1
|
Vasdev N, Gupta T, Bain A, Kalyane D, Polaka S, Tekade RK. Harnessing Exercise-Like Benefits of Protonation prone Liposomal Resveratrol in Differentiated Fat Cells: A Proof-of-Concept Study. AAPS PharmSciTech 2025; 26:98. [PMID: 40148733 DOI: 10.1208/s12249-025-03085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Obesity is a significant health issue resulting from a sedentary lifestyle and is linked to numerous other serious conditions, including cancer, diabetes, and cardiovascular diseases. Consequently, resveratrol (RES) is gaining attention as an emerging therapeutic agent due to its exercise-like effects. However, RES's instability and low aqueous solubility have limited its applications. This research report focuses on the loading, solubilization, and sustained delivery of RES using a dendrimer complex loaded liposomal formulation. The safety and efficacy of formulation was studied by performing various assays. The DEN-RES complex loaded liposomes were optimized using a Quality by Design (QbD) approach whereas particle size, PDI and zeta potential were found to be 159.29 ± 0.58 nm, 0.206 ± 0.008, and -7.2 ± 0.14 mV, which followed first-order release kinetics for sustained RES release. The mRNA levels of the SIRT1 and AMPK genes were found to be upregulated by more than two folds, whereas the LIPO-DEN-RES downregulated the mRNA expression of PPARγ in adipocytes. Therefore, the modulation of mRNA levels detected in 3T3-L1 cells post-treatment with the LIPO-DEN-RES validates the formulation's potential in addressing obesity.
Collapse
Affiliation(s)
- Nupur Vasdev
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Tanisha Gupta
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Anoothi Bain
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Suryanarayana Polaka
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
2
|
Shan H, Yu N, Chen M, Sun Q, Sun X, Du C, Shang W, Li Z, Wei X, Lin Q, Jiang Z, Chen Z, Zhu B, Zhao S, Chen Z, Chen X. Cavitation-on-a-Chip Enabled Size-Specific Liposomal Drugs for Selective Pharmacokinetics and Pharmacodynamics. NANO LETTERS 2024; 24:8151-8161. [PMID: 38912914 DOI: 10.1021/acs.nanolett.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The size of liposomal drugs has been demonstrated to strongly correlate with their pharmacokinetics and pharmacodynamics. While the microfluidic method successfully achieves the production of liposomes with well-controlled sizes across various buffer/lipid flow rate ratio (FRR) settings, any adjustments to the FRR inevitably influence the concentration, encapsulation efficiency (EE), and stability of liposomal drugs. Here we describe a controllable cavitation-on-a-chip (CCC) strategy that facilitates the precise regulation of liposomal drug size at any desired FRR. The CCC-enabled size-specific liposomes exhibited striking differences in uptake and biodistribution behaviors, thereby demonstrating distinct antitumor efficacy in both tumor-bearing animal and melanoma patient-derived organoid (PDO) models. Intriguingly, as the liposome size decreased to approximately 80 nm, the preferential accumulation of liposomal drugs in the liver transitioned to a predominant enrichment in the kidneys. These findings underscore the considerable potential of our CCC approach in influencing the pharmacokinetics and pharmacodynamics of liposomal nanomedicines.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Nianzhou Yu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Maike Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wansong Shang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoxi Li
- The School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Xiongwei Wei
- The School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Qibo Lin
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Ziyan Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Benpeng Zhu
- School of Integrated Circuits, Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
3
|
Huang J, Li J, Peng Y, Cui T, Guo J, Duan S, Zhou K, Huang S, Chen J, Yi Q, Qiu M, Chen T, Wu X, Ma C, Zhang Z, Zheng Y, Tang X, Pang Y, Zhang L, Zhong C, Gao Y. The lack of PPARα exacerbated the progression of non-alcoholic steatohepatitis in mice with spleen deficiency syndrome by triggering an inflammatory response. Front Immunol 2024; 15:1381340. [PMID: 38633246 PMCID: PMC11021588 DOI: 10.3389/fimmu.2024.1381340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.
