1
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
2
|
Sorensen JR, Hoffman DB, Raymond-Pope CJ, Lillquist TJ, Russell AM, Corona BT, Greising SM. Inhibition of ErbB2 mitigates secondary denervation after traumatic muscle injury. J Physiol 2025. [PMID: 40033740 DOI: 10.1113/jp287435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Secondary denervation has recently been described as part of the sequela of volumetric muscle loss (VML) injury, occurring along with a significantly elevated neurotrophic response, specifically neuregulin-1 (NRG1). This may contribute to chronic functional impairments associated with the injury, representing an overlooked treatment target. Thus, though paradoxical, the goal of this study was to pharmacologically reduce neurotrophic signalling after VML using a monoclonal antibody (Herceptin) that inhibits ErbB2 receptors. We also assessed whether ErbB2 inhibition combined with a myogenic treatment (i.e. minced muscle graft) would have a synergistically beneficial effect on function. Adult male Lewis rats underwent surgical induction of tibialis anterior muscle VML injury and were randomized into one of four groups: VML untreated, VML Herceptin, VML muscle graft and VML muscle graft + Herceptin, with comparisons to the contralateral (uninjured) control muscle. Rats receiving Herceptin were administered the drug (8 mg/kg i.p.) at the time of surgery and thrice per week for the duration of the study (48 days). Terminally individual NMJs were quantitatively evaluated, and maximal in vivo torque was tested. ErbB2 inhibition fully restored the normal rates of NMJ innervation and morphology after VML injury, and improved innervation of de novo myofibres after a muscle-graft treatment. However ErbB2 inhibition did not improve skeletal muscle function alone or in combination with a muscle-graft treatment. We conclude that ErbB2 inhibition is a promising therapeutic option for treating VML injury, yet more work is needed to optimize the translation of improved NMJ characteristics to recover function. KEY POINTS: In cases of complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), the endogenous ability of skeletal muscle to regenerate and recover function is lost. Innervation, or the connection of a motor axon to each individual myofibre, is a necessary component of myofibre survival and contractile function, which is disrupted after VML. Paradoxically a monocolonal antibody inhibitor of neurotrophic signalling (receptor tyrosine kinase ErbB2; Herceptin) has been shown to improve regeneration in rodent models of nerve injury. Here we show that pharmaceutical ErbB2 inhibition following a rat model of VML improves muscle innervation; however it did not correspondingly recover muscle function. Although ErbB2 inhibition alone is an ineffective treatment for VML injury, its ability to improve innervation is noteworthy and should be considered as an adjunctive or combinatorial therapy option.
Collapse
Affiliation(s)
- Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amanda M Russell
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
4
|
Shen J, Sun Y, Liu X, Chai Y, Wang C, Xu J. Nerve Regeneration Potential of Antioxidant-Modified Black Phosphorus Quantum Dots in Peripheral Nerve Injury. ACS NANO 2024; 18:23518-23536. [PMID: 39150909 DOI: 10.1021/acsnano.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant β-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@β-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@β-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| |
Collapse
|
5
|
Bazarek SF, Krenn MJ, Shah SB, Mandeville RM, Brown JM. Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury. Cells 2024; 13:1231. [PMID: 39056812 PMCID: PMC11274462 DOI: 10.3390/cells13141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthias J. Krenn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216, USA
- Spinal Cord Injury Medicine and Research Services, VA Medical Center, Jackson, MS 39216, USA
| | - Sameer B. Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA;
- Research Division, VA San Diego Medical Center, San Diego, CA 92161, USA
| | - Ross M. Mandeville
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| |
Collapse
|
6
|
Deng C, Lu C, Wang K, Chang M, Shen Y, Yang X, Sun H, Yao X, Qiu C, Xu F. Celecoxib ameliorates diabetic sarcopenia by inhibiting inflammation, stress response, mitochondrial dysfunction, and subsequent activation of the protein degradation systems. Front Pharmacol 2024; 15:1344276. [PMID: 38313305 PMCID: PMC10834620 DOI: 10.3389/fphar.2024.1344276] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: Diabetic sarcopenia leads to disability and seriously affects the quality of life. Currently, there are no effective therapeutic strategies for diabetic sarcopenia. Our previous studies have shown that inflammation plays a critical role in skeletal muscle atrophy. Interestingly, the connection between chronic inflammation and diabetic complications has been revealed. However, the effects of non-steroidal anti-inflammatory drug celecoxib on diabetic sarcopenia remains unclear. Materials and Methods: The streptozotocin (streptozotocin)-induced diabetic sarcopenia model was established. Rotarod test and grip strength test were used to assess skeletal muscle function. Hematoxylin and eosin and immunofluorescence staining were performed to evaluate inflammatory infiltration and the morphology of motor endplates in skeletal muscles. Succinate dehydrogenase (SDH) staining was used to determine the number of succinate dehydrogenase-positive muscle fibers. Dihydroethidium staining was performed to assess the levels of reactive oxygen species (ROS). Western blot was used to measure the levels of proteins involved in inflammation, oxidative stress, endoplasmic reticulum stress, ubiquitination, and autophagic-lysosomal pathway. Transmission electron microscopy was used to evaluate mitophagy. Results: Celecoxib significantly ameliorated skeletal muscle atrophy, improving skeletal muscle function and preserving motor endplates in diabetic mice. Celecoxib also decreased infiltration of inflammatory cell, reduced the levels of IL-6 and TNF-α, and suppressed the activation of NF-κB, Stat3, and NLRP3 inflammasome pathways in diabetic skeletal muscles. Celecoxib decreased reactive oxygen species levels, downregulated the levels of Nox2 and Nox4, upregulated the levels of GPX1 and Nrf2, and further suppressed endoplasmic reticulum stress by inhibiting the activation of the Perk-EIF-2α-ATF4-Chop in diabetic skeletal muscles. Celecoxib also inhibited the levels of Foxo3a, Fbx32 and MuRF1 in the ubiquitin-proteasome system, as well as the levels of BNIP3, Beclin1, ATG7, and LC3Ⅱ in the autophagic-lysosomal system, and celecoxib protected mitochondria and promoted mitochondrial biogenesis by elevating the levels of SIRT1 and PGC1-α, increased the number of SDH-positive fibers in diabetic skeletal muscles. Conclusion: Celecoxib improved diabetic sarcopenia by inhibiting inflammation, oxidative stress, endoplasmic reticulum stress, and protecting mitochondria, and subsequently suppressing proteolytic systems. Our study provides evidences for the molecular mechanism and treatment of diabetic sarcopenia, and broaden the way for the new use of celecoxib in diabetic sarcopenia.
