin Luther University Halle-Wittenberg, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
24
|
Cao X, Duan L, Hou H, Liu Y, Chen S, Zhang S, Liu Y, Wang C, Qi X, Liu N, Han Z, Zhang D, Han ZC, Guo Z, Zhao Q, Li Z. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE 2-mediated M2 macrophage polarization. Am J Cancer Res 2020; 10:7697-7709. [PMID: 32685014 PMCID: PMC7359093 DOI: 10.7150/thno.45434] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based therapies hold great promise for the treatment of inflammatory bowel disease (IBD). In order to optimize and maximize the therapeutic benefits of MSCs, we investigated whether cotransplantation of a chitosan (CS)-based injectable hydrogel with immobilized IGF-1 C domain peptide (CS-IGF-1C) and human placenta-derived MSCs (hP-MSCs) could ameliorate colitis in mice. Methods: IGF-1C hydrogel was generated by immobilizing IGF-1C to CS hydrogel. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. We initially applied hP-MSCs and CS-IGF-1C hydrogel for the treatment of colitis by in situ injection, and molecular imaging methods were used for real-time imaging of reactive oxygen species (ROS) and tracking of transplanted hP-MSCs by bioluminescence imaging (BLI). Furthermore, the effects of CS-IGF-1C hydrogel on prostaglandin E2 (PGE2) secretion of hP-MSCs and polarization of M2 macrophages were investigated as well. Results: The CS-IGF-1C hydrogel significantly increased hP-MSC proliferation and promoted the production of PGE2 from hP-MSCs in vitro. Moreover, in vivo studies indicated that the CS-IGF-1C hydrogel promoted hP-MSC survival as visualized by BLI and markedly alleviated mouse colitis, which was possibly mediated by hP-MSC production of PGE2 and interleukin-10 (IL-10) production by polarized M2 macrophages. Conclusions: The CS-IGF-1C hydrogel improved the engraftment of transplanted hP-MSCs, ameliorated inflammatory responses, and further promoted the functional and structural recovery of colitis through PGE2-mediated M2 macrophage polarization. Molecular imaging approaches and therapeutic strategies for hydrogel application provide a versatile platform for exploring the promising therapeutic potential of MSCs in the treatment of IBD.
Collapse
|
25
|
Carbone C, Caddeo C, Grimaudo MA, Manno DE, Serra A, Musumeci T. Ferulic Acid-NLC with Lavandula Essential Oil: A Possible Strategy for Wound-Healing? NANOMATERIALS 2020; 10:nano10050898. [PMID: 32397093 PMCID: PMC7279150 DOI: 10.3390/nano10050898] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<150 nm) and a high encapsulation efficiency (>85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds.
Collapse
Affiliation(s)
- Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: ; Tel.: +39-095-7384251
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy;
| | - Maria Aurora Grimaudo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Daniela Erminia Manno
- Dipartimento di Matematica e Fisica, University of Salento, 73100 Lecce, Italy; (D.E.M.); (A.S.)
| | - Antonio Serra
- Dipartimento di Matematica e Fisica, University of Salento, 73100 Lecce, Italy; (D.E.M.); (A.S.)
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy;
| |
Collapse
|
26
|
Zhao X, Wang X, Wang J, Yuan J, Zhang J, Zhu X, Lei C, Yang Q, Wang B, Cao F, Liu L. A Peptide-Functionalized Magnetic Nanoplatform-Loaded Melatonin for Targeted Amelioration of Fibrosis in Pressure Overload-Induced Cardiac Hypertrophy. Int J Nanomedicine 2020; 15:1321-1333. [PMID: 32161461 PMCID: PMC7051809 DOI: 10.2147/ijn.s235518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Currently, the unsatisfactory treatment of cardiac hypertrophy is due to the unbridled myocardial fibrosis. Melatonin has been demonstrated to ameliorate cardiac hypertrophy and its accompanied fibrosis in previous studies. But it is not clinically appealing due to its short-lasting time against the hostile microenvironment when administered orally. Methods Herein, to address this, poly (lactide) polycarboxybetaine (PLGA-COOH) accompanied by cardiac homing peptide (CHP) and superparamagnetic iron oxide nanoparticles (SPIONs) were used to establish a novel drug delivery and transportation strategy for melatonin via a facile two-step emulsion method. This study characterized these nanoparticles (CHP-mel@SPIONs) and tested their delivery to the hypertrophied heart and their effect on myocardial hypertrophy and fibrosis in an animal model of pressure overload-induced cardiac hypertrophy. Results The engineered magnetic nanoparticles of CHP-mel@SPIONs were spherical (diameter = 221 ± 13 nm) and had a negative zeta potential of -19.18 ± 3.27 mV. The CHP-mel@SPIONs displayed excellent drug encapsulation capacities of SPIONs (75.27 ± 3.1%) and melatonin (77.69 ± 6.04%) separately, and their magnetic properties were characterized by constructing magnetic hysteresis curves and exhibited no remnant magnetization or coercivity. The animal experiments showed that compared with mel@SPIONs, CHP-mel@SPIONs accumulated more in the heart, especially in the presence of an external magnetic field, with in vivo echocardiography and RT-PCR and histological assessments confirming the amelioration of the myocardial hypertrophy and fibrosis with low drug doses. Conclusion This simple biocompatible dual-targeting nanoagent may be a potential candidate for the guided clinical therapy of heart disease.
