1
|
Yao F, Bao Y, Meng Q, Chen Y, Zhao L, Wang P, Zhou B. Periprosthetic osteolysis: Mechanisms and potential treatment strategies. Cell Signal 2025; 131:111758. [PMID: 40132773 DOI: 10.1016/j.cellsig.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Periprosthetic osteolysis is a common bone-related disorder that often occurs after total hip arthroplasty. The implants can cause damage to bone and bone-related cells due to mechanical stress and micromotions, resulting in the generation of a large number of wear particles. These wear particles trigger inflammation and oxidative stress in the surrounding tissues, disrupting the delicate balance maintained by osteoblasts and osteoclasts, ultimately leading to bone loss around the implant. Clinical investigations have demonstrated that Epimedium prenylflavonoids, miR-19a-3p, stem cell-derived exosomes, and certain non-PPO category pharmaceuticals have regulatory effects on bone homeostasis through distinct molecular pathways. Notably, this phenomenon reflects inherent biological rationality rather than stochastic occurrence. Extensive research has revealed that multiple natural compounds, non-coding RNAs, exosomes, and non-PPO therapeutics not only exert modulatory influences on critical pathophysiological processes including inflammatory cascades, oxidative stress responses, and tissue regeneration mechanisms, but also effectively regulate bone-related cellular functions to inhibit PPO progression. Therefore, this review comprehensively and systematically summarizes the main pathogenic mechanisms of periprosthetic osteolysis. Furthermore, it delves deeper into the research progress on the applications of currently reported natural products, ncRNAs, exosomes, and non-PPO medications in the treatment of periprosthetic osteolysis. Based on this, we hope that this paper can provide new perspectives and references for the future development of drugs targeting periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fang Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yue Bao
- Department of Nursing, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qian Meng
- Outpatient Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanrong Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Luxi Zhao
- Department of Anesthesiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Pingmei Wang
- Department of Orthopaedics, The People's Hospital of Shimen County, Shimen 415399, China
| | - Bin Zhou
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Li K, Zhou Z, Liu F, Huang Z, Chen X, Zhou F. Unphosphorylated STAT1 binds to the BST2 transcription promoter, promoting increased AKBA anchoring on HPMECs to alleviate ARDS. Sci Rep 2025; 15:15207. [PMID: 40307322 PMCID: PMC12044156 DOI: 10.1038/s41598-025-00028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Although the drug therapeutic targets of acute respiratory distress syndrome (ARDS) are still unclear and no specific drugs for ARDS treatment have been found, some breakthroughs have been gradually made in the biological target pathways such as endothelial injury. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database suggests that Acetyl-11-keto-β-boswellic acid (AKBA), a processed product of boswellic acid, may be an effective intervention for ARDS. After preliminary in vitro and in vivo verification of the protective role of AKBA on ARDS, in order to explore the mechanism of AKBA in ARDS, we used transcriptomic and proteomic methods to explore its main targets, and used molecular docking and cell thermal shift assay (CETSA) to further reveal the potential value of bone marrow stromal cell antigen 2 (BST2) as a target. We subsequently examined the effect of AKBA targeting BST2 on tubule formation, cell proliferation (Colony formation and EdU assay), migration (transwell and scratch assays), apoptosis and autophagy levels both in vitro and in vivo, and protein changes (analyzed by Western blotting analysis). Our results show that the unphosphorylated signal transducers and transcription activation factors (U-STAT1) bins to the BST2 transcription promoter to encourage more AKBA anchoring the human pulmonary microvascular endothelial cells (HPMECs), thus inhibiting apoptosis and autophagy, promoting migration and tube formation, and restraining the cecal ligation and puncture (CLP) induced lung tissue damage in mice. In conclusion, AKBA treatment may be a potential strategy in the intervention of ARDS. Alternatively, BST2 may contribute to the anchoring of AKBA to HPMECs, and STAT1 as a transcription factor promoting BST2 expression may bind to its promoter.
Collapse
Affiliation(s)
- Kaili Li
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, 3rd Floor, Building 7, 400016, Chongqing, China
| | - Zixiang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Feng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, 400030, Chongqing Municipality, China.
| | - Xiaoying Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, 3rd Floor, Building 7, 400016, Chongqing, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
3
|
Han Q, Qian Y, Bai L, Zhou J, Hao Y, Hu D, Zhang Z, Yang X. Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model. J Biomed Mater Res A 2025; 113:e37844. [PMID: 39668791 DOI: 10.1002/jbm.a.37844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.