Collapse
Affiliation(s)
- Chunyan Deng
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chunjian Qiu
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| |
Collapse
|
7
|
Carneiro VSM, de Melo EL, de Oliveira Mota CCB, da Silva EJ, da Silva AF, Deama NS, Miranda JM, da Rocha SIS, de Lima Pires C, Gomes ASL, de Martínez Gerbi MEM. Optical clearing agents based on metallic and dielectric nanoparticles for caries diagnostic by optical coherence tomography. Clin Oral Investig 2024; 28:72. [PMID: 38175293 DOI: 10.1007/s00784-023-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE This study aimed to assess the effect of titanium dioxide (TiO2) and silver (Ag) nanoparticles dispersed in glycerol or water, serving as optical clearing agents nanocolloids (OCAs-NC), for improving optical coherence tomography (OCT) images and highlighting incipient lesions in ex vivo human teeth. MATERIALS AND METHODS Twelve human teeth with incipient lesions were divided into seven groups according to the OCA-NC; they were subjected to G1 (air), G2 (glycerol), G3 (TiO2 0.1%), G4 (TiO2 0.01%), G5 (TiO2 0.001%), G6 (AgNO3 10%), and G7 (AgNO3 100%). The OCA-NC was applied to the occlusal surface, and two-dimensional images of the specimens were analyzed using OCT (930 nm central wavelength; 100 nm bandwidth; 5 mW output power; axial resolution of 7/5.3 μm in water and air, respectively; lateral resolution of 8 μm; and light penetration depth of 1.6 mm inside the sample). RESULTS The findings demonstrated that the utilization of OCAs-NC containing metallic or dielectric nanoparticles (AgNO3 and TiO2) led to improved differentiation between sound and demineralized enamel on occlusal surfaces. Additionally, it enhanced the depth of image penetration when analyzing this hard tissue with OCT. CLINICAL RELEVANCE In the current context of minimally invasive dentistry, the use of OCAs-NC in conjunction with OCT can provide clinicians with early diagnosis, allowing for the determination of less/more invasive therapies and consequently halting the disease before cavitation of dental tissues occurs.
Collapse
Affiliation(s)
| | | | - Claudia Cristina Brainer de Oliveira Mota
- Dental School of Pernambuco, Universidade de Pernambuco Campus Arcoverde, Arcoverde, PE, Brazil
- Dental School, Centro Universitário Tabosa de Almeida, Caruaru, PE, Brazil
| | - Evair Josino da Silva
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Nathalia Seimi Deama
- Graduate Program in Dentistry, Universidade de Pernambuco (PPGO-UPE), Recife, Brazil
| | | | | | - Caio de Lima Pires
- Graduate Program in Dentistry, Universidade de Pernambuco (PPGO-UPE), Recife, Brazil
| | - Anderson Stevens Leonidas Gomes
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Department of Physics, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
8
|
Hoffman DB, Basten AM, Sorensen JR, Raymond-Pope CJ, Lillquist TJ, Call JA, Corona BT, Greising SM. Response of terminal Schwann cells following volumetric muscle loss injury. Exp Neurol 2023; 365:114431. [PMID: 37142114 PMCID: PMC10227691 DOI: 10.1016/j.expneurol.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.