Collapse
Affiliation(s)
- Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaili Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabing Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qincheng Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenlu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqing Pang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lei Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Wang X, Lu H, Luo F, Wang D, Wang A, Wang X, Feng W, Wang X, Su J, Liu M, Xia G. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer. J Control Release 2024; 365:112-131. [PMID: 37981050 DOI: 10.1016/j.jconrel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Gemcitabine (GEM) is a non-selective chemotherapeutic agent used in the treatment of pancreatic cancer. Its antitumor efficacy is limited by a short plasma half-life and severe adverse reactions. To overcome these shortcomings, four novel lipid-like GEM diesters were synthesized and encapsulated into liposomes. Through optimization, dimyristoyl GEM (dmGEM)-loaded liposomes (LipodmGEM) were successfully obtained with an almost complete encapsulation efficiency. Compared to free GEM, LipodmGEM showed enhanced cellular uptake and cell apoptosis, improved inhibition of cell migration on AsPC-1 cells and a greatly extended half-life (7.22 vs. 1.78 h). LipodmGEM succeeded in enriching the drug in the tumor (5.28 vs. 0.03 μmol/g at 8 h), overcoming a major shortcoming of GEM, showed excellent anticancer efficacy in vivo and negligible systemic toxicity, superior to GEM. Attractive as well, suspensions of LipodmGEM remained stable at 2-10 °C away from light for no <2 years. Our results suggest that LipodmGEM might become of high interest for treating pancreatic cancer while the simple strategy we reported might be explored as well for converting other antitumor drugs with high water-solubility and short plasma half-life into attractive nanomedicines.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Fang Luo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
5
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
6
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bio-Waste Products of Mangifera indica L. Reduce Adipogenesis and Exert Antioxidant Effects on 3T3-L1 Cells. Antioxidants (Basel) 2022; 11:antiox11020363. [PMID: 35204243 PMCID: PMC8869144 DOI: 10.3390/antiox11020363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Several studies highlighted the beneficial value of natural compounds in the prevention and treatment of obesity. Here, we investigated the anti-obesity effects of extracts of peel and seed of mango (Mangifera indica L.) cultivated in Sicily (Italy) in 3T3-L1 cells. Mango Peel (MPE) and Mango Seed (MSE) extracts at a 100 µg/mL concentration significantly reduced lipid accumulation and triacylglycerol contents during 3T3-L1 adipocyte differentiation without toxicity. HPLC-ESI-MS analysis showed that both the extracts contain some polyphenolic compounds that can account for the observed biological effects. The anti-adipogenic effect of MPE and MSE was the result of down-regulation of the key adipogenic transcription factor PPARγ and its downstream targets FABP4/aP2, GLUT4 and Adipsin, as well SREBP-1c, a transcription factor which promotes lipogenesis. In addition, both MPE and MSE significantly activated AMPK with the consequent inhibition of Acetyl-CoA-carboxylase (ACC) and up-regulated PPARα. The addition of compound C, a specific AMPK inhibitor, reduced the effects of MPE and MSE on AMPK and ACC phosphorylation, suggesting a role of AMPK in mediating MPE and MSE anti-lipogenic effects. Notably, MPE and MSE possess an elevated radical scavenging activity, as demonstrated by DPPH radical scavenging assay, and reduced ROS content produced during adipocyte differentiation. This last effect could be a consequence of the increase in the antioxidant factors Nrf2, MnSOD and HO-1. In conclusion, MPE and MSE possesses both anti-adipogenic and antioxidant potential, thus suggesting that the bio-waste products of mango are promising anti-obesity natural compounds.