Collapse
Affiliation(s)
- Qibin Han
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Research Institute of Clinical Medicine, Department of Orthopedic Surgery and Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yinhua Qian
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, P. R. China
| | - Lang Bai
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Jing Zhou
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Dan Hu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Zhouzhou Zhang
- Department of Urology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Xing Yang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| |
Collapse
|
4
|
Gu Y, Wu Z, Xie H, Qian Z, Li Z, Tang Y, Wang Q, Fang T, Tao H, Chen K, Zhu P, Ding Y, Xu Y, Peng Y, Ye H, Guo X, Tao Y, Gu Y. Acetyl-11-keto-β-boswellia acid attenuates Ti particle-induced osteoblastic oxidative stress and osteolysis through the Foxo3 signaling pathway. Int Immunopharmacol 2024; 143:113547. [PMID: 39510032 DOI: 10.1016/j.intimp.2024.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Oxidative stress injury in osteoblasts is one of the leading causes of periprosthetic osteolysis (PPOL). Acetyl-11-keto-β-boswellia acid (AKBA) has been used as an antioxidant in the treatment of various diseases, but its antioxidant mechanism in osteolysis has yet to be elucidated. In this study, a mouse cranial osteolysis model was constructed, and MC3T3-E1 cells and bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro. Western blotting and immunofluorescence staining revealed that titanium (Ti) particles aggravated osteoblast oxidative stress injury and apoptosis. Ti particles and hydrogen peroxide reduced the osteogenic ability of BMSCs. At a certain concentration, AKBA alleviated the oxidative stress injury of MC3T3-E1 cells induced by Ti particles and enhanced the osteogenic ability of BMSCs, and the expression of Forkhead box O3 (Foxo3) increased with increasing AKBA concentration. To verify the antioxidant mechanism of AKBA, we designed and synthesized Foxo3-targeting siRNAs. We found that after Foxo3 expression was inhibited, the protective effect of AKBA on osteoblasts decreased significantly. Moreover, AKBA treatment suppressed bone mass loss in the skull mediated by Ti particles in mice. Therefore, we suggest that AKBA alleviates the oxidative stress injury in osteoblasts induced by Ti particles, at least in part, by regulating the expression of Foxo3. In this study, the mechanism and biosafety of AKBA in treating PPOL were demonstrated to some extent.
Collapse
Affiliation(s)
- Yingchu Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Zerui Wu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Heng Xie
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Zhengtao Qian
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Zhijie Li
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Yihan Tang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Qiufei Wang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Tao Fang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Yi Ding
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Yuqin Peng
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Hongwei Ye
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China.
| | - Xiaobin Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China.
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China.
| | - Ye Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China.
| |
Collapse
|
5
|
Huang M, Wang C, Li P, Lu H, Li A, Xu S. Role of immune dysregulation in peri-implantitis. Front Immunol 2024; 15:1466417. [PMID: 39555067 PMCID: PMC11563827 DOI: 10.3389/fimmu.2024.1466417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Peri-implantitis, a complex condition that can lead to dental implant failure, is characterized by inflammatory destruction resulting from immune dysregulation. Oral microbial dysbiosis and foreign body stimulation are the main factors contributing to such dysregulation, impairing immune cell function and triggering an inflammatory response. Immune dysregulation plays a critical role in the pathophysiology of peri-implantitis, impacting the balance of T cell subsets, the production of inflammatory factors, and immune-related molecular signaling pathways. Understanding the relationship between immune dysregulation and peri-implantitis is crucial for developing targeted strategies for clinical diagnosis and individualized treatment planning. This review explores the similarities and differences in the immune microenvironment of oral bacterial infections and foreign body rejection, analyzes the relevant molecular signaling pathways, and identifies new key targets for developing innovative immunotherapeutic drugs and effective and personalized treatment modalities for peri-implantitis. Additionally, it addresses the challenges and potential directions for translating immunotherapy into clinical practice for peri-implantitis, offering insights that bridge the gaps in current literature and pave the way for future research.