Collapse
Affiliation(s)
- Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Alec M Basten
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
9
|
Sydney-Smith JD, Koltchev AM, Moon LDF, Warren PM. Delayed viral vector mediated delivery of neurotrophin-3 improves skilled hindlimb function and stability after thoracic contusion. Exp Neurol 2023; 360:114278. [PMID: 36455639 DOI: 10.1016/j.expneurol.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Alice M Koltchev
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Lawrence D F Moon
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Philippa M Warren
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
10
|
Zhan YJ, Zhang SW, Zhu S, Jiang N. Tissue Clearing and Its Application in the Musculoskeletal System. ACS OMEGA 2023; 8:1739-1758. [PMID: 36687066 PMCID: PMC9850472 DOI: 10.1021/acsomega.2c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The musculoskeletal system is an integral part of the human body. Currently, most skeletal muscle research is conducted through conventional histological sections due to technological limitations and the structure of skeletal muscles. For studying and observing bones and muscles, there is an urgent need for three-dimensional, objective imaging technologies. Optical tissue-clearing technologies seem to offer a novel and accessible approach to research of the musculoskeletal system. Using this approach, the components which cause refraction or prevent light from penetrating into the tissue are physically and chemically eliminated; then the liquid in the tissue is replaced with high-refractive-index chemicals. This innovative method, which allows three-dimensional reconstruction at the cellular and subcellular scale, significantly improves imaging depth and resolution. Nonetheless, this technology was not originally developed to image bones or muscles. When compared with brain and nerve organs which have attracted considerable attention in this field, the musculoskeletal system contains fewer lipids and has high levels of hemoglobin, collagen fibers, and inorganic hydroxyapatite crystals. Currently, three-dimensional imaging methods are widely used in the diagnosis and treatment of skeletal and muscular illnesses. In this regard, it is vitally important to review and evaluate the optical tissue-clearing technologies currently employed in the musculoskeletal system, so that researchers may make an informed decision. In the meantime, this study offers guidelines and recommendations for expanding the use of this technology in the musculoskeletal system.
Collapse
Affiliation(s)
- Yan-Jing Zhan
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shi-Wen Zhang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - SongSong Zhu
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Luderman LN, Michaels MT, Levic DS, Knapik EW. Zebrafish Erc1b mediates motor innervation and organization of craniofacial muscles in control of jaw movement. Dev Dyn 2023; 252:104-123. [PMID: 35708710 DOI: 10.1002/dvdy.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Movement of the lower jaw, a common behavior observed among vertebrates, is required for eating and processing food. This movement is controlled by signals sent from the trigeminal motor nerve through neuromuscular junctions (NMJs) to the masticatory muscles. Dysfunctional jaw movements contribute to craniomandibular disorders, yet the pathophysiology of these disorders is not well understood, as limited studies have been conducted on the molecular mechanisms of jaw movement. RESULTS Using erc1b/kimm533 genetic loss of function mutant, we evaluated lower jaw muscle organization and innervation by the cranial motor nerves in developing zebrafish. Using time-lapse confocal imaging of the erc1b mutant in a transgenic fluorescent reporter line, we found delayed trigeminal nerve growth and disrupted nerve branching architecture during muscle innervation. By automated 3D image analysis of NMJ distribution, we identified an increased number of small, disorganized NMJ clusters in erc1b mutant larvae compared to WT siblings. Using genetic replacement experiments, we determined the Rab GTPase binding domain of Erc1b is required for cranial motor nerve branching, but not NMJ organization or muscle attachment. CONCLUSIONS We identified Erc1b/ERC1 as a novel component of a genetic pathway contributing to muscle organization, trigeminal nerve outgrowth, and NMJ spatial distribution during development that is required for jaw movement.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mackenzie T Michaels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel S Levic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Xu J, Zhu J, Li Y, Yao Y, Xuan A, Li D, Yu T, Zhu D. Three-dimensional mapping reveals heterochronic development of the neuromuscular system in postnatal mouse skeletal muscles. Commun Biol 2022; 5:1200. [PMID: 36347940 PMCID: PMC9643545 DOI: 10.1038/s42003-022-04159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The development of the neuromuscular system, including muscle growth and intramuscular neural development, in addition to central nervous system maturation, determines motor ability improvement. Motor development occurs asynchronously from cephalic to caudal. However, whether the structural development of different muscles is heterochronic is unclear. Here, based on the characteristics of motor behavior in postnatal mice, we examined the 3D structural features of the neuromuscular system in different muscles by combining tissue clearing with optical imaging techniques. Quantitative analyses of the structural data and related mRNA expression revealed that there was continued myofiber hyperplasia of the forelimb and hindlimb muscles until around postnatal day 3 (P3) and P6, respectively, as well as continued axonal arborization and neuromuscular junction formation until around P3 and P9, respectively; feature alterations of the cervical muscle ended at birth. Such structural heterochrony of muscles in different body parts corresponds to their motor function. Structural data on the neuromuscular system of neonatal muscles provide a 3D perspective in the understanding of the structural status during motor development.
Collapse
Affiliation(s)
- Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Yingtao Yao
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Qi Z, Wang S, Xuan A, Gu X, Deng J, Huang C, Zhang L, Yin X. MiR-142a-3p: A novel ACh receptor transcriptional regulator in association with peripheral nerve injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:325-336. [PMID: 36381585 PMCID: PMC9633872 DOI: 10.1016/j.omtn.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes in vitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Lei Zhang
- Electron Microscopy Analysis Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China,Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China,Pizhou People’s Hospital, Jiangsu, China,Corresponding author Xiaofeng Yin, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China.
