1
|
Cao G, Zhang R, Jia X, Jiang B, Li Y, Xuan X, Tian J, Hui H, Xin S, Dong H. CXCR4-targeted sensitive magnetic particle imaging for abdominal aortic aneurysm early detection and prognosis evaluation by recognizing total inflammatory cells. Cardiovasc Res 2025; 121:324-338. [PMID: 39658102 DOI: 10.1093/cvr/cvae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS The maximum aortic diameter remains the diagnostic criteria and the indicator for prognosis prediction of abdominal aortic aneurysms (AAAs). An additional imaging modality is currently needed to help evaluate the prognosis of AAA as well as early detection of AAA formation. This study evaluated the most effective inflammatory markers for AAA using single-cell sequencing and, from these, developed probes to facilitate in vivo multimodal imaging of AAA inflammation. METHODS AND RESULTS Single-cell RNA sequencing (scRNAseq) of the human aortic aneurysms, GSE155468 and GSE166676 data sets, identified CXCR4 as the most representative marker. Anti-CXCR4-PE antibody was conjugated to superparamagnetic iron oxide nanoparticles to synthesize Fe3O4-anti-CXCR4-PE probes. The biocompatibility and specificity of the probes were validated in vivo and in vitro. Magnetic particle imaging (MPI) and fluorescence imaging (FLI) were performed to assess inflammation in early and advanced AAA mouse models. CXCR4-specific receptor inhibitor, AMD3100, was used for confirming CXCR4 as an excellent target for AAA imaging and therapy. scRNAseq indicated that chemokine-related pathways were upregulated in aortic aneurysms, and CXCR4 was the chemokine receptor that marks all AAA-related immune cells and inflammatory vascular cells. Fe3O4-anti-CXCR4-PE effectively recognized immune cells and inflammatory vascular cells, as strong MPI and FLI signals corresponded to increased CXCR4, CD45, and CD68 levels that represented AAA severity and rupture risk. Importantly, Fe3O4-anti-CXCR4-PE can help identify early AAA formation when ultrasound is undiagnosable. Finally, AMD3100 treatment in AAA mouse model inhibited AAA expansion and rupture and reduced aortic wall inflammation by inhibiting accumulation of immune cells and haematopoietic stem cells. CONCLUSION CXCR4 marks immune cells and inflammatory vascular cells in AAA and is associated with AAA prognosis in a mouse model of AAA. CXCR4-targeting multimodal MPI/FLI provides a novel approach for AAA prognosis prediction and early detection.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/diagnostic imaging
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Humans
- Disease Models, Animal
- Predictive Value of Tests
- Male
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/pathology
- Aorta, Abdominal/immunology
- Aorta, Abdominal/drug effects
- Early Diagnosis
- Mice, Inbred C57BL
- Cyclams
- Magnetite Nanoparticles/administration & dosage
- Aortitis/metabolism
- Aortitis/diagnostic imaging
- Aortitis/immunology
- Aortitis/genetics
- Aortitis/pathology
- Single-Cell Analysis
- Magnetic Iron Oxide Nanoparticles/administration & dosage
- Benzylamines
- Molecular Imaging/methods
- Inflammation Mediators/metabolism
- Prognosis
- Macrophages/metabolism
- Macrophages/immunology
- Mice
- Signal Transduction
- Heterocyclic Compounds/pharmacology
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Ruijing Zhang
- Department of Nephrology, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- Department of Ultrasound, Shuozhou Grand Hospital of Shanxi Medical University, Shuozhou 036000, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yaling Li
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- National Key Laboratory of Kidney Diseases, No.28, Fuxing road, Beijing 100853, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- National Key Laboratory of Kidney Diseases, No.28, Fuxing road, Beijing 100853, China
| | - Shijie Xin
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Honglin Dong
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| |
Collapse
|
2
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
3
|
Tay RE, P L, Pang ST, Low KE, Tay HC, Ho CM, Malleret B, Rötzschke O, Olivo M, Tay ZW. High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal in vivo Magnetic Particle Imaging. Theranostics 2024; 14:6138-6160. [PMID: 39431019 PMCID: PMC11488102 DOI: 10.7150/thno.95527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/07/2024] [Indexed: 10/22/2024] Open
Abstract
While adoptive cell therapies (ACT) have been successful as therapies for blood cancers, they have limited efficacy in treating solid tumours, where the tumour microenvironment excludes and suppresses adoptively transferred tumour-specific immune cells. A major obstacle to improving cell therapies for solid tumours is a lack of accessible and quantitative imaging modalities capable of tracking the migration and immune functional activity of ACT products for an extended duration in vivo. Methods: A high-efficiency magnetophoretic method was developed for facile magnetic labelling of hard-to-label immune cells, which were then injected into tumour-bearing mice and imaged over two weeks with a compact benchtop Magnetic Particle Imager (MPI) design. Results: Labelling efficiency was improved more than 10-fold over prior studies enabling longer-term tracking for at least two weeks in vivo of the labelled immune cells and their biodistribution relative to the tumour. The new imager showed 5-fold improved throughput enabling much larger density of data (up to 20 mice per experiment). Conclusions: Taken together, our innovations enable the convenient and practical use of MPI to visualise the localisation of ACT products in in vivo preclinical models for longitudinal, non-invasive functional evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Rong En Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Lokamitra P
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
| | - Shun Toll Pang
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Hui Chien Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Charmaine Min Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Benoit Malleret
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Malini Olivo
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Republic of Singapore
| | - Zhi Wei Tay
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute (HMRI), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
4
|
Sher AC, Stacy MR, Reynolds SD, Chiang T. In vivo detection of pulmonary mucociliary clearance: present challenges and future directions. Eur Respir Rev 2024; 33:240073. [PMID: 39293852 PMCID: PMC11409054 DOI: 10.1183/16000617.0073-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Pulmonary mucociliary clearance (MCC) is an important defence mechanism of the respiratory system and clears pathogens and foreign particles from the airways. Understanding the effect of disease states, drugs, toxins and airway manipulations on MCC could be beneficial in preventing early pulmonary disease and developing new pulmonary therapeutics. This review summarises the current methods and future efforts to detect pulmonary MCC in vivo.