Collapse
Affiliation(s)
- Mingshu Huang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chao Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lee HS, Jung JI, Hong IK, Jang Y, Kim HB, Kim EJ. Anti-osteoporotic effects of Boswellia serrata gum resin extract in vitro and in vivo. Nutr Res Pract 2024; 18:309-324. [PMID: 38854466 PMCID: PMC11156763 DOI: 10.4162/nrp.2024.18.3.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study evaluated the beneficial effects of an ethanol extract of Boswellia serrata gum resin (FJH-UBS) in osteoporosis. MATERIALS/METHODS MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 (NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b were analyzed. RESULTS FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) caused by the ovariectomy. CONCLUSION FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential functional food ingredient for osteoporosis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - In-Kee Hong
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - YoungSun Jang
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Hye-Bin Kim
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Eun Ji Kim
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
7
|
Lin X, Yang Y, Huang Y, Li E, Zhuang X, Zhang Z, Xu R, Yu X, Deng F. Mettl3‑mediated m 6A RNA methylation regulates osteolysis induced by titanium particles. Mol Med Rep 2024; 29:36. [PMID: 38214327 PMCID: PMC10823336 DOI: 10.3892/mmr.2024.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
Peri‑prosthetic osteolysis (PPO) induced by wear particles is considered the primary cause of titanium prosthesis failure and revision surgery. The specific molecular mechanisms involve titanium particles inducing multiple intracellular pathways, which impact disease prevention and the targeted therapy of PPO. Notably, N6‑methyladenosine (m6A) serves critical roles in epigenetic regulation, particularly in bone metabolism and inflammatory responses. Thus, the present study aimed to determine the role of RNA methylation in titanium particle‑induced osteolysis. Results of reverse transcription‑quantitative PCR (RT‑qPCR), western blotting, ELISA and RNA dot blot assays revealed that titanium particles induced osteogenic inhibition and proinflammatory responses, accompanied by the reduced expression of methyltransferase‑like (Mettl) 3, a key component of m6A methyltransferase. Specific lentiviruses vectors were employed for Mettl3 knockdown and overexpression experiments. RT‑qPCR, western blotting and ELISA revealed that the knockdown of Mettl3 induced osteogenic inhibition and proinflammatory responses comparable with that induced by titanium particle, while Mettl3 overexpression attenuated titanium particle‑induced cellular reactions. Methylated RNA immunoprecipitation‑qPCR results revealed that titanium particles mediated the methylation of two inhibitory molecules, namely Smad7 and SMAD specific E3 ubiquitin protein ligase 1, via Mettl3 in bone morphogenetic protein signaling, leading to osteogenic inhibition. Furthermore, titanium particles induced activation of the nucleotide binding oligomerization domain 1 signaling pathway through methylation regulation, and the subsequent activation of the MAPK and NF‑κB pathways. Collectively, the results of the present study indicated that titanium particles utilized Mettl3 as an upstream regulatory molecule to induce osteogenic inhibition and inflammatory responses. Thus, the present study may provide novel insights into potential therapeutic targets for aseptic loosening in titanium prostheses.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yang Yang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yaohong Huang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - E Li
- Department of Stomatology, Zhuhai Center for Maternal and Child Healthcare, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xiumei Zhuang
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
8
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
9
|
Yang Q, Wei Z, Wei X, Zhang J, Tang Y, Zhou X, Liu P, Dou C, Luo F. The age-related characteristics in bone microarchitecture, osteoclast distribution pattern, functional and transcriptomic alterations of BMSCs in mice. Mech Ageing Dev 2023; 216:111877. [PMID: 37820882 DOI: 10.1016/j.mad.2023.111877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Deteriorated age-related bone loss is the hallmarks of skeletal aging. However, how the aging of bone marrow mesenchymal stem cells (BMSCs) and osteoclasts are linked to the bone microstructure degeneration is not yet very clear. In this study, the characteristics of age-related bone loss, distribution patterns of osteoclasts, functional and transcriptomic alterations of BMSCs, hub genes responsible for BMSCs senescence, were analyzed. Our study revealed an age-related declined trends in trabecular and cortical bones of femur, tibia and lumbar vertebra in mice, which was accompanied by a shift from the trabecular to cortical bones in osteoclasts. Additionally, middle-aged or aged mice exhibited remarkably reduced dynamic bone formation capacities, along with reversed osteogenic-adipogenic differentiation potentials in BMSCs. Finally, transcriptomic analysis indicated that aging-related signaling pathways were significantly activated in BMSCs from aged mice (e.g., cellular senescence, p53 signaling pathway, etc.). Also, weighted correlation network analysis (WGCNA) and venn diagram analysis based on our RNA-Seq data and GSE35956 dataset revealed the critical role of PTPN1 in BMSCs senescence. Targeted inhibition of PTP1B with AAV-Ptpn1-RNAi dramatically postponed age-related bone loss in middle-aged mice. Collectively, our study has uncovered the age-dependent cellular characteristics in BMSCs and osteoclasts underlying progressive bone loss with advancing age.
Collapse
Affiliation(s)
- QianKun Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - ZhiYuan Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - XiaoYu Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhou
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Pan Liu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
10
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
11
|
Yu X, Ding H, Wang D, Ren Z, Chen B, Wu Q, Yuan T, Liu Y, Zhang L, Zhao J, Sun Z. Particle-induced osteolysis is mediated by endoplasmic reticulum stress-associated osteoblast apoptosis. Chem Biol Interact 2023; 383:110686. [PMID: 37659624 DOI: 10.1016/j.cbi.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Osteoblast dysfunction plays a crucial role in periprosthetic osteolysis and aseptic loosening, and endoplasmic reticulum (ER) stress is recognized as an important causal factor of wear particle-induced osteolysis. However, the influence of ER stress on osteoblast activity during osteolysis and its underlying mechanisms remain elusive. This study aims to investigate whether ER stress is involved in the detrimental effects of wear particles on osteoblasts. Through our investigation, we observed elevated expression levels of ER stress and apoptosis markers in particle-stimulated bone specimens and osteoblasts. To probe further, we employed the ER stress inhibitor, 4-PBA, to treat particle-stimulated osteoblasts. The results revealed that 4-PBA effectively alleviated particle-induced osteoblast apoptosis and mitigated osteogenic reduction. Furthermore, our study revealed that wear particle-induced ER stress in osteoblasts coincided with mitochondrial damage, calcium overload, and oxidative stress, all of which were effectively alleviated by 4-PBA treatment. Encouragingly, 4-PBA administration also improved bone formation and attenuated osteolysis in a mouse calvarial model. In conclusion, our results demonstrate that ER stress plays a crucial role in mediating wear particle-induced osteoblast apoptosis and impaired osteogenic function. These findings underscore the critical involvement of ER stress in wear particle-induced osteolysis and highlight ER stress as a potential therapeutic target for ameliorating wear particle-induced osteogenic reduction and bone destruction.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Lei Zhang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
12
|
Chai H, Huang Q, Jiao Z, Wang S, Sun C, Geng D, Xu W. Osteocytes Exposed to Titanium Particles Inhibit Osteoblastic Cell Differentiation via Connexin 43. Int J Mol Sci 2023; 24:10864. [PMID: 37446062 DOI: 10.3390/ijms241310864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast differentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium (Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43 (CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles. The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1 cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells, co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression, activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43 expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate in the regulation of osteoblast function via the Cx43 during PPO.