| |
Collapse
|
15
|
Cui JJ, Wang J, Xu DS, Wu S, Guo YT, Su YX, Liu YH, Wang YQ, Jing XH, Bai WZ. Alexa Fluor 488-conjugated cholera toxin subunit B optimally labels neurons 3-7 days after injection into the rat gastrocnemius muscle. Neural Regen Res 2022; 17:2316-2320. [PMID: 35259856 PMCID: PMC9083145 DOI: 10.4103/1673-5374.337055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neural tract tracing is used to study neural pathways and evaluate neuronal regeneration following nerve injuries. However, it is not always clear which tracer should be used to yield optimal results. In this study, we examined the use of Alexa Fluor 488-conjugated cholera toxin subunit B (AF488-CTB). This was injected into the gastrocnemius muscle of rats, and it was found that motor, sensory, and sympathetic neurons were labeled in the spinal ventral horn, dorsal root ganglia, and sympathetic chain, respectively. Similar results were obtained when we injected AF594-CTB into the tibialis anterior muscle. The morphology and number of neurons were evaluated at different time points following the AF488-CTB injection. It was found that labeled motor and sensory neurons could be observed 12 hours post-injection. The intensity was found to increase over time, and the morphology appeared clear and complete 3-7 days post-injection, with clearly distinguishable motor neuron axons and dendrites. However, 14 days after the injection, the quality of the images decreased and the neurons appeared blurred and incomplete. Nissl and immunohistochemical staining showed that the AF488-CTB-labeled neurons retained normal neurochemical and morphological features, and the surrounding microglia were also found to be unaltered. Overall, these results imply that the cholera toxin subunit B, whether unconjugated or conjugated with Alexa Fluor, is effective for retrograde tracing in muscular tissues and that it would also be suitable for evaluating the regeneration or degeneration of injured nerves.
Collapse
Affiliation(s)
- Jing-Jing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Sheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Ting Guo
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Xin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Han Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Qing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Chen Y, Luo Z, Lin J, Qi B, Sun Y, Li F, Guo C, Lin W, Kang X, He X, Wang Q, Chen S, Chen J. Exploring the Potential Mechanisms of Melilotus officinalis (L.) Pall. in Chronic Muscle Repair Patterns Using Single Cell Receptor-Ligand Marker Analysis and Molecular Dynamics Simulations. DISEASE MARKERS 2022; 2022:9082576. [PMID: 35692879 PMCID: PMC9177293 DOI: 10.1155/2022/9082576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Information regarding the function of Melilotus officinalis (L.) Pall. in skeletal muscles is still unknown. In this study, we explored the possible regulatory targets of M. (L.) Pall. that affects the repair patterns in chronic muscle injury. We analyzed the potential target genes and chemical composition of M. (L.) Pall. and constructed a "drug-component-disease target genes" network analysis. Five active ingredients and 87 corresponding targets were obtained. Muscle-tendon junction (MTJ) cells were used to perform receptor-ligand marker analysis using the CellphoneDB algorithm. Targets of M. (L.) Pall. were screened further for the cellular ligand-receptor protein action on MTJs. Enrichment analysis suggests that those protein-associated ligand receptors may be associated with a range of intercellular signaling pathways. Molecular docking validation was then performed. Five proteins (CCL2, VEGFA, MMP2, MET, and EGFR) may be regulated by the active ingredient luteolin and scoparone. Finally, molecular dynamics simulations revealed that luteolin can stably target binding to MMP2. M. (L.) Pall. influences skeletal muscle repair patterns by affecting the fibroblast interactions in the muscle-tendon junctions through the active ingredients luteolin and scoparone.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang, China
| | - Xueran Kang
- Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xinyi He
- State Key Laboratory of Genetics Engineering, Collaborative Innovation Center for Genetics and Development, School Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
17
|
Carré D, Martin V, Kouidri Y, Morin R, Norlund M, Gomes A, Lagarde JM, Lezmi S. The distribution of neuromuscular junctions depends on muscle pennation, when botulinum neurotoxin receptors and SNAREs expression are uniform in the rat. Toxicon 2022; 212:34-41. [DOI: 10.1016/j.toxicon.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
18
|
Qi Z, Li D, Li L, Meng D, Deng J, Jin B, Gu X, Wang S, Huang C, Yin X. Studies on the Manner of Collateral Regeneration From Nerve Stem to Motor Endplate. Front Physiol 2022; 12:795623. [PMID: 35295162 PMCID: PMC8919963 DOI: 10.3389/fphys.2021.795623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Despite recent evidence suggesting that nerve transfer techniques help improve clinical outcomes, the underlying manner by which collateral-regenerated nerve enters skeletal muscles to restore an organized pattern of the neuromuscular junction (NMJ) is unclear. To construct the animal models of collateral regeneration, the proximal peroneal nerve was fixed to the distal tibial nerve stump. Three months after surgery, the spatial distribution of motor endplates (MEPs) and corresponding in-muscle nerve branches in long flexor digitorum muscles were observed with tissue optical clearing combined with light-sheet microscopy in transgenic fluorescent mice. The results showed that the number of fibers in the proximal donor peroneal nerve was 415 ± 11, while regenerated nerve fibers in the distal tibial stump were 781 ± 43, which indicates a collateral regeneration ratio of 1.88. The spatial distribution of MEPs was restored to an organized pattern of the lamella, and the corresponding in-muscle nerve branches reverted to the normal manner such as after collateral regeneration. Beyond this, the numbers of MEPs dominated by the single distal nerve fiber were 25.58 ± 0.50 and 26.42 ± 0.94, respectively (n = 6, p > 0.05, collateral regeneration group vs. normal group). However, the numbers of distal-regenerated nerve fibers were less than those in normal control groups (781 ± 43 vs. 914 ± 55, n = 6, p < 0.05), and the number and perforations of MEPs were lower than those in normal control groups as such. In summary, this is the first study to show the manner of collateral regeneration of the peripheral nerve that the smaller proximal donor nerve can sprout more axonal buds to connect distal larger nerves and finally restore to an organized pattern of lamella dominated by corresponding in-muscle nerve branches.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Dongdong Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Medical Center, Beijing, China