Collapse
Affiliation(s)
- Ada C Sher
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
5
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Tay Z, Kim HJ, Ho JS, Olivo M. A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing With Implantable Bioelectronic Circuits. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1740-1752. [PMID: 38157469 DOI: 10.1109/tmi.2023.3348149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.
Collapse
|
8
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Gao P, Liu Y, Wang X, Feng X, Liu H, Liu S, Huang X, Wu X, Xiong F, Jia X, Hui H, Jiang J, Tian J. Adhesion molecule-targeted magnetic particle imaging nanoprobe for visualization of inflammation in acute lung injury. Eur J Nucl Med Mol Imaging 2024; 51:1233-1245. [PMID: 38095676 DOI: 10.1007/s00259-023-06550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1β, R > 0.7). CONCLUSION ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.
Collapse
Affiliation(s)
- Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, No. 16 Xinjiekou Outer Street, Beijing, 100088, China
| | - Songlu Liu
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiazi Huang
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Wu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Xiong
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingying Jiang
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Feng X, Gao P, Li Y, Hui H, Jiang J, Xie F, Tian J. First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung. Bioeng Transl Med 2024; 9:e10626. [PMID: 38435827 PMCID: PMC10905553 DOI: 10.1002/btm2.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Increased pulmonary vascular permeability is a characteristic feature of lung injury. However, there are no established methods that allow the three-dimensional visualization and quantification of pulmonary vascular permeability in vivo. Evans blue extravasation test and total protein test of bronchoalveolar lavage fluid (BALF) are permeability assays commonly used in research settings. However, they lack the ability to identify the spatial and temporal heterogeneity of endothelial barrier disruption, which is typical in lung injuries. Magnetic resonance (MR) and near-infrared (NIR) imaging have been proposed to image pulmonary permeability, but suffer from limited sensitivity and penetration depth, respectively. In this study, we report the first use of magnetic particle imaging (MPI) to assess pulmonary vascular leakage noninvasively in vivo in mice. A dextran-coated superparamagnetic iron oxide (SPIO), synomag®, was employed as the imaging tracer, and pulmonary SPIO extravasation was imaged and quantified to evaluate the vascular leakage. Animal models of acute lung injury and pulmonary fibrosis (PF) were used to validate the proposed method. MPI sensitively detected the SPIO extravasation in both acutely injured and fibrotic lungs in vivo, which was confirmed by ex vivo imaging and Prussian blue staining. Moreover, 3D MPI illustrated the spatial heterogeneity of vascular leakage, which correlated well with CT findings. Based on the in vivo 3D MPI images, we defined the SPIO extravasation index (SEI) to quantify the vascular leakage. A significant increase in SEI was observed in the injured lungs, in consistent with the results obtained via ex vivo permeability assays. Overall, our results demonstrate that 3D quantitative MPI serves as a useful tool to examine pulmonary vascular integrity in vivo, which shows promise for future clinical translation.
Collapse
Affiliation(s)
- Xin Feng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang UniversityBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Jingying Jiang
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| |
Collapse
|
11
|
Feng X, Shi Y, Zhang Y, Lei F, Ren R, Tang X. Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review. Int J Nanomedicine 2024; 19:1509-1538. [PMID: 38384321 PMCID: PMC10880554 DOI: 10.2147/ijn.s446919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Lungs experience frequent interactions with the external environment and have an abundant supply of blood; therefore, they are susceptible to invasion by pathogenic microorganisms and tumor cells. However, the limited pharmacokinetics of conventional drugs in the lungs poses a clinical challenge. The emergence of different nano-formulations has been facilitated by advancements in nanotechnology. Inhaled nanomedicines exhibit better targeting and prolonged therapeutic effects. Although nano-formulations have great potential, they still present several unknown risks. Herein, we review the (1) physiological anatomy of the lungs and their biological barriers, (2) pharmacokinetics and toxicology of nanomaterial formulations in the lungs; (3) current nanomaterials that can be applied to the respiratory system and related design strategies, and (4) current applications of inhaled nanomaterials in treating respiratory disorders, vaccine design, and imaging detection based on the characteristics of different nanomaterials. Finally, (5) we analyze and summarize the challenges and prospects of nanomaterials for respiratory disease applications. We believe that nanomaterials, particularly inhaled nano-formulations, have excellent prospects for application in respiratory diseases. However, we emphasize that the simultaneous toxic side effects of biological nanomaterials must be considered during the application of these emerging medicines. This study aims to offer comprehensive guidelines and valuable insights for conducting research on nanomaterials in the domain of the respiratory system.