Collapse
Affiliation(s)
- Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
13
|
The Dopamine D1 Receptor Attenuates Titanium Particle-Induced Inhibition of Osteogenesis by Activating the Wnt Signaling Pathway. Mediators Inflamm 2023; 2023:6331650. [PMID: 36700172 PMCID: PMC9870688 DOI: 10.1155/2023/6331650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, has become a major cause of joint replacement failure. Secondary surgery after joint replacement poses a serious threat to public health worldwide. Therefore, determining how to effectively inhibit wear particle-induced PPO has become an urgent issue. Recently, the interaction between osteogenic inhibition and wear particles at the biological interface of the implant has been found to be an important factor in the pathological process. Previous studies have found that the central nervous system plays an important role in the regulation of bone formation and bone remodeling. Dopamine (DA), an important catecholamine neurotransmitter, plays an integral role in the physiological and pathological processes of various tissues through its corresponding receptors. Our current study found that upregulation of dopamine first receptors could be achieved by activating the Wnt/β-catenin pathway, improving osteogenesis in vivo and in vitro, and significantly reducing the inhibition of titanium particle-induced osteogenesis. Overall, these findings suggest that dopamine first receptor (D1R) may be a plausible target to promote osteoblast function and resist wear particle-induced PPO.
Collapse
|
14
|
Mohamed EA, Ahmed HI, Zaky HS, Badr AM. Boswellic acids ameliorate neurodegeneration induced by AlCl 3: the implication of Wnt/β-catenin pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76135-76143. [PMID: 35668264 PMCID: PMC9553772 DOI: 10.1007/s11356-022-20611-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/30/2022] [Indexed: 04/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease (ND) that represents the principal cause of dementia. Effective treatment is still lacking. Without prevention, Alzheimer's disease (AD) incidence is expected to triple within 30 years. The risk increases in highly polluted areas and is positively linked to chronic aluminum (Al) exposure. Canonical Wingless-Int (Wnt)/β-catenin pathway has been found to play a considerable role in ND pathogenesis. Resins of Boswellia serrata (frankincense) have been used traditionally for their psychoactive activity, in addition to their memory-boosting effects. Boswellic acids (BA) are pentacyclic triterpenes. They have antioxidant, anti-inflammatory, antinociceptive, and immunomodulatory activities. This study aimed to elucidate the role of the Wnt/β-catenin pathway in BA protective activity against aluminum-induced Alzheimer's disease. For 6 weeks, rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with BA (125 or 250 mg/kg PO). Results indicated that BA significantly improved learning and memory impairments induced by AlCl3 treatment. Moreover, BA treatment significantly decreased acetylcholinesterase levels and reduced amyloid-beta (Aβ) expression. In addition, BA ameliorated the increased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), inhibited lipid peroxidation, and increased total antioxidants in the brain. Indeed, BA significantly suppressed AlCl3-induced decrease of brain-derived neurotrophic factor, pGSK-3β (Ser 9), and β-catenin. BA (250 mg/kg) showed a significant protective effect compared to a lower dose. The results conclude that BA administration modulated the expression of Wnt/β-catenin pathway-related parameters, contributing to BA's role against Al-induced Alzheimer's disease. Effect of Boswellic acids on AlCl3-induced neurodegenerative changes. ChE cholinesterase, Ach acetylcholine, BDNF brain-derived neurotrophic factor, IL-1β interleukin-1β, TNF-α tumor necrosis factor-α.