| | - Li Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Dexuan Meng
- Peking University Third Hospital, Department of Orthopaedics, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Bo Jin
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Intelligent Medicine, Pizhou People's Hospital, Jiangsu, China
| |
Collapse
|
19
|
Huang X, Jiang J, Xu J. Denervation-Related Neuromuscular Junction Changes: From Degeneration to Regeneration. Front Mol Neurosci 2022; 14:810919. [PMID: 35282655 PMCID: PMC8908450 DOI: 10.3389/fnmol.2021.810919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular junctions (NMJs) are the key interface between terminal nerves and targeted muscle, which undergo degeneration during denervation periods. Denervation-related NMJs changes limits the recovery level of nerve repair strategies. Insights into mechanisms behind neuromuscular junction degeneration and regeneration, following denervation and reinnervation, are of clinical value. Developing some therapies to maintain or protect structures and functions of NMJs may contribute to a better prognosis. Here, we reviewed previous studies of NMJs focusing on the morphological, functional, and molecular changes after denervation, and if those changes can be reversed after reinnervation. Also, we reviewed about the present probable strategies that have been applied clinically or could still be studied in targeting the neuromuscular junction protection or regeneration improvement.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- *Correspondence: Junjian Jiang,
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Jianguang Xu,
| |
Collapse
|
20
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
21
|
Xu TM, Chen B, Jin ZX, Yin XF, Zhang PX, Jiang BG. The anatomical, electrophysiological and histological observations of muscle contraction units in rabbits: a new perspective on nerve injury and regeneration. Neural Regen Res 2022; 17:228-232. [PMID: 34100460 PMCID: PMC8451562 DOI: 10.4103/1673-5374.315228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the conventional view a muscle is composed of intermediate structures before its further division into microscopic muscle fibers. Our experiments in mice have confirmed this intermediate structure is composed of the lamella cluster formed by motor endplates, the innervating nerve branches and the corresponding muscle fibers, which can be viewed as an independent structural and functional unit. In this study, we verified the presence of these muscle construction units in rabbits. The results showed that the muscular branch of the femoral nerve sent out 4–6 nerve branches into the quadriceps and the tibial nerve sent out 4–7 nerve branches into the gastrocnemius. When each nerve branch of the femoral nerve was stimulated from the most lateral to the medial, the contraction of the lateral muscle, intermediate muscle and medial muscle of the quadriceps could be induced by electrically stimulating at least one nerve branch. When stimulating each nerve branch of the tibial nerve from the lateral to the medial, the muscle contraction of the lateral muscle 1, lateral muscle 2, lateral muscle 3 and medial muscle of the gastrocnemius could be induced by electrically stimulating at least one nerve branch. Electrical stimulation of each nerve branch resulted in different electromyographical waves recorded in different muscle subgroups. Hematoxylin-eosin staining showed most of the nerve branches around the neuromuscular junctions consisted of one individual neural tract, a few consisted of two or more neural tracts. The muscles of the lower limb in the rabbit can be subdivided into different muscle subgroups, each innervated by different nerve branches, thereby allowing much more complex muscle activities than traditionally stated. Together, the nerve branches and the innervated muscle subgroups can be viewed as an independent structural and functional unit. This study was approved by the Animal Ethics Committee of Peking University People’s Hospital (approval No. 2019PHE027) on October 20, 2019.
Collapse
Affiliation(s)
- Ting-Min Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Bo Chen
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Center, Peking University People's Hospital; National Trauma Medical Center, Beijing, China
| | - Zong-Xue Jin
- Department of Rehabilitation, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Pei-Xun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Bao-Guo Jiang
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Center, Peking University People's Hospital; National Trauma Medical Center, Beijing, China
| |
Collapse
|
22
|
Li DD, Deng J, Jin B, Han S, Gu XY, Zhou XF, Yin XF. Effects of delayed repair of peripheral nerve injury on the spatial distribution of motor endplates in target muscle. Neural Regen Res 2022; 17:459-464. [PMID: 34269223 PMCID: PMC8464005 DOI: 10.4103/1673-5374.317990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Motor endplates (MEPs) are important sites of information exchange between motor neurons and skeletal muscle, and are distributed in an organized pattern of lamellae in the muscle. Delayed repair of peripheral nerve injury typically results in unsatisfactory functional recovery because of MEP degeneration. In this study, the mouse tibial nerve was transected and repaired with a biodegradable chitin conduit, immediately following or 1 or 3 months after the injury. Fluorescent α-bungarotoxin was injected to label MEPs. Tissue optical clearing combined with light-sheet microscopy revealed that MEPs were distributed in an organized pattern of lamellae in skeletal muscle after delayed repair for 1 and 3 months. However, the total number of MEPs, the number of MEPs per lamellar cluster, and the maturation of single MEPs in gastrocnemius muscle gradually decreased with increasing denervation time. These findings suggest that delayed repair can restore the spatial distribution of MEPs, but it has an adverse effect on the homogeneity of MEPs in the lamellar clusters and the total number of MEPs in the target muscle. The study procedures were approved by the Animal Ethics Committee of the Peking University People's Hospital (approval No. 2019PHC015) on April 8, 2019.