Collapse
Affiliation(s)
- Xujun Feng
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Shi
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ye Zhang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fei Lei
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rong Ren
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiangdong Tang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Nguyen KT, Bui MP, Le TA, Kim SJ, Kim HY, Yoon J, Park JO, Kim J. Magnetic particle image scanner based on asymmetric core-filled electromagnetic actuator. Comput Biol Med 2024; 169:107864. [PMID: 38171260 DOI: 10.1016/j.compbiomed.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Monitoring the distribution of magnetic nanoparticles (MNPs) in the vascular system is an important task for the advancement of precision therapeutics and drug delivery. Despite active targeting using active motilities, it is required to visualize the position and concentration of carriers that reach the target, to promote the development of this technology. In this work, a feasibility study is presented on a tomographic scanner that allows monitoring of the injected carriers quantitatively in a relatively short interval. The device is based on a small-animal-scale asymmetric magnetic platform integrated with magnetic particle imaging technology. An optimized isotropic field-free region (FFR) generation method using a magnetic manipulation system (MMS) is derived and numerically investigated. The in-vitro and in-vivo tracking performances are demonstrated with a high position accuracy of approximately 1 mm. A newly proposed tracking method was developed, specialized in vascular system, with quick scanning time (about 1s). In this paper, the primary function of the proposed system is to track magnetic particles using a magnetic manipulation system. Through this, proposed method enables the conventional magnetic actuation systems to upgrade the functionalities of both manipulation and localization of magnetic objects.
Collapse
Affiliation(s)
- Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Minh Phu Bui
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Seok Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Ho Young Kim
- Department of Nanobiomedical Science, Dankook University, Chungnam, 31116, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| | - Jayoung Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| |
Collapse
|
13
|
Nigam S, Mohapatra J, Makela AV, Hayat H, Rodriguez JM, Sun A, Kenyon E, Redman NA, Spence D, Jabin G, Gu B, Ashry M, Sempere LF, Mitra A, Li J, Chen J, Wei GW, Bolin S, Etchebarne B, Liu JP, Contag CH, Wang P. Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305300. [PMID: 37735143 PMCID: PMC10842459 DOI: 10.1002/smll.202305300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeotikanta Mohapatra
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ashley V Makela
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessi Mercedes Rodriguez
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
- Human Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Aixia Sun
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Nathan A Redman
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Dana Spence
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - George Jabin
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Mohamed Ashry
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo F Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Arijit Mitra
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jinxing Li
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiahui Chen
- Department of Mathematics, College of Natural Science, Michigan State U, niversity, East Lansing, MI, 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, College of Natural Science, Michigan State U, niversity, East Lansing, MI, 48824, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Steven Bolin
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Brett Etchebarne
- Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - J Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
A R, Han Z, Wang T, Zhu M, Zhou M, Sun X. Pulmonary delivery of nano-particles for lung cancer diagnosis and therapy: Recent advances and future prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1933. [PMID: 37857568 DOI: 10.1002/wnan.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Although our understanding of lung cancer has significantly improved in the past decade, it is still a disease with a high incidence and mortality rate. The key reason is that the efficacy of the therapeutic drugs is limited, mainly due to insufficient doses of drugs delivered to the lungs. To achieve precise lung cancer diagnosis and treatment, nano-particles (NPs) pulmonary delivery techniques have attracted much attention and facilitate the exploration of the potential of those in inhalable NPs targeting tumor lesions. Since the therapeutic research focusing on pulmonary delivery NPs has rapidly developed and evolved substantially, this review will mainly discuss the current developments of pulmonary delivery NPs for precision lung cancer diagnosis and therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Shen Y, Zhang L, Shang Y, Jia G, Yin L, Zhang H, Tian J, Yang G, Hui H. An adaptive multi-frame parallel iterative method for accelerating real-time magnetic particle imaging reconstruction. Phys Med Biol 2023; 68:245016. [PMID: 37890461 DOI: 10.1088/1361-6560/ad078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective. Real-time reconstruction of magnetic particle imaging (MPI) shows promising clinical applications. However, prevalent reconstruction methods are mainly based on serial iteration, which causes large delay in real-time reconstruction. In order to achieve lower latency in real-time MPI reconstruction, we propose a parallel method for accelerating the speed of reconstruction methods.Approach. The proposed method, named adaptive multi-frame parallel iterative method (AMPIM), enables the processing of multi-frame signals to multi-frame MPI images in parallel. To facilitate parallel computing, we further propose an acceleration strategy for parallel computation to improve the computational efficiency of our AMPIM.Main results. OpenMPIData was used to evaluate our AMPIM, and the results show that our AMPIM improves the reconstruction frame rate per second of real-time MPI reconstruction by two orders of magnitude compared to prevalent iterative algorithms including the Kaczmarz algorithm, the conjugate gradient normal residual algorithm, and the alternating direction method of multipliers algorithm. The reconstructed image using AMPIM has high contrast-to-noise with reducing artifacts.Significance. The AMPIM can parallelly optimize least squares problems with multiple right-hand sides by exploiting the dimension of the right-hand side. AMPIM has great potential for application in real-time MPI imaging with high imaging frame rate.
Collapse
Affiliation(s)
- Yusong Shen
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | - Yaxin Shang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, Xi'an Shaanxi, People's Republic of China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | - Hui Zhang
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Jie Tian
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Guanyu Yang
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| |
Collapse
|
16
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches. Mol Imaging Biol 2023; 25:954-967. [PMID: 37386319 DOI: 10.1007/s11307-023-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, a few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. PROCEDURES Six users (3 from each institute) imaged a known amount of Vivotrax + (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users × triplicate samples × 2 sample volumes × 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax + quantification, and ROI selection were compared across users, within and across institutions. RESULTS MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax + . Overall quantification yielded measurements that were within [Formula: see text] 20% from ground truth; however, SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. CONCLUSIONS This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental setup, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA.