Collapse
Affiliation(s)
- Eman A. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, P.N.11754 Egypt
| | - Hebatalla I. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, P.N.11754 Egypt
| | - Heba S. Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, P.N.11754 Egypt
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt
| |
Collapse
|
15
|
Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2022; 107:108703. [DOI: 10.1016/j.intimp.2022.108703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022]
|
16
|
Fatima M, Anjum I, Abdullah A, Abid SZ, Malik MN. Boswellic Acids, Pentacyclic Triterpenes, Attenuate Oxidative Stress, and Bladder Tissue Damage in Cyclophosphamide-Induced Cystitis. ACS OMEGA 2022; 7:13697-13703. [PMID: 35559194 PMCID: PMC9088903 DOI: 10.1021/acsomega.1c07292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 06/03/2023]
Abstract
Boswellic acids, derived from the Boswellia serrata plant, have been demonstrated to have anti-inflammatory properties in experimental animal models. The present study was aimed to evaluate the uro-protective effect of boswellic acids in rats with cyclophosphamide-induced cystitis. Interstitial cystitis was induced by cyclophosphamide (CYP). In order to analyze the reduction of the urothelial damage, the bladder weight, the nociception response, and the Evans blue dye extravasation from the bladder were evaluated. To investigate the involvement of lipid peroxidation and enzymatic antioxidants CAT, SOD, and GPX and MPO and NO were evaluated. IL-6 and TNF-α were measured by the ELISA immunoassay technique. The results showed that pretreatment with boswellic acids significantly reduced urothelial damage which was accompanied by a decrease in the activity of MDA, CPO, and NO levels and prevention of the depletion of CAT, SOD, and GPX. The levels of IL-6 and TNF-α were dramatically reduced by boswellic acids. Histopathological findings revealed a considerable reduction in cellular infiltration, edema, epithelial denudation, and bleeding. Our findings showed that boswellic acids, by their antioxidant and anti-inflammatory properties, negate the detrimental effects of cyclophosphamide on the bladder, suggesting boswellic acids as promising therapeutic alternatives for cystitis.
Collapse
Affiliation(s)
- Maryam Fatima
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, 54000 Lahore, Pakistan
| | - Irfan Anjum
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, 54000 Lahore, Pakistan
| | - Aamir Abdullah
- Allama
Iqbal Medical College, Jinnah Hospital Lahore, 54550 Lahore, Pakistan
| | - Shaun Zshaan Abid
- Allama
Iqbal Medical College, Jinnah Hospital Lahore, 54550 Lahore, Pakistan
| | | |
Collapse
|
17
|
Gong Y, Jiang X, Yang S, Huang Y, Hong J, Ma Y, Fang X, Fang Y, Wu J. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. Neuromolecular Med 2022; 24:374-384. [PMID: 35303275 PMCID: PMC8931781 DOI: 10.1007/s12017-022-08707-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
Frankincense is a hard gelatinous resin exuded by Boswellia serrata. It contains a complex array of components, of which acetyl-11-keto-beta-boswellic acid (AKBA), a pentacyclic triterpenoid of the resin class, is the main active component. AKBA has a variety of physiological actions, including anti-infection, anti-tumor, and antioxidant effects. The use of AKBA for the treatment of mental diseases has been documented as early as ancient Greece. Recent studies have found that AKBA has anti-aging and other neurological effects, suggesting its potential for the treatment of neurological diseases. This review focuses on nervous system-related diseases, summarizes the functions and mechanisms of AKBA in promoting nerve repair and regeneration after injury, protecting against ischemic brain injury and aging, inhibiting neuroinflammation, ameliorating memory deficits, and alleviating neurotoxicity, as well as having anti-glioma effects and relieving brain edema. The mechanisms by which AKBA functions in different diseases and the relationships between dosage and biological effects are discussed in depth with the aim of increasing understanding of AKBA and guiding its use for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xinyi Jiang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Suibi Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yue Huang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jinhui Hong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yanxiu Ma
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xin Fang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China.
| | - Jing Wu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|
19
|
Identification of Novel Cannabinoid CB2 Receptor Agonists from Botanical Compounds and Preliminary Evaluation of Their Anti-Osteoporotic Effects. Molecules 2022; 27:molecules27030702. [PMID: 35163968 PMCID: PMC8838898 DOI: 10.3390/molecules27030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects—including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism—without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors–ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.