Collapse
Affiliation(s)
- Dong-Dong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital; Department of Orthopedics, PLA Strategic Support Force Medical Center, Beijing, China
| | - Jin Deng
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Bo Jin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Shuai Han
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xin-Yi Gu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xue-Feng Zhou
- Department of Orthopedics, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
23
|
Yuan YS, Yu F, Niu SP, Lu H, Kou YH, Xu HL. Combining CUBIC Optical Clearing and Thy1-YFP-16 Mice to Observe Morphological Axon Changes During Wallerian Degeneration. Curr Med Sci 2021; 41:944-952. [PMID: 34693494 DOI: 10.1007/s11596-021-2438-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury, and includes the disintegration and phagocytosis of peripheral nervous system cells. Traditionally, morphological changes are observed by performing immunofluorescence staining after sectioning, which results in the loss of some histological information. The purpose of this study was to explore a new, nondestructive, and systematic method for observing axonal histological changes during Wallerian degeneration. METHODS Thirty male Thy1-YFP-16 mice (SPF grade, 6 weeks old, 20±5 g) were randomly selected and divided into clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) optical clearing (n=15) and traditional method groups (n=15). Five mice in each group were sacrificed at 1st, 3rd, and 5th day following a crush operation. The histological axon changes were observed by CUBIC light optical clearing treatment, direct tissue section imaging, and HE staining. RESULTS The results revealed that, compared with traditional imaging methods, there was no physical damage to the samples, which allowed for three-dimensional and deep-seated tissue imaging through CUBIC. Local image information could be nicely obtained by direct fluorescence imaging and HE staining, but it was difficult to obtain image information of the entire sample. At the same time, the image information obtained by fluorescence imaging and HE staining was partially lost. CONCLUSION The combining of CUBIC and Thy1-YFP transgenic mice allowed for a clear and comprehensive observation of histological changes of axons in Wallerian degeneration.
Collapse
Affiliation(s)
- Yu-Song Yuan
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Fei Yu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Su-Ping Niu
- Office of Academic Research, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hao Lu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Yu-Hui Kou
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China.
| | - Hai-Lin Xu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
24
|
Zhu J, Ma Y, Xu J, Li Y, Wan P, Qi Y, Yu T, Zhu D. Dec-DISCO: decolorization DISCO clearing for seeing through the biological architectures of heme-rich organs. BIOMEDICAL OPTICS EXPRESS 2021; 12:5499-5513. [PMID: 34692197 PMCID: PMC8515970 DOI: 10.1364/boe.431397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The tissue optical clearing technique plays an important role in three-dimensional (3D) visualization of large tissues. As a typical solvent-based clearing method, 3DISCO can achieve the highest level of tissue transparency with favorable clearing speed. However, 3DISCO cannot deal with the residual blood within tissues, leading to tissue brownness or redness after clearing, thus greatly influencing the tissue transparency and image quality due to the strong absorption of residual blood. To address this problem, we proposed an optimized clearing method by introducing CUBIC-L solution combined with 3DISCO for effective decolorization, termed Dec-DISCO (Decolorization DISCO). Dec-DISCO achieves better transparency than 3DISCO for various heme-rich tissues and performs enhanced fluorescence preservation capability. Dec-DISCO allows high-quality 3D imaging of fluorescently labeled heme-rich organs, as well as pathological tissue with severe hemorrhage. Dec-DISCO is expected to provide a powerful tool for histological analysis of kinds of heme-rich tissues in various medical conditions.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yilin Ma
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Wan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yisong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
25
|
Xu J, Xuan A, Liu Z, Li Y, Zhu J, Yao Y, Yu T, Zhu D. An Approach to Maximize Retrograde Transport Based on the Spatial Distribution of Motor Endplates in Mouse Hindlimb Muscles. Front Cell Neurosci 2021; 15:707982. [PMID: 34456685 PMCID: PMC8385196 DOI: 10.3389/fncel.2021.707982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Knowledge regarding the relationship between muscles and the corresponding motor neurons would allow therapeutic genes to transport into specific spinal cord segments. Retrograde tracing technique by targeting the motor endplate (MEP), a highly specialized structure that offers direct access to the spinal motor neurons, has been used to elucidate the connectivity between skeletal muscles and the innervating motor neuron pools. However, current injection strategies mainly based on blind injection or the local MEP region might lead to an underestimation of the motor neuron number due to the uneven distribution of MEP in skeletal muscles. In this work, we proposed a novel intramuscular injection strategy based on the 3D distribution of the MEPs in skeletal muscles, applied the 3D intramuscular injection to the gastrocnemius and tibialis anterior for retrograde tracing of the corresponding motor neurons, and compared this with the existing injection strategy. The intramuscular diffusion of the tracer demonstrated that 3D injection could maximize the retrograde transport by ensuring a greater uptake of the tracer by the MEP region. In combination with optical clearing and imaging, we performed 3D mapping and quantification of the labeled motor neurons and confirmed that 3D injection could label more motor neurons than the current injection method. It is expected that 3D intramuscular injection strategy will help elucidate the connective relationship between muscles and motor neurons faithfully and becomes a promising tool in the development of gene therapy strategies for motor neuron diseases.