| | - Olivia C Sehl
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Julia J Gevaert
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Maryam A Berih
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Sebastian A Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Paula J Foster
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
18
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535446. [PMID: 37066180 PMCID: PMC10104026 DOI: 10.1101/2023.04.03.535446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Purpose Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. Procedures Six users (3 from each institute) imaged a known amount of Vivotrax+ (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users x triplicate samples x 2 sample volumes x 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax+ quantification, and ROI selection was compared across users, within and across institutions. Results MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax+. Overall quantification yielded measurements that were within ± 20% from ground truth, however SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. Conclusions This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental set up, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J. Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Olivia C. Sehl
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Julia J. Gevaert
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Maryam A. Berih
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Sebastian A. Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville FL, 32611, United States of America
| | - Paula J. Foster
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| |
Collapse
|
19
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
20
|
Tong W, Zhang Y, Hui H, Feng X, Ning B, Yu T, Wang W, Shang Y, Zhang G, Zhang S, Tian F, He W, Chen Y, Tian J. Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 2023; 90:104509. [PMID: 36905783 PMCID: PMC10023936 DOI: 10.1016/j.ebiom.2023.104509] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Intraplaque haemorrhage (IPH) drives atherosclerosis progression and is a key imaging biomarker of unstable plaques. Non-invasive and sensitive monitoring of IPH is challenging due to the compositional complexity and dynamic nature of atherosclerotic plaques. Magnetic particle imaging (MPI) is a highly sensitive, radiation-free, and no-tissue-background tomographic technique that detects superparamagnetic nanoparticles. Thus, we aimed to investigate whether MPI can in vivo detect and monitor IPH. METHODS Thirty human carotid endarterectomy samples were collected and scanned with MPI. The tandem stenosis (TS) model was employed to establish unstable plaques with IPH in ApoE-/- mice. MPI and 7 T T1-weighted magnetic resonance imaging (MRI) were performed on TS ApoE-/- mice. Plaque specimens were analyzed histologically. FINDINGS Human carotid endarterectomy samples exhibited endogenous MPI signals, which histologically colocalized with IPH. In vitro experiments identified haemosiderin, a haemoglobin degradation product, as a potential source of MPI signals. Longitudinal MPI of TS ApoE-/- mice detected IPH at unstable plaques, of which MPI signal-to-noise ratio values increased from 6.43 ± 1.74 (four weeks) to 10.55 ± 2.30 (seven weeks) and reduced to 7.23 ± 1.44 (eleven weeks). In contrast, 7 T T1-weighted MRI did not detect the small-size IPH (329.91 ± 226.82 μm2) at four weeks post-TS. The time-course changes in IPH were shown to correlate with neovessel permeability providing a possible mechanism for signal changes over time. INTERPRETATION MPI is a highly sensitive imaging technology that allows the identification of atherosclerotic plaques with IPH and may help detect and monitor unstable plaques in patients. FUNDING This work was supported in part by the Beijing Natural Science Foundation under Grant JQ22023; the National Key Research and Development Program of China under Grant 2017YFA0700401; the National Natural Science Foundation of China under Grant 62027901, 81827808, 81730050, 81870178, 81800221, 81527805, and 81671851; the CAS Youth Innovation Promotion Association under Grant Y2022055 and CAS Key Technology Talent Program; and the Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703).
Collapse
Affiliation(s)
- Wei Tong
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingqian Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Bin Ning
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Wang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yaxin Shang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100069, China
| | - Guanghao Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Suhui Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Feng Tian
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital, Affiliated with Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
21
|
Fung KLB, Colson C, Bryan J, Saayujya C, Mokkarala-Lopez J, Hartley A, Yousuf K, Kuo R, Lu Y, Fellows BD, Chandrasekharan P, Conolly SM. First Superferromagnetic Remanence Characterization and Scan Optimization for Super-Resolution Magnetic Particle Imaging. NANO LETTERS 2023; 23:1717-1725. [PMID: 36821385 PMCID: PMC10790312 DOI: 10.1021/acs.nanolett.2c04404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic particle imaging (MPI) is a sensitive, high-contrast tracer modality that images superparamagnetic iron oxide nanoparticles, enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10× resolution and signal improvements with dramatically sharper M-H curves. Experiments show a dependence on interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis with non-negligible remanence and coercivity. We provide the first quantitative measurements of SFMIO remanence decay and reformation using a novel multiecho pulse sequence. We characterize MPI scanning with remanence decay and coercivity and describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.