Collapse
|
9
|
Osinski V, Srikakulapu P, Haider YM, Marshall MA, Ganta VC, Annex BH, McNamara CA. Loss of Id3 (Inhibitor of Differentiation 3) Increases the Number of IgM-Producing B-1b Cells in Ischemic Skeletal Muscle Impairing Blood Flow Recovery During Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:6-18. [PMID: 34809449 PMCID: PMC8702457 DOI: 10.1161/atvbaha.120.315501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neovascularization can maintain and even improve tissue perfusion in the setting of limb ischemia during peripheral artery disease. The molecular and cellular mechanisms mediating this process are incompletely understood. We investigate the potential role(s) for Id3 (inhibitor of differentiation 3) in regulating blood flow in a murine model of hindlimb ischemia (HLI). Approach and Results: HLI was modeled through femoral artery ligation and resection and blood flow recovery was quantified by laser Doppler perfusion imaging. Mice with global Id3 deletion had significantly impaired perfusion recovery at 14 and 21 days of HLI. Endothelial- or myeloid cell-specific deletion of Id3 revealed no effect on perfusion recovery while B-cell-specific knockout of Id3 (Id3BKO) revealed a significant attenuation of perfusion recovery. Flow cytometry revealed no differences in ischemia-induced T cells or myeloid cell numbers at 7 days of HLI, yet there was a significant increase in B-1b cells in Id3BKO. Consistent with these findings, ELISA (enzyme-linked immunoassay) demonstrated increases in skeletal muscle and plasma IgM. In vitro experiments demonstrated reduced proliferation and increased cell death when endothelial cells were treated with conditioned media from IgM-producing B-1b cells and tibialis anterior muscles in Id3BKO mice showed reduced density of total CD31+ and αSMA+CD31+ vessels. CONCLUSIONS This study is the first to demonstrate a role for B-cell-specific Id3 in maintaining blood flow recovery during HLI. Results suggest a role for Id3 in promoting blood flow during HLI and limiting IgM-expressing B-1b cell expansion. These findings present new mechanisms to investigate in peripheral artery disease pathogenesis.
Collapse
Affiliation(s)
- Victoria Osinski
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Prasad Srikakulapu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Young Min Haider
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa A. Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Vijay C. Ganta
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
| | - Brian H. Annex
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
10
|
Li J, Zhang P, Xia Y. Study on <em>CCDC69</em> interfering with the prognosis of patients with breast cancer through PPAR signal pathway. Eur J Histochem 2021; 65:3207. [PMID: 33634680 PMCID: PMC7922363 DOI: 10.4081/ejh.2021.3207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coiled-coil domain-containing protein 69 (CCDC69) is a novel gene and limited knowledge in known in breast cancer. In the present study, we aimed to explore the relationship between CCDC69 and breast cancer, demonstrate the clinicopathological significance and prognostic role of CCDC69 in breast cancer, and analyze the possible mechanism of CCDC69 affecting the prognosis of breast cancer. First, from GEO database, TIMER, GEPIA, and OncoLnc, we select CCDC69 as the potential gene which closely involved in breast cancer progression. Next, by real-time PCR detection, the expression of CCDC69 in breast cancer tissue was notably lower than that in normal breast tissues (p=0.0002). In addition, our immunohistochemistry (IHC) indicated that the positive expression rate of CCDC69 in the triple-negative breast cancer (TNBC) was lower than that in the non-TNBC (p=0.0362), and it was negatively correlated with the expression of Ki67 (p=0.001). Further enrichment analysis of CCDC69 and the similar genes performed on FunRich3.1.3 revealed that these genes were significantly associated with fat differentiation, and most of them were related to peroxisome proliferator-activated receptor (PPAR) signal pathway. Collectively, our findings suggest that CCDC69 is down regulated in breast cancer tissue especially in TNBC which has higher malignant grade and poorer clinical prognosis.
Collapse
Affiliation(s)
- Jinjiao Li
- Department of Breast, Thyroid and Burn Surgery, The People's Hospital of Wenshan Prefecture, Wenshan City, Yunnan.
| | - Panshi Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan.
| | - Yun Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan.
| |
Collapse
|
11
|
DeRidder L, Sharma A, Liaw K, Sharma R, John J, Kannan S, Kannan RM. Dendrimer-tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. NANOSCALE 2021; 13:939-952. [PMID: 33479718 DOI: 10.1039/d0nr05958g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Switching microglia from a disease exacerbating, 'pro-inflammatory' state into a neuroprotective, 'anti-inflammatory' phenotype is a promising strategy for addressing multiple neurodegenerative diseases. Pro-inflammatory microglia contribute to disease progression by releasing neurotoxic substances and accelerating pathogenic protein accumulation. PPARα and PPARγ agonists have both been shown to shift microglia from a pro-inflammatory ('M1-like') to an alternatively activated ('M2-like') phenotype. Such strategies have been explored in clinical trials for neurological diseases, such as Alzheimer's and Parkinson's disease, but have likely failed due to their poor blood-brain barrier (BBB) penetration. Hydroxyl-terminated polyamidoamine dendrimers (without the attachment of any targeting ligands) have been shown to cross the impaired BBB at the site of neuroinflammation and accumulate in activated microglia. Therefore, dendrimer conjugation of a PPARα/γ dual agonist may enable targeted phenotype switching of activated microglia. Here we present the synthesis and characterization of a novel dendrimer-PPARα/γ dual agonist conjugate (D-tesaglitazar). In vitro, D-tesaglitazar induces an 'M1 to M2' phenotype shift, decreases secretion of reactive oxygen species, increases expression of genes for phagocytosis and enzymatic degradation of pathogenic proteins (e.g. β-amyloid, α-synuclein), and increases β-amyloid phagocytosis. These results support further development of D-tesaglitazar towards translation for multiple neurodegenerative diseases, especially Alzheimer's and Parkinson's Disease.