Collapse
|
20
|
Curculigoside Protects against Titanium Particle-Induced Osteolysis through the Enhancement of Osteoblast Differentiation and Reduction of Osteoclast Formation. J Immunol Res 2021; 2021:5707242. [PMID: 34285923 PMCID: PMC8275416 DOI: 10.1155/2021/5707242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Wear particle-induced periprosthetic osteolysis is mainly responsible for joint replacement failure and revision surgery. Curculigoside is reported to have bone-protective potential, but whether curculigoside attenuates wear particle-induced osteolysis remains unclear. In this study, titanium particles (Ti) were used to stimulate osteoblastic MC3T3-E1 cells in the presence or absence of curculigoside, to determine their effect on osteoblast differentiation. Rat osteoclastic bone marrow stromal cells (BMSCs) were cocultured with Ti in the presence or absence of curculigoside, to evaluate its effect on osteoclast formation in vitro. Ti was also used to stimulate mouse calvaria to induce an osteolysis model, and curculigoside was administrated to evaluate its effect in the osteolysis model by micro-CT imaging and histopathological analyses. As the results indicated, in MC3T3-E1 cells, curculigoside treatment attenuated the Ti-induced inhibition on cell differentiation and apoptosis, increased alkaline phosphatase activity (ALP) and cell mineralization, and inhibited TNF-α, IL-1β, and IL-6 production and ROS generation. In BMSCs, curculigoside treatment suppressed the Ti-induced cell formation and suppressed the TNF-α, IL-1β, and IL-6 production and F-actin ring formation. In vivo, curculigoside attenuated Ti-induced bone loss and histological damage in murine calvaria. Curculigoside treatment also reversed the RANK/RANKL/OPG and NF-κB signaling pathways, by suppressing the RANKL and NF-κB expression, while activating the OPG expression. Our study demonstrated that curculigoside treatment was able to attenuate wear particle-induced periprosthetic osteolysis in in vivo and in vitro experiments, promoted osteoblastic MC3T3-E1 cell differentiation, and inhibited osteoclast BMSC formation. It suggests that curculigoside may be a potential pharmaceutical agent for wear particle-stimulated osteolysis therapy.
Collapse
|
21
|
Wang L, Wang Q, Wang W, Ge G, Xu N, Zheng D, Jiang S, Zhao G, Xu Y, Wang Y, Zhu R, Geng D. Harmine Alleviates Titanium Particle-Induced Inflammatory Bone Destruction by Immunomodulatory Effect on the Macrophage Polarization and Subsequent Osteogenic Differentiation. Front Immunol 2021; 12:657687. [PMID: 34079546 PMCID: PMC8165263 DOI: 10.3389/fimmu.2021.657687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-prosthetic osteolysis (PPO) and following aseptic loosening are regarded as the prime reasons for implant failure after joint replacement. Increasing evidence indicated that wear-debris-irritated inflammatory response and macrophage polarization state play essential roles in this osteolytic process. Harmine, a β-carboline alkaloid primitively extracted from the Peganum harmala seeds, has been reported to have various pharmacological effects on monoamine oxidase action, insulin intake, vasodilatation and central nervous systems. However, the impact of harmine on debris-induced osteolysis has not been demonstrated, and whether harmine participates in regulating macrophage polarization and subsequent osteogenic differentiation in particle-irritated osteolysis remains unknown. In the present study, we investigated the effect of harmine on titanium (Ti) particle-induced osteolysis in vivo and in vitro. The results suggested harmine notably alleviated Ti particle-induced bone resorption in a murine PPO model. Harmine was also found to suppress the particle-induced inflammatory response and shift the polarization of macrophages from M1 phenotypes to M2 phenotypes in vivo and in vitro, which improved anti-inflammatory and bone-related cytokines levels. In the conditioned medium from Ti particle-stimulated murine macrophage RAW264.7 cells treated with harmine, the osteoblast differentiation ability of mouse pre-osteoblastic MC3T3-E1 cells was greatly increased. And we also provided evidences that the immunomodulatory capacity of harmine might be attributed to the inhibition of the c-Jun N-terminal kinase (JNK) in wear particle-treated macrophages. All the results strongly show that harmine might be a promising therapeutic agent to treat PPO.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nanwei Xu
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dong Zheng
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shijie Jiang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Gongyin Zhao
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuji Wang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Ruixia Zhu
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Park GD, Cheon YH, Eun SY, Lee CH, Lee MS, Kim JY, Cho HJ. β-Boswellic Acid Inhibits RANKL-Induced Osteoclast Differentiation and Function by Attenuating NF-κB and Btk-PLCγ2 Signaling Pathways. Molecules 2021; 26:molecules26092665. [PMID: 34062884 PMCID: PMC8125251 DOI: 10.3390/molecules26092665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/04/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Gyeong Do Park
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Correspondence: (J.-Y.K.); (H.J.C.)
| | - Hae Joong Cho
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Department of Obstetrics and Gynecology, Wonkwang University Hospital, Iksan 54538, Korea
- Correspondence: (J.-Y.K.); (H.J.C.)