Collapse
Affiliation(s)
- K L Barry Fung
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Caylin Colson
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Javier Mokkarala-Lopez
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Allison Hartley
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Khadija Yousuf
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin D Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
23
|
Munir M, Setiawan H, Awaludin R, Kett VL. Aerosolised micro and nanoparticle: formulation and delivery method for lung imaging. Clin Transl Imaging 2023; 11:33-50. [PMID: 36196096 PMCID: PMC9521863 DOI: 10.1007/s40336-022-00527-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Purpose The application of contrast and tracing agents is essential for lung imaging, as indicated by the wide use in recent decades and the discovery of various new contrast and tracing agents. Different aerosol production and pulmonary administration methods have been developed to improve lung imaging quality. This review details and discusses the ideal characteristics of aerosol administered via pulmonary delivery for lung imaging and the methods for the production and pulmonary administration of dry or liquid aerosol. Methods We explored several databases, including PubMed, Scopus, and Google Scholar, while preparing this review to discover and obtain the abstracts, reports, review articles, and research papers related to aerosol delivery for lung imaging and the formulation and pulmonary delivery method of dry and liquid aerosol. The search terms used were "dry aerosol delivery", "liquid aerosol delivery", "MRI for lung imaging", "CT scan for lung imaging", "SPECT for lung imaging", "PET for lung imaging", "magnetic particle imaging", "dry powder inhalation", "nebuliser", and "pressurised metered-dose inhaler". Results Through the literature review, we found that the critical considerations in aerosol delivery for lung imaging are appropriate lung deposition of inhaled aerosol and avoiding toxicity. The important tracing agent was also found to be Technetium-99m (99mTc), Gallium-68 (68Ga) and superparamagnetic iron oxide nanoparticle (SPION), while the essential contrast agents are gold, iodine, silver gadolinium, iron and manganese-based particles. The pulmonary delivery of such tracing and contrast agents can be performed using dry formulation (graphite ablation, spark ignition and spray dried powder) and liquid aerosol (nebulisation, pressurised metered-dose inhalation and air spray). Conclusion A dual-imaging modality with the combination of different tracing or contrast agents is a future development of aerosolised micro and nanoparticles for lung imaging to improve diagnosis success. Graphical abstract
Collapse
Affiliation(s)
- Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Rohadi Awaludin
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Vicky L. Kett
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL UK
| |
Collapse
|
24
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
25
|
Yang CW, Liu K, Yao CY, Li B, Juhong A, Qiu Z, Huang X. Indocyanine Green-Conjugated Superparamagnetic Iron Oxide Nanoworm for Multimodality Breast Cancer Imaging. ACS APPLIED NANO MATERIALS 2022; 5:18912-18920. [PMID: 37635916 PMCID: PMC10448907 DOI: 10.1021/acsanm.2c04687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Breast cancer is the leading cause of cancer-associated deaths among women. Techniques for non-invasive breast cancer detection and imaging are urgently needed. Multimodality breast cancer imaging is attractive since it can integrate advantages from several modalities, enabling more accurate cancer detection. In order to accomplish this, indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworm (NW-ICG) has been synthesized as a contrast agent. When evaluated in a spontaneous mouse breast cancer model, NW-ICG gave a large tumor to normal tissue contrasts in multiple imaging modalities including magnetic particle imaging, near-infrared fluorescence imaging, and photoacoustic imaging, providing more comprehensive detection and imaging of breast cancer. Thus, NW-ICGs are an attractive platform for non-invasive breast cancer diagnosis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kunli Liu
- Department of Chemistry and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheng-You Yao
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bo Li
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Institute for Quantitative Health Science and Engineering, and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Arslan MT, Ozaslan AA, Kurt S, Muslu Y, Saritas EU. Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3774-3786. [PMID: 35921341 DOI: 10.1109/tmi.2022.3195694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, τ , by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable τ map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity τ maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.
Collapse
|
27
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
28
|
Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces. Cells 2022; 11:cells11060950. [PMID: 35326401 PMCID: PMC8946034 DOI: 10.3390/cells11060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of magnetic micro- and nanoparticles for applications in biomedical technology is widely recognised. Many of these applications, including tissue engineering, cell sorting, biosensors, drug delivery, and lab-on-chip devices, require remote manipulation of magnetic objects. High-gradient magnetic fields generated by micromagnets in the range of 103–105 T/m are sufficient for magnetic forces to overcome other forces caused by viscosity, gravity, and thermal fluctuations. In this paper, various magnetic systems capable of generating magnetic fields with required spatial gradients are analysed. Starting from simple systems of individual magnets and methods of field computation, more advanced magnetic microarrays obtained by lithography patterning of permanent magnets are introduced. More flexible field configurations can be formed with the use of soft magnetic materials magnetised by an external field, which allows control over both temporal and spatial field distributions. As an example, soft magnetic microwires are considered. A very attractive method of field generation is utilising tuneable domain configurations. In this review, we discuss the force requirements and constraints for different areas of application, emphasising the current challenges and how to overcome them.
Collapse
|
29
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
30
|
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022; 19:321-335. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the field of drug delivery, controlling the release of therapeutic substances at localized targets has become a primary focus of medical research, especially in the field of cancer treatment. Magnetic nanoparticles are one of the most promising drug carriers thanks to their biocompatibility and (super)paramagnetic properties. These properties allow for the combination between imaging modalities and specific release of drugs at target sites using either local stimulus (i.e. pH, conjugation of biomarkers, …) or external stimulus (i.e. external magnetic field). AREAS COVERED This review provides an update on recent advances with the development of targeted drug delivery systems based on magnetic nanoparticles (MNPs). This overview focuses on active targeting strategies and systems combining both imaging and therapeutic modalities (i.e. theranostics). If most of the examples concern the particular case of cancer therapy, the possibility of using MNPs for other medical applications is also discussed. EXPERT OPINION The development of clinically relevant drug delivery systems based on magnetic nanoparticles is driven by advantages stemming from their remarkable properties (i.e. easy preparation, facile chemical functionalization, biocompatibility, low toxicity and superior magnetic responsiveness). This literature review shows that drug carriers based on magnetic nanoparticles can be efficiently used for the controlled release of drug at targeted locations mediated by various stimuli. Advances in the field should lead to the implementation of such systems into clinical trials, especially systems enabling drug tracking in the body.