Collapse
Affiliation(s)
- Louis DeRidder
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - John John
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2020; 222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic wound-healing process associated with the deposition of extracellular matrix produced by myofibroblasts. HSCs activation, inflammation, oxidative stress, steatosis and aging play critical roles in the progression of liver fibrosis, which is correlated with the regulation of the peroxisome proliferator-activated receptor (PPAR) pathway. As nuclear receptors, PPARs reduce inflammatory response, regulate lipid metabolism, and inhibit fibrogenesis in the liver associated with aging. Thus, PPAR ligands have been investigated as possible therapeutic agents. Mounting evidence indicated that some PPAR agonists could reverse steatohepatitis and liver fibrosis. Consequently, targeting PPARs might be a promising and novel therapeutic option against liver fibrosis. This review summarizes recent studies on the role of PPARs on the pathogenesis and treatment of liver fibrosis.
Collapse
|
13
|
Li K, Wang F, Yang ZN, Cui B, Li PP, Li ZY, Hu ZW, Zhu HH. PML-RARα interaction with TRIB3 impedes PPARγ/RXR function and triggers dyslipidemia in acute promyelocytic leukemia. Am J Cancer Res 2020; 10:10326-10340. [PMID: 32929351 PMCID: PMC7481410 DOI: 10.7150/thno.45924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Although dyslipidemia commonly occurs in patients with acute promyelocytic leukemia (APL) in response to anti-APL therapy, the underlying mechanism and the lipid statuses of patients with newly diagnosed APL remain to be addressed. Methods: We conducted a retrospective study to investigate the lipid profiles of APL patients. PML-RARα transgenic mice and APL cells-transplanted mice were used to assess the effects of APL cells on the blood/liver lipid levels. Subsequently, gene set enrichment analysis, western blot and dual luciferase reporter assay were performed to examine the role and mechanism of PML-RARα and TRIB3 in lipid metabolism regulation in APL patients at pretreatment and after induction therapy. Results: APL patients exhibited a higher prevalence of dyslipidemia before anti-APL therapy based on a retrospective study. Furthermore, APL cells caused secretion of triglycerides, cholesterol, and PCSK9 from hepatocytes and degradation of low-density lipoprotein receptors in hepatocytes, which elevated the lipid levels in APL cell-transplanted mice and Pml-Rarα transgenic mice. Mechanistically, pseudokinase TRIB3 interacted with PML-RARα to inhibit PPARγ activity by interfering with the interaction of PPARγ and RXR and promoting PPARγ degradation. Thus, reduced PPARγ activity in APL cells decreased leptin but increased resistin expression, causing lipid metabolism disorder in hepatocytes and subsequent dyslipidemia in mice. Although arsenic/ATRA therapy degraded PML-RARα and restored PPARγ expression, it exacerbated dyslipidemia in APL patients. The elevated TRIB3 expression in response to arsenic/ATRA therapy suppressed PPARγ activity by disrupting the PPARγ/RXR dimer, which resulted in dyslipidemia in APL patients undergoing therapy. Indeed, the PPAR activator not only enhanced the anti-APL effects of arsenic/ATRA by suppressing TRIB3 expression but also reduced therapy-induced dyslipidemia in APL patients. Conclusion: Our work reveals the critical role of the PML-RARα/PPARγ/TRIB3 axis in the development of dyslipidemia in APL patients, potentially conferring a rationale for combining ATRA/arsenic with the PPAR activator for APL treatment.