Collapse
Affiliation(s)
- Xueli Zhao
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xuanying Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jing Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jiani Yuan
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Juan Zhang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiaoli Zhu
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Changhui Lei
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qianli Yang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Bo Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Liwen Liu
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
27
|
Klein ME, Mauch S, Rieckmann M, Martínez DG, Hause G, Noutsias M, Hofmann U, Lucas H, Meister A, Ramos G, Loppnow H, Mäder K. Phosphatidylserine (PS) and phosphatidylglycerol (PG) nanodispersions as potential anti-inflammatory therapeutics: Comparison of in vitro activity and impact of pegylation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 23:102096. [DOI: 10.1016/j.nano.2019.102096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/01/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
|
28
|
IL33 attenuates ventricular remodeling after myocardial infarction through inducing alternatively activated macrophages ethical standards statement. Eur J Pharmacol 2019; 854:307-319. [DOI: 10.1016/j.ejphar.2019.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
|
29
|
Zhang S, Liu Y, Zhang X, Zhu D, Qi X, Cao X, Fang Y, Che Y, Han ZC, He ZX, Han Z, Li Z. Prostaglandin E 2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Am J Cancer Res 2018; 8:5348-5361. [PMID: 30555551 PMCID: PMC6276096 DOI: 10.7150/thno.27385] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Wound healing is regulated by a complex series of events and overlapping phases. A delicate balance of cytokines and mediators in tissue repair is required for optimal therapy in clinical applications. Molecular imaging technologies, with their versatility in monitoring cellular and molecular events in living organisms, offer tangible options to better guide tissue repair by regulating the balance of cytokines and mediators at injured sites. Methods: A murine cutaneous wound healing model was developed to investigate if incorporation of prostaglandin E2 (PGE2) into chitosan (CS) hydrogel (CS+PGE2 hydrogel) could enhance its therapeutic effects. Bioluminescence imaging (BLI) was used to noninvasively monitor the inflammation and angiogenesis processes at injured sites during wound healing. We also investigated the M1 and M2 paradigm of macrophage activation during wound healing. Results: CS hydrogel could prolong the release of PGE2, thereby improving its tissue repair and regeneration capabilities. Molecular imaging results showed that the prolonged release of PGE2 could ameliorate inflammation by promoting the M2 phenotypic transformation of macrophages. Also, CS+PGE2 hydrogel could augment angiogenesis at the injured sites during the early phase of tissue repair, as revealed by BLI. Furthermore, our results demonstrated that CS+PGE2 hydrogel could regulate the balance among the three overlapping phases—inflammation, regeneration (angiogenesis), and remodeling (fibrosis)—during cutaneous wound healing. Conclusion: Our findings highlight the potential of the CS+PGE2 hydrogel as a novel therapeutic strategy for promoting tissue regeneration via M2 macrophage polarization. Moreover, molecular imaging provides a platform for monitoring cellular and molecular events in real-time during tissue repair and facilitates the discovery of optimal therapeutics for injury repair by regulating the balance of cytokines and mediators at injured sites.
Collapse
|
30
|
Kang H, Jung HJ, Kim SK, Wong DSH, Lin S, Li G, Dravid VP, Bian L. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages. ACS NANO 2018; 12:5978-5994. [PMID: 29767957 DOI: 10.1021/acsnano.8b02226] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Macrophages are key immune cells that perform various physiological functions, such as the maintenance of homeostasis, host defense, disease progression, and tissue regeneration. Macrophages adopt distinctly polarized phenotypes, such as pro-inflammatory M1 phenotype or anti-inflammatory (pro-healing) M2 phenotype, to execute disparate functions. The remotely controlled reversible uncaging of bioactive ligands, such as Arg-Gly-Asp (RGD) peptide, is an appealing approach for temporally regulating the adhesion and resultant polarization of macrophages on implants in vivo. Here, we utilize physical and reversible uncaging of RGD by a magnetic field that allows facile tissue penetration. We first conjugated a RGD-bearing gold nanoparticle (GNP) to the substrate and then a magnetic nanocage (MNC) to the GNP via a flexible linker to form the heterodimeric nanostructure. We magnetically manipulated nanoscale displacement of MNC and thus its proximity to the GNP to reversibly uncage and cage RGD. The uncaging of RGD temporally promoted the adhesion and subsequent M2 polarization of macrophages while inhibiting their M1 polarization both in vitro and in vivo. The RGD uncaging-mediated adhesion and M2 polarization of macrophages involved rho-associated protein kinase signaling. This study demonstrates physical and reversible uncaging of RGD to regulate the adhesion and polarization of host macrophages in vivo. This approach of magnetically regulating the heterodimer conformation for physical and reversible uncaging of RGD offers the promising potential to manipulate inflammatory or tissue-regenerative immune responses to the implants in vivo.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
| | - Hee Joon Jung
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Sung Kyu Kim
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Dexter Siu Hong Wong
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
| | - Sien Lin
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang , Guangdong 510000 , China
| | - Gang Li
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System , The Chinese University of Hong Kong Shenzhen Research Institute , Shenzhen 518172 , China
| | - Vinayak P Dravid
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Liming Bian
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang , Guangdong 510000 , China
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University , The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , Guangdong 510000 , China
- Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen 518172 , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|