Collapse
Affiliation(s)
- Jianyi Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yingtao Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Wan P, Li Y, Zhu J, Xu J, Liu X, Yu T, Zhu D. FDISCO+: a clearing method for robust fluorescence preservation of cleared samples. NEUROPHOTONICS 2021; 8:035007. [PMID: 34514032 PMCID: PMC8427119 DOI: 10.1117/1.nph.8.3.035007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Significance: The recently reported solvent-based optical clearing method FDISCO can preserve various fluorescent signals very well. However, the strict low-temperature storage condition of FDISCO is not conducive to long-time or repetitive imaging usually conducted at room temperature. Therefore, it is important to solve the contradiction between fluorescence preservation and imaging condition. Aim: We develop a modified FDISCO clearing method, termed FDISCO+, to change the preservation condition from low temperature to room temperature. Approach: Two alternative antioxidants were screened out to effectively inhibit the peroxide generation in the clearing agent at room temperature, enabling robust fluorescence preservation of cleared samples. Results: FDISCO+ achieves comparable fluorescence preservation with the original FDISCO protocol and allows long-time storage at room temperature, making it easier for researchers to image and preserve the samples. Conclusions: FDISCO+ is expected to be widely used due to its loose operation requirements.
Collapse
Affiliation(s)
- Peng Wan
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| | - Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| | - Jianyi Xu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| | - Xiaomei Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
- Address all correspondence to Tingting Yu,
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan, China
| |
Collapse
|
27
|
Villarroel-Campos D, Schiavo G, Sleigh JN. Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle. J Anat 2021; 241:1108-1119. [PMID: 34121181 PMCID: PMC9558155 DOI: 10.1111/joa.13478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease‐causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve‐muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high‐resolution videos and step‐by‐step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild‐type ETA fibre‐type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
28
|
Lu CF, Wang B, Zhang PX, Han S, Pi W, Kou YH, Jiang BG. Combining chitin biological conduits with small autogenous nerves and platelet-rich plasma for the repair of sciatic nerve defects in rats. CNS Neurosci Ther 2021; 27:805-819. [PMID: 33838005 PMCID: PMC8193701 DOI: 10.1111/cns.13640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aims Peripheral nerve defects are often difficult to recover from, and there is no optimal repair method. Therefore, it is important to explore new methods of repairing peripheral nerve defects. This study explored the efficacy of nerve grafts constructed from chitin biological conduits combined with small autogenous nerves (SANs) and platelet‐rich plasma (PRP) for repairing 10‐mm sciatic nerve defects in rats. Methods To prepare 10‐mm sciatic nerve defects, SANs were first harvested and PRP was extracted. The nerve grafts consisted of chitin biological conduits combined with SAN and PRP, and were used to repair rat sciatic nerve defects. These examinations, including measurements of axon growth efficiency, a gait analysis, electrophysiological tests, counts of regenerated myelinated fibers and observations of their morphology, histological evaluation of the gastrocnemius muscle, retrograde tracing with Fluor‐Gold (FG), and motor endplates (MEPs) distribution analysis, were conducted to evaluate the repair status. Results Two weeks after nerve transplantation, the rate and number of regenerated axons in the PRP‐SAN group improved compared with those in the PRP, SAN, and Hollow groups. The PRP‐SAN group exhibited better recovery in terms of the sciatic functional index value, composite action potential intensity, myelinated nerve fiber density, myelin sheath thickness, and gastrectomy tissue at 12 weeks after transplantation, compared with the PRP and SAN groups. The results of FG retrograde tracing and MEPs analyses showed that numbers of FG‐positive sensory neurons and motor neurons as well as MEPs distribution density were higher in the PRP‐SAN group than in the PRP or SAN group. Conclusions Nerve grafts comprising chitin biological conduits combined with SANs and PRP significantly improved the repair of 10‐mm sciatic nerve defects in rats and may have therapeutic potential for repairing peripheral nerve defects in future applications.
Collapse
Affiliation(s)
- Chang-Feng Lu
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Bo Wang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Han
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Yu-Hui Kou
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
29
|
Zhan Y, Wu H, Liu L, Lin J, Zhang S. Organic solvent-based tissue clearing techniques and their applications. JOURNAL OF BIOPHOTONICS 2021; 14:e202000413. [PMID: 33715302 DOI: 10.1002/jbio.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.
Collapse
Affiliation(s)
- Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Abstract
Advanced optical methods combined with various probes pave the way toward molecular imaging within living cells. However, major challenges are associated with the need to enhance the imaging resolution even further to the subcellular level for the imaging of larger tissues, as well as for in vivo studies. High scattering and absorption of opaque tissues limit the penetration of light into deep tissues and thus the optical imaging depth. Tissue optical clearing technique provides an innovative way to perform deep-tissue imaging. Recently, various optical clearing methods have been developed, which provide tissue clearing based on similar physical principles via different chemical approaches. Here, we introduce the mechanisms of the current clearing methods from fundamental physical and chemical perspectives, including the main physical principle, refractive index matching via various chemical approaches, such as dissociation of collagen, delipidation, decalcification, dehydration, and hyperhydration, to reduce scattering, as well as decolorization to reduce absorption.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
31
|
Fang C, Yu T, Chu T, Feng W, Zhao F, Wang X, Huang Y, Li Y, Wan P, Mei W, Zhu D, Fei P. Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy. Nat Commun 2021; 12:107. [PMID: 33398061 PMCID: PMC7782498 DOI: 10.1038/s41467-020-20329-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
Rapid 3D imaging of entire organs and organisms at cellular resolution is a recurring challenge in life science. Here we report on a computational light-sheet microscopy able to achieve minute-timescale high-resolution mapping of entire macro-scale organs. Through combining a dual-side confocally-scanned Bessel light-sheet illumination which provides thinner-and-wider optical sectioning of deep tissues, with a content-aware compressed sensing (CACS) computation pipeline which further improves the contrast and resolution based on a single acquisition, our approach yields 3D images with high, isotropic spatial resolution and rapid acquisition over two-order-of-magnitude faster than conventional 3D microscopy implementations. We demonstrate the imaging of whole brain (~400 mm3), entire gastrocnemius and tibialis muscles (~200 mm3) of mouse at ultra-high throughput of 5~10 min per sample and post-improved subcellular resolution of ~ 1.5 μm (0.5-μm iso-voxel size). Various system-level cellular analyses, such as mapping cell populations at different brain sub-regions, tracing long-distance projection neurons over the entire brain, and calculating neuromuscular junction occupancy across whole muscle, are also readily accomplished by our method.