| |
Collapse
|
23
|
Zhang Y, Li Y, Liao W, Peng W, Qin J, Chen D, Zheng L, Yan W, Li L, Guo Z, Wang P, Jiang Q. Citrate-Stabilized Gold Nanorods-Directed Osteogenic Differentiation of Multiple Cells. Int J Nanomedicine 2021; 16:2789-2801. [PMID: 33880024 PMCID: PMC8052123 DOI: 10.2147/ijn.s299515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Gold nanorods (AuNRs) show great potential for versatile biomedical applications, such as stem cell therapy and bone tissue engineering. However, as an indispensable shape-directing agent for the growth of AuNRs, cetyltrimethylammonium bromide (CTAB) is not optimal for biological studies because it forms a cytotoxic bilayer on the AuNR surface, which interferes with the interactions with biological cells. Methods Citrate-stabilized AuNRs with various aspect-ratios (Cit-NRI, Cit-NRII, and Cit-NRIII) were prepared by the combination of end-selective etching and poly(sodium 4-styrenesulfonate)-assisted ligand exchange method. Their effects on osteogenic differentiation of the pre-osteoblastic cell line (MC3T3-E1), rat bone marrow mesenchymal stem cells (rBMSCs), and human periodontal ligament progenitor cells (PDLPs) have been investigated. Potential signaling pathway of citrate-stabilized AuNRs-induced osteogenic effects was also investigated. Results The experimental results showed that citrate-stabilized AuNRs have superior biocompatibility and undergo aspect-ratio-dependent osteogenic differentiation via expression of osteogenic marker genes, alkaline phosphatase (ALP) activity and formation of mineralized nodule. Furthermore, Wnt/β-catenin signaling pathway might provide a potential explanation for the citrate-stabilized AuNRs-mediated osteogenic differentiation. Conclusion These findings revealed that citrate-stabilized AuNRs with great biocompatibility could regulate the osteogenic differentiation of multiple cell types through Wnt/β-catenin signaling pathway, which promote innovative AuNRs in the field of tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Yibo Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yawen Li
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Wei Liao
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianghui Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Dongyang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Zhirui Guo
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qing Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
24
|
Shi J, Gu Y, Wang Y, Bai J, Xiong L, Tao Y, Xue Y, Xu Y, Yang H, Ye H, Geng D. Inhibitory effect of acetyl-11-keto-β-boswellic acid on titanium particle-induced bone loss by abrogating osteoclast formation and downregulating the ERK signaling pathway. Int Immunopharmacol 2021; 94:107459. [PMID: 33611061 DOI: 10.1016/j.intimp.2021.107459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Wear debris-induced osteoclast accumulation around implants plays a crucial role during the progression of periprosthetic osteolysis (PPO). We have confirmed that acetyl-11-keto-β-boswellic acid (AKBA) promotes bone formation and protects against particle-induced bone destruction in vivo. However, the effect of AKBA on titanium-induced bone resorption is unknown. In this study, we detected the inhibitory effect of AKBA on titanium-induced bone erosion in vivo and used RAW264.7 cells and bone marrow macrophages (BMMs) to investigate the effect and underlying mechanism of AKBA on the differentiation and resorptive function of osteoclasts. Our findings revealed that AKBA inhibited particle-induced bone loss and osteoclast formation in vivo. Furthermore, AKBA exerted inhibitory effects on RANKL-induced osteoclastogenesis, osteoclastic ring-dependent resorption and the expression of osteoclast marker genes via the ERK signaling pathway in vitro. Our data further established the protective effect of AKBA on titanium particle-induced bone erosion from a new perspective of bone erosion prevention, strongly confirming that AKBA is an appropriate agent for protection against PPO.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215500, China
| | - Yong Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Longbin Xiong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Xue
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changshu 215000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Hongwei Ye
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215500, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
25
|
Al-Dhubiab BE, Patel SS, Morsy MA, Duvva H, Nair AB, Deb PK, Shah J. The Beneficial Effect of Boswellic Acid on Bone Metabolism and Possible Mechanisms of Action in Experimental Osteoporosis. Nutrients 2020; 12:nu12103186. [PMID: 33081068 PMCID: PMC7603128 DOI: 10.3390/nu12103186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen is instrumental in the pathological process of osteoporosis because a deficiency of this hormone increases the release of bone-resorbing cytokines. Acetyl-11-keto-β-boswellic acid (AKBA), a constituent from Boswellia serrata, has an anti-inflammatory effect by inhibiting tumor necrosis factor-α (TNF-α) expression, which leads to a decline in receptor activator of nuclear factor-kappa B (NF-κB) ligand, and consequently, a reduction in osteoclast activity. Hence, AKBA may be beneficial against bone loss during osteoporosis. Therefore, the current study intended to evaluate the beneficial effects of AKBA in ovariectomy-induced osteoporosis and to investigate its mechanism of action. Sham-operation or ovariectomy female Sprague Dawley rats were used for evaluating the antiosteoporotic effect of AKBA in this study. AKBA (35 mg/kg, p.o.) and estradiol (0.05 mg/kg, i.m.) were administered for 42 days. At the end of the experiment, body and uterus weights, serum and urine calcium and phosphorus, serum alkaline phosphatase, and urinary creatinine levels, besides serum levels of NF-κB and TNF-α were determined. Weight, length, thickness, hardness, calcium content, as well as the bone mineral density of femur bone and lumbar vertebra were measured. A histopathological examination was also carried out. AKBA ameliorated all tested parameters and restored a normal histological structure. Thus, AKBA showed good antiosteoporotic activity, which may be mediated through its suppression of the NF-κB-induced TNF-α signaling pathway.