Collapse
|
14
|
Multi-walled carbon nanotubes exacerbate doxorubicin-induced cardiotoxicity by altering gut microbiota and pulmonary and colonic macrophage phenotype in mice. Toxicology 2020; 435:152410. [PMID: 32068018 DOI: 10.1016/j.tox.2020.152410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Epidemiologic studies show that the levels of air pollutants and particulate matter are positively associated with the morbidity and mortality of cardiovascular diseases. Here we demonstrate that the intratracheal instillation of multi-walled carbon nanotubes (MWCNTs), a standard fine particle, exacerbate doxorubicin (DOX)-induced cardiotoxicity in mice through altering gut microbiota and pulmonary and colonic macrophage phenotype. MWCNTs (25 μg/kg per day, 5 days a week for 3 weeks) promoted cardiotoxicity and apoptosis in the DOX (2 mg/kg, twice a week for 5 weeks)-treated C57BL/6 mice. MWCNTs exaggerated DOX-induced gut microbiota dysbiosis characterized by the increased abundances of Helicobacteraceae and Coriobacteriaceae. In addition, MWCNTs promoted DOX-induced M1-like polarization of colonic macrophages with an increase in TNF-α, IL-1β and CC chemokine ligand 2 in peripheral blood. Importantly, treatment with the antibiotics attenuated MWCNTs plus DOX-induced apoptosis of cardiomyocytes and M1-like polarization of colonic macrophages. The fecal microbiota transplantation demonstrated that MWCNTs exaggerated DOX-induced cardiotoxicity with M1-like polarization of colonic macrophages. The conditioned medium from MWCNTs-treated pulmonary macrophages promoted DOX-induced gut microbiota dysbiosis and colonic macrophage polarization. Furthermore, the co-culture of macrophages and fecal bacteria promoted M1-like macrophage polarization and their production of TNF-α and IL-1β, and thereby exacerbated the effects of MWCNTs. Moreover, IL-1β and TNF-α blockade, either alone or in combination attenuated MWCNTs-exacerbated cardiotoxicity. In summary, MWCNTs exacerbate DOX-induced cardiotoxicity in mice through gut microbiota and pulmonary and colonic macrophage interaction. Our findings identify a novel mechanism of action of inhaled particle-driven cardiotoxicity.
Collapse
|
15
|
Liu W, Zhang Y, Chen Q, Liu S, Xu W, Shang W, Wang L, Yu J. Melatonin Alleviates Glucose and Lipid Metabolism Disorders in Guinea Pigs Caused by Different Artificial Light Rhythms. J Diabetes Res 2020; 2020:4927403. [PMID: 33150187 PMCID: PMC7603608 DOI: 10.1155/2020/4927403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle-associated factors, such as high-calorie intake, high-fat diet (HFD), and excessive artificial light, are risk factors for glucose and lipid metabolism disturbances. Melatonin may be beneficial for managing obesity and diabetes; however, the underlying molecular mechanisms are not well elucidated. We aimed to assess whether melatonin has beneficial effects on constant artificial light-induced fat deposition, lipid metabolism, and insulin resistance. Guinea pigs were randomly divided into five experimental groups: control (C), HFD (H), 12 h light (12HL), 24 h light (24HL), and melatonin (M). The majority of indexes, including insulin resistance and obesity, were measured after 10 weeks. AMP-activated protein kinase α (AMPKα)/peroxisome proliferator-activated receptor-α (PPARα) pathway expression was analyzed by quantitative reverse transcription PCR and western blotting. Although insulin resistance and obesity indexes were higher in the 24HL group than in the 12HL group, they were significantly lower in the M group than in the 24HL group. Melatonin treatment markedly upregulated AMPKα, phosphorylated AMPKα (p-AMPKα), PPARα, and carnitine palmitoyl-CoA transferase 1 A (CPT1A) gene and protein expression. Melatonin may alleviate insulin resistance and obesity caused by persistent artificial light exposure in guinea pigs, likely via activation of the AMPKα/PPARα signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunchao Zhang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Su Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Weilong Xu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenbin Shang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lijuan Wang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiangyi Yu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|