Collapse
Affiliation(s)
- D Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - T Vangijzegem
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - I Ternad
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - S Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| |
Collapse
|
31
|
Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022; 122:5411-5475. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, the continuous development of magnetic nanostructures (MNSs) has tremendously promoted both fundamental scientific research and technological applications. Different from the bulk magnet, the systematic engineering on MNSs has brought a great breakthrough in some emerging fields such as the construction of MNSs, the magnetism exploration of multidimensional MNSs, and their potential translational applications. In this review, we give a detailed description of the synthetic strategies of MNSs based on the fundamental features and application potential of MNSs and discuss the recent progress of MNSs in the fields of nanomedicines, advanced nanobiotechnology, catalysis, and electromagnetic wave adsorption (EMWA), aiming to provide guidance for fabrication strategies of MNSs toward diverse applications.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Junjie Xu
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Wei Li
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Shengnan Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou 511442, China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Simulation of reconstruction based on the system matrix for magnetic particle imaging. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Tay ZW, Savliwala S, Hensley DW, Fung KLB, Colson C, Fellows BD, Zhou X, Huynh Q, Lu Y, Zheng B, Chandrasekharan P, Rivera-Jimenez SM, Rinaldi-Ramos CM, Conolly SM. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. SMALL METHODS 2021; 5:e2100796. [PMID: 34927972 PMCID: PMC8837195 DOI: 10.1002/smtd.202100796] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic nanoparticles have many advantages in medicine such as their use in non-invasive imaging as a Magnetic Particle Imaging (MPI) tracer or Magnetic Resonance Imaging contrast agent, the ability to be externally shifted or actuated and externally excited to generate heat or release drugs for therapy. Existing nanoparticles have a gentle sigmoidal magnetization response that limits resolution and sensitivity. Here it is shown that superferromagnetic iron oxide nanoparticle chains (SFMIOs) achieve an ideal step-like magnetization response to improve both image resolution & SNR by more than tenfold over conventional MPI. The underlying mechanism relies on dynamic magnetization with square-like hysteresis loops in response to 20 kHz, 15 kAm-1 MPI excitation, with nanoparticles assembling into a chain under an applied magnetic field. Experimental data shows a "1D avalanche" dipole reversal of every nanoparticle in the chain when the applied field overcomes the dynamic coercive threshold of dipole-dipole fields from adjacent nanoparticles in the chain. Intense inductive signal is produced from this event resulting in a sharp signal peak. Novel MPI imaging strategies are demonstrated to harness this behavior towards order-of-magnitude medical image improvements. SFMIOs can provide a breakthrough in noninvasive imaging of cancer, pulmonary embolism, gastrointestinal bleeds, stroke, and inflammation imaging.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), #02-02 Helios Building, Singapore, 138667, Singapore
| | - Shehaab Savliwala
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Daniel W Hensley
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - K L Barry Fung
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Caylin Colson
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Benjamin D Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Xinyi Zhou
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Quincy Huynh
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Yao Lu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Bo Zheng
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | | | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Steven M Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| |
Collapse
|
34
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
35
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
36
|
Research of magnetic particle imaging reconstruction based on the elastic net regularization. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi-Ramos CM. Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics 2021; 5:431-444. [PMID: 33972919 PMCID: PMC8100755 DOI: 10.7150/ntno.55165] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Adoptive cellular therapy (ACT) is a potent strategy to boost the immune response against cancer. ACT is effective against blood cancers but faces challenges in treating solid tumors. A critical step for the success of ACT immunotherapy is to achieve efficient trafficking and persistence of T cells to solid tumors. Non-invasive tracking of the accumulation of adoptively transferred T cells to tumors would greatly accelerate development of more effective ACT strategies. We demonstrate the use of magnetic particle imaging (MPI) to non-invasively track ACT T cells in vivo in a mouse model of brain cancer. Magnetic labeling did not impair primary tumor-specific T cells in vitro, and MPI allowed the detection of labeled T cells in the brain after intravenous or intracerebroventricular administration. These results support the use of MPI to track adoptively transferred T cells and accelerate the development of ACT treatments for brain tumors and other cancers.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Lan B. Hoang-Minh
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
- Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, FL USA
| | - Nicole Sarna
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Leyda Marrero-Morales
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Duane A. Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
- Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| | - Carlos M. Rinaldi-Ramos
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| |
Collapse
|
38
|
The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix. Diagnostics (Basel) 2021; 11:diagnostics11050773. [PMID: 33925830 PMCID: PMC8146641 DOI: 10.3390/diagnostics11050773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Magnetic particle imaging (MPI) is a novel non-invasive molecular imaging technology that images the distribution of superparamagnetic iron oxide nanoparticles (SPIONs). It is not affected by imaging depth, with high sensitivity, high resolution, and no radiation. The MPI reconstruction with high precision and high quality is of enormous practical importance, and many studies have been conducted to improve the reconstruction accuracy and quality. MPI reconstruction based on the system matrix (SM) is an important part of MPI reconstruction. In this review, the principle of MPI, current construction methods of SM and the theory of SM-based MPI are discussed. For SM-based approaches, MPI reconstruction mainly has the following problems: the reconstruction problem is an inverse and ill-posed problem, the complex background signals seriously affect the reconstruction results, the field of view cannot cover the entire object, and the available 3D datasets are of relatively large volume. In this review, we compared and grouped different studies on the above issues, including SM-based MPI reconstruction based on the state-of-the-art Tikhonov regularization, SM-based MPI reconstruction based on the improved methods, SM-based MPI reconstruction methods to subtract the background signal, SM-based MPI reconstruction approaches to expand the spatial coverage, and matrix transformations to accelerate SM-based MPI reconstruction. In addition, the current phantoms and performance indicators used for SM-based reconstruction are listed. Finally, certain research suggestions for MPI reconstruction are proposed, expecting that this review will provide a certain reference for researchers in MPI reconstruction and will promote the future applications of MPI in clinical medicine.