Collapse
Affiliation(s)
- Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Correspondence: ; Tel.: +966-505-845-758
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Harika Duvva
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| |
Collapse
|
26
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
27
|
Wang Q, Ge G, Liang X, Bai J, Wang W, Zhang W, Zheng K, Yang S, Wei M, Yang H, Xu Y, Liu B, Geng D. Punicalagin ameliorates wear-particle-induced inflammatory bone destruction by bi-directional regulation of osteoblastic formation and osteoclastic resorption. Biomater Sci 2020; 8:5157-5171. [PMID: 32840273 DOI: 10.1039/d0bm00718h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are the main causes of implant failure and revision surgery. Emerging evidence has suggested that wear-particle-induced chronic inflammation, osteoblast inhibition and osteoclast formation at the biointerface of implant materials are responsible for PPO. Punicalagin (PCG), a polyphenolic compound molecularly extracted from pomegranate rinds, plays a critical role in antioxidant, anticancer and anti-inflammatory activities. However, whether PCG could attenuate chronic inflammation and bone destruction at sites of titanium (Ti)-particle-induced osteolysis remains to be determined. In this study, we explored the effect of PCG on Ti-particle-induced osteolysis in vivo and osteoblast and osteoclast differentiation in vitro. We found that PCG could relieve wear-particle-induced bone destruction in a murine calvarial osteolysis model by increasing bone formation activity and suppressing bone resorption activity. PCG treatment also reduced the Ti-particle-induced inflammatory response in vivo and vitro. In addition, we also observed that PCG promotes osteogenic differentiation of MC3T3-E1 cells under inflammatory conditions and inhibits RANKL-induced osteoclast formation of bone marrow-derived macrophages (BMMs). Meanwhile, the induction of the RANKL to OPG ratio was reversed by PCG treatment in vivo and in vitro, which demonstrated that PCG could also indirectly inhibit osteoclastogenesis. Collectively, our findings suggest that PCG represents a potential approach for the treatment of wear-particle-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, Saijilafu, Zhang Z, Hong D, Zhu M, Li B, Yang H, Chen J. Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics 2020; 10:6638-6660. [PMID: 32550895 PMCID: PMC7295048 DOI: 10.7150/thno.44793] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Wear particle-induced periprosthetic osteolysis (PPO) is a common long-term complication of total joint arthroplasty, and represents the major cause of aseptic loosening and subsequent implant failure. Previous studies have identified the central role of osteoclast-mediated bone resorption in the pathogenesis of PPO. Thus, therapeutic approaches of inhibiting osteoclast formation and activity are considered to be of great potential to prevent and treat this osteolytic disease. Hedgehog (Hh) signaling has been shown to play an important role in promoting osteoblast differentiation and bone formation. While Hh signaling is also implicated in regulating osteoclastogenesis, whether it can directly inhibit osteoclast differentiation and bone resorption remains controversial. Moreover, its potential therapeutic effects on PPO have never been assessed. In this study, we explored the cell-autonomous role of Hh signaling in regulating osteoclastogenesis and its therapeutic potential in preventing wear particle-induced osteolysis. Methods: Hh signaling was activated in macrophages by genetically ablating Sufu in these cells using LysM-Cre or by treating them with purmorphamine (PM), a pharmacological activator of Smoothened (Smo). In vitro cell-autonomous effects of Hh pathway activation on RANKL-induced osteoclast differentiation and activity were evaluated by TRAP staining, phalloidin staining, qPCR analyses, and bone resorption assays. In vivo evaluation of its therapeutic efficacy against PPO was performed in a murine calvarial model of titanium particle-induced osteolysis by μCT and histological analyses. Mechanistic details were explored in RANKL-treated macrophages through Western blot analyses. Results: We found that Sufu deletion or PM treatment potently activated Hh signaling in macrophages, and strongly inhibited RANKL-induced TRAP+ osteoclast production, F-actin ring formation, osteoclast-specific gene expression, and osteoclast activity in vitro. Furthermore, we found that Sufu deletion or PM administration significantly attenuated titanium particle-induced osteoclast formation and bone loss in vivo. Our mechanistic study revealed that activation of Hh signaling suppressed RANKL-induced activation of JNK pathway and downregulated protein levels of two key osteoclastic transcriptional factors, c-Fos and its downstream target NFATc1. Conclusions: Both genetic and pharmacological activation of Hh signaling can cell-autonomously inhibit RANKL-induced osteoclast differentiation and activity in vitro and protect against titanium particle-induced osteolysis in vivo. Mechanistically, Hh signaling hinders osteoclastogenesis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Thus, Hh signaling may serve as a promising therapeutic target for the prevention and treatment of PPO and other osteolytic diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Yanjun Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Qingbai Liu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Meng Li
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Saijilafu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Zunyi Zhang
- Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Min Zhu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Bin Li
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Huilin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jianquan Chen
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| |
Collapse
|