Collapse
Affiliation(s)
- Chunyu Fang
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Tingting Yu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Tingting Chu
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wenyang Feng
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fang Zhao
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xuechun Wang
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yujie Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yusha Li
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Peng Wan
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Dan Zhu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Peng Fei
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
32
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
33
|
Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020; 7:E118. [PMID: 33007935 PMCID: PMC7711907 DOI: 10.3390/bioengineering7040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.
Collapse
Affiliation(s)
- Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
34
|
Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. iScience 2020; 23:101432. [PMID: 32805648 PMCID: PMC7452225 DOI: 10.1016/j.isci.2020.101432] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Three-dimensional (3D) optical imaging techniques can expand our knowledge about physiological and pathological processes that cannot be fully understood with 2D approaches. Standard diagnostic tests frequently are not sufficient to unequivocally determine the presence of a pathological condition. Whole-organ optical imaging requires tissue transparency, which can be achieved by using tissue clearing procedures enabling deeper image acquisition and therefore making possible the analysis of large-scale biological tissue samples. Here, we review currently available clearing agents, methods, and their application in imaging of physiological or pathological conditions in different animal and human organs. We also compare different optical tissue clearing methods discussing their advantages and disadvantages and review the use of different 3D imaging techniques for the visualization and image acquisition of cleared tissues. The use of optical tissue clearing resources for large-scale biological tissues 3D imaging paves the way for future applications in translational and clinical research.
Collapse
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Jorge Ripoll
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Zhu J, Yu T, Li Y, Xu J, Qi Y, Yao Y, Ma Y, Wan P, Chen Z, Li X, Gong H, Luo Q, Zhu D. MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903185. [PMID: 32328422 PMCID: PMC7175264 DOI: 10.1002/advs.201903185] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Tissue optical clearing techniques have provided important tools for large-volume imaging. Aqueous-based clearing methods are known for good fluorescence preservation and scalable size maintenance, but are limited by long incubation time, insufficient clearing performance, or requirements for specialized devices. Additionally, few clearing methods are compatible with widely used lipophilic dyes while maintaining high clearing performance. Here, to address these issues, m-xylylenediamine (MXDA) is firstly introduced into tissue clearing and used to develop a rapid, highly efficient aqueous clearing method with robust lipophilic dyes compatibility, termed MXDA-based Aqueous Clearing System (MACS). MACS can render whole adult brains highly transparent within 2.5 days and is also applicable for other intact organs. Meanwhile, MACS possesses ideal compatibility with multiple probes, especially for lipophilic dyes. MACS achieves 3D imaging of the intact neural structures labeled by various techniques. Combining MACS with DiI labeling, MACS allows reconstruction of the detailed vascular structures of various organs and generates 3D pathology of glomeruli tufts in healthy and diabetic kidneys. Therefore, MACS provides a useful method for 3D mapping of intact tissues and is expected to facilitate morphological, physiological, and pathological studies of various organs.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Tingting Yu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yusha Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Jianyi Xu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yisong Qi
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yingtao Yao
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yilin Ma
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Peng Wan
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhilong Chen
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Xiangning Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Hui Gong
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Qingming Luo
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| | - Dan Zhu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
- MoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
36
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
37
|
Li Y, Xu J, Zhu J, Yu T, Zhu D. Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method. NEUROPHOTONICS 2020; 7:015003. [PMID: 32016132 PMCID: PMC6977403 DOI: 10.1117/1.nph.7.1.015003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional visualization of the innervation in skeletal muscles is helpful for understanding the morphological structure and function. iDISCO, a whole-mount immunolabeling and clearing technique, provides a valuable tool for volume imaging of intramuscular nerve fibers but suffers from the nonspecific staining caused by the anti-mouse secondary antibody when using the murine primary antibody. We developed a modified iDISCO method by introducing pretreatment of ScaleCUBIC-1 reagent, termed m-iDISCO. The m-iDISCO method could eliminate the nonspecific staining and achieve uniform and complete labeling of nerve fibers in various muscles with mouse anti-neurofilament primary antibody. Combining the m-iDISCO method with light-sheet microscopy enabled us to visualize the innervation of adult mouse tibialis anterior and trace the nerve fibers from extramuscular branches to intramuscular terminal branches. This method represents an effective alternative for studying the innervation of intact skeletal muscles in health and disease.
Collapse
Affiliation(s)
- Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jianyi Xu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| |
Collapse
|
38
|
Han S, Li D, Kou Y, Fu Z, Yin X. Multiple retrograde tracing methods compatible with 3DISCO clearing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4240-4247. [PMID: 31713439 DOI: 10.1080/21691401.2019.1687493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shuai Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing, China
| | - Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing, China
| | - Zhongguo Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing, China
| | - Xiaofeng Yin
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing, China
| |
Collapse
|