Collapse
|
39
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
40
|
Saeed H, Harb HS, Madney YM, Abdelrahim MEA. Aerosol delivery via noninvasive ventilation: role of models and bioanalysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:589. [PMID: 33987287 DOI: 10.21037/atm-20-1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-invasive ventilation (NIV) is external support for respiration to assist breathing in case of respiratory failure (either hypercapnic or hypoxemic) without patient intubation. Nowadays, medicated aerosols are normally delivered to mechanically ventilated patients by nebulizers and pressurized metered-dose inhaler (pMDI) attached to adapter or spacer that fit into the ventilated circuit. Studies with obstructive lung disease patients have shown that aerosol delivery during mechanical ventilation is possible and of benefit. There are several models for investigating the aerosol delivery and deposition during mechanical ventilation such as in vitro, in vivo, and ex vivo models, these models depend on the technique used for quantitative or qualitative measurement of the deposited aerosol. In vitro models could be used for calculating the total emitted doses from different aerosol-generating devices or for aerodynamic characterization of the deposited inhaled medications. In vivo models dependents of extracting drugs from biological samples for measuring its concentration and bioavailability (pharmacokinetic model) or be dependent on the imaging technique of the radioactive aerosol. Applying different methods to predict aerosol efficiency before starting NIV and to quantify aerosol delivery during NIV are promising approaches that guide clinicians to avoid treatment failure before and during patient therapy.
Collapse
Affiliation(s)
- Haitham Saeed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hadeer S Harb
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M Madney
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
41
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Hildebrand S, Löwa N, Paysen H, Fratila RM, Reverte-Salisa L, Trakoolwilaiwan T, Niu Z, Kasparis G, Preuss SF, Kosch O, M de la Fuente J, Thanh NTK, Wiekhorst F, Pfeifer A. Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy. ACS NANO 2021; 15:434-446. [PMID: 33306343 DOI: 10.1021/acsnano.0c03229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Norbert Löwa
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Hendrik Paysen
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Raluca M Fratila
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Laia Reverte-Salisa
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Zheming Niu
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Georgios Kasparis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Stephanie Franziska Preuss
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Olaf Kosch
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jesus M de la Fuente
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Frank Wiekhorst
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Alexander Pfeifer
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
43
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
44
|
Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, Yang X, Tian J, Chen Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Am J Cancer Res 2021; 11:506-521. [PMID: 33391489 PMCID: PMC7738857 DOI: 10.7150/thno.49812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a pivotal driver of atherosclerotic plaque progression and rupture and is a target for identifying vulnerable plaques. However, challenges arise with the current in vivo imaging modalities for differentiating vulnerable atherosclerotic plaques from stable plaques due to their low specificity and sensitivity. Herein, we aimed to develop a novel multimodal imaging platform that specifically targets and identifies high-risk plaques in vivo by detecting active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable atherosclerotic plaque. Methods: A novel multimodal imaging agent, 5-HT-Fe3O4-Cy7 nanoparticles (5HFeC NPs), used for active MPO targeting, was designed by conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide ester. The specificity and sensitivity of 5HFeC NPs were evaluated using magnetic particle imaging (MPI), fluorescence imaging (FLI), and computed tomographic angiography (CTA) in an ApoE-/- atherosclerosis mouse model. Treatment with 4-ABAH, an MPO inhibitor, was used to assess the monitoring ability of 5HFeC NPs. Results: 5HFeC NPs can sensitively differentiate and accurately localize vulnerable atherosclerotic plaques in ApoE-/- mice via MPI/FLI/CTA. High MPI and FLI signals were observed in atherosclerotic plaques within the abdominal aorta, which were histologically confirmed by multiple high-risk features of macrophage infiltration, neovascularization, and microcalcification. Inhibition of active MPO reduced accumulation of 5HFeC NPs in the abdominal aorta. Accumulation of 5HFeC NPs in plaques enabled quantitative evaluation of the severity of inflammation and monitoring of MPO activity. Conclusions: This multimodal MPI approach revealed that active MPO-targeted nanoparticles might serve as a method for detecting vulnerable atherosclerotic plaques and monitoring MPO activity.
Collapse
|
45
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
46
|
Top CB, Gungor A. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4164-4173. [PMID: 32746156 DOI: 10.1109/tmi.2020.3014197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a high potential for use in clinical diagnostic and therapeutic applications. In vivo distribution of SPIONs can be imaged with the Magnetic Particle Imaging (MPI) method, which uses an inhomogeneous magnetic field with a field free region (FFR). The spatial distribution of the SPIONs are obtained by scanning the FFR inside the field of view (FOV) and sensing SPION related magnetic field disturbance. MPI magnets can be configured to generate a field free point (FFP), or a field free line (FFL) to scan the FOV. FFL scanners provide more sensitivity, and are also more suitable for scanning large regions compared to FFP scanners. Interventional procedures will benefit greatly from FFL based open magnet configurations. Here, we present the first open-sided MPI system that can electronically scan the FOV with an FFL to generate tomographic MPI images. Magnetic field measurements show that FFL can be rotated electronically in the horizontal plane and translated in three dimensions to generate 3D MPI images. Using the developed scanner, we obtained 2D images of dot and cylinder phantoms with varying iron concentrations between 11 [Formula: see text]/ml and 770 [Formula: see text]/ml. We used a measurement based system matrix image reconstruction method that minimizes l1 -norm and total variation in the images. Furthermore, we present 2D imaging results of two 4 mm-diameter vessel phantoms with 0% and 75% stenosis. The experiments show high quality imaging results with a resolution down to 2.5 mm for a relatively low gradient field of 0.6 T/m.
Collapse
|
47
|
In vivo magnetic particle imaging: angiography of inferior vena cava and aorta in rats using newly developed multicore particles. Sci Rep 2020; 10:17247. [PMID: 33057029 PMCID: PMC7560824 DOI: 10.1038/s41598-020-74151-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 11/08/2022] Open
Abstract
Magnetic Particle Imaging (MPI) is a new imaging modality, which maps the distribution of magnetic nanoparticles (MNP) in 3D with high temporal resolution. It thus may be suited for cardiovascular imaging. Its sensitivity and spatial resolution critically depend on the magnetic properties of MNP. Therefore, we used novel multicore nanoparticles (MCP 3) for in-vivo MPI in rats and analyzed dose requirements, sensitivity and detail resolution. 8 rats were examined using a preclinical MPI scanner (Bruker Biospin GmbH, Germany) equipped with a separate receive coil. MCP 3 and Resovist were administered intravenously (i.v.) into the rats' tail veins at doses of 0.1, 0.05 and 0.025 mmol Fe/kg followed by serial MPI acquisition with a temporal resolution of 46 volumes per second. Based on a qualitative visual scoring system MCP 3-MPI images showed a significantly (P ≤ 0.05) higher image quality than Resovist-MPI images. Morphological features such as vessel lumen diameters (DL) of the inferior vena cava (IVC) and abdominal aorta (AA) could be assessed along a 2-cm segment in mesenteric area only after administration of MCP 3 at dosages of 0.1, 0.05 mmol Fe/kg. The mean DL ± SD estimated was 2.7 ± 0.6 mm for IVC and 2.4 ± 0.7 mm for AA. Evaluation of DL of the IVC and AA was not possible in Resovist-MPI images. Our results show, that MCP 3 provide better image quality at a lower dosage than Resovist. MCP 3-MPI with a clinically acceptable dose of 0.05 mmol Fe/kg increased the visibility of vessel lumens compared to Resovist-based MPI towards possible detection of vascular abnormalities such as stenosis or aneurysms, in vivo.
Collapse
|
48
|
Han X, Li Y, Liu W, Chen X, Song Z, Wang X, Deng Y, Tang X, Jiang Z. The Applications of Magnetic Particle Imaging: From Cell to Body. Diagnostics (Basel) 2020; 10:E800. [PMID: 33050139 PMCID: PMC7600969 DOI: 10.3390/diagnostics10100800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic particle imaging (MPI) is a cutting-edge imaging technique that is attracting increasing attention. This novel technique collects signals from superparamagnetic nanoparticles as its imaging tracer. It has characteristics such as linear quantitativity, positive contrast, unlimited penetration, no radiation, and no background signal from surrounding tissue. These characteristics enable various medical applications. In this paper, we first introduce the development and imaging principles of MPI. Then, we discuss the current major applications of MPI by dividing them into four categories: cell tracking, blood pool imaging, tumor imaging, and visualized magnetic hyperthermia. Even though research on MPI is still in its infancy, we hope this discussion will promote interest in the applications of MPI and encourage the design of tracers tailored for MPI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (X.H.); (Y.L.); (W.L.); (X.C.); (Z.S.); (X.W.); (Y.D.); (X.T.)
| |
Collapse
|
49
|
Zhao Z, Rinaldi C. Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains. Phys Med Biol 2020; 65:185013. [PMID: 32442999 DOI: 10.1088/1361-6560/ab95dd] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The magnetic particle imaging (MPI) performance of collections of chains of magnetic nanoparticles with Néel and Brownian relaxation mechanisms was studied by carrying out simulations based on the Landau-Lifshitz-Gilbert equation and rotational Brownian dynamics, respectively. The effect of magnetic dipole-dipole interactions within chains on the time-domain average magnetic dipole moment and corresponding dynamic hysteresis loops, harmonic spectra, and point spread functions (PSFs) of the particle chains was evaluated. The results show that interactions within chains lead to 'square-like' dynamic hysteresis loops and enhanced MPI performance, compared to chains of non-interacting nanoparticles. For nanoparticles with the Brownian relaxation mechanism, subjected to a superimposed alternating and ramping magnetic field mimicking the magnetic field in MPI applications, we studied the dependence of x-space MPI performance of particle chains on parameters such as the amplitude of the alternating magnetic field, surface-to-surface separation between nanoparticles, solvent viscosity, and the number of nanoparticles in a chain. The results illustrate that magnetic dipole-dipole interactions within a chain contribute to enhanced MPI performance, and also suggest that there exist optimal values of the above parameters that lead to the best x-space MPI performance, i.e. maximum peak signal intensity and smallest full-width-at-half-maximum in PSFs.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| | | |
Collapse
|
50
|
Talebloo N, Gudi M, Robertson N, Wang P. Magnetic Particle Imaging: Current Applications in Biomedical Research. J Magn Reson Imaging 2020; 51:1659-1668. [PMID: 31332868 DOI: 10.1002/jmri.26875] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Magnetic particle imaging (MPI) is a new imaging modality with the potential for high-resolution imaging while retaining the noninvasive nature of other current modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET). It is able to track location and quantities of special superparamagnetic iron oxide nanoparticles without tracing any background signal. MPI utilizes the unique, intrinsic aspects of the nanoparticles: how they react in the presence of the magnetic field, and the subsequent turning off of the field. The current group of nanoparticles that are used in MPI are usually commercially available for MRI. Special MPI tracers are in development by many groups that utilize an iron-oxide core encompassed by various coatings. These tracers would solve the current obstacles by altering the size and material of the nanoparticles to what is required by MPI. In this review, the theory behind and the development of these tracers are discussed. In addition, applications such as cell tracking, oncology imaging, neuroimaging, and vascular imaging, among others, stemming from the implementation of MPI into the standard are discussed. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1659-1668.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Mithil Gudi
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Neil Robertson
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|