1
|
Fakhari N, Aguet J, Howell A, Nguyen M, Mertens L, Crawford L, Venet M, Haller C, Barron D, Sled JG, Baranger J, Villemain O. Towards quantitative assessment of cerebrovascular autoregulation in human neonates using ultrafast ultrasound imaging. Sci Rep 2025; 15:12374. [PMID: 40211007 PMCID: PMC11985991 DOI: 10.1038/s41598-025-97292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Newborns with congenital heart diseases requiring cardiopulmonary bypass (CPB) are at risk of neurodevelopmental impairment. The impact of deep hypothermia cardiopulmonary bypass (DH-CPB) on cerebrovascular autoregulation (CAR) that controls brain perfusion in the presence of blood pressure variation is not well understood. Recently, ultrafast power Doppler (UPD) showed potential to study CAR in neonates based on cerebral blood volume (CBV). However, since CAR relies mainly on arterial vasoconstriction/vasodilation, monitoring of brain perfusion variation based on CBV requires the discrimination of arterial from venous CBV. This study aims to use UPD combined with an algorithm for the discrimination of arteries and veins to monitor CAR during DH-CPB in neonates. Transfontanellar ultrafast power Doppler was performed in two groups of newborns: those undergoing deep hypothermic cardiopulmonary bypass with circulatory arrest (18-20 °C, n = 6, "DH group") and those undergoing full-flow CPB at mild hypothermia (32-34 °C, n = 6, "non-DH group"). Blood flow directionality was used to differentiate arterial compartments of CBV from venous CBV in specific brain regions where arterial and venous flows exhibit opposite directions. To study CAR, a linear mixed effect model was used to find the association between arterial CBV and mean arterial blood pressure (MAP). In the "non-DH group", we found a negative association between arterial CBV and MAP, indicating that an increase in MAP is associated with a decrease in arterial CBV (slope = -0.020 [Formula: see text], p = 0.047). Conversely, in the "DH group" no significant association was found such that arterial CBV remained stable as MAP increased (p = 0.314). We interpret the reduction in arterial CBV with increasing MAP in the "non-DH group" as an active arterial vasoconstriction triggered by CAR, whereas the lack of variation of arterial CBV in the DH group suggests impaired CAR response. Our findings highlight the potential of ultrafast ultrasound imaging for intra-operative CAR monitoring, paving the way for a better understanding of the impact of different types of CPB on cerebral perfusion.
Collapse
Affiliation(s)
- Nikan Fakhari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, The Hospital for Sick Children research institute, Toronto, ON, Canada
| | - Julien Aguet
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alison Howell
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Minh Nguyen
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Luc Mertens
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Crawford
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maelys Venet
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France
| | - Christoph Haller
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - David Barron
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jérôme Baranger
- Department of Translational Medicine, The Hospital for Sick Children research institute, Toronto, ON, Canada
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
| | - Olivier Villemain
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.
| |
Collapse
|
2
|
Lin BZ, Fan AC, Wang Y, Lowerison MR, Dong Z, You Q, Sekaran NVC, Llano D, Borden M, Song P. Combined Nanodrops Imaging and Ultrasound Localization Microscopy for Detecting Intracerebral Hemorrhage. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:707-714. [PMID: 39837748 DOI: 10.1016/j.ultrasmedbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Advanced imaging methods are crucial for understanding stroke mechanisms and discovering effective treatments to reduce bleeding and enhance recovery. In pre-clinical in vivo stroke imaging, MRI, CT and optical imaging are commonly used to evaluate stroke outcomes in rodent models. However, MRI and CT have limited spatial resolution for rodent brains, and optical imaging is hindered by limited imaging depth of penetration. Here we introduce a novel contrast-enhanced ultrasound imaging method to overcome these challenges and characterize intracerebral hemorrhage with unique insights. METHODS We combined microbubble-based ultrasound localization microscopy (ULM) and nanodrop (ND)-based vessel leakage imaging to achieve simultaneous microvascular imaging and hemorrhage detection. ULM maps brain-wide cerebral vasculature with high spatial resolution and identifies microvascular impairments around hemorrhagic areas. NDs are sub-micron liquid-core particles that can extravasate due to blood-brain barrier breakdown, serving as positive contrast agents to detect hemorrhage sites. RESULTS Our findings demonstrate that NDs could effectively accumulate in the hemorrhagic site and reveal the location of the bleeding areas upon activation by focused ultrasound beams. ULM further reveals the microvascular damage manifested in the form of reduced vascularity and decreased blood flow velocity across areas affected by the hemorrhagic stroke. CONCLUSION The results demonstrate that sequential ULM combined with ND imaging is a useful imaging tool for basic in vivo research in stroke with rodent models where brain-wide detection of active bleeding and microvascular impairment are essential.
Collapse
Affiliation(s)
- Bing-Ze Lin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yike Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qi You
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Hu X, Zhang G, Wang Y, Zhang X, Xie R, Liu X, Ding H. Microvascular heterogeneity exploration in core and invasive zones of orthotopic rat glioblastoma via ultrasound localization microscopy. Eur Radiol Exp 2025; 9:30. [PMID: 40045008 PMCID: PMC11882483 DOI: 10.1186/s41747-025-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND We studied the microvascular structure and function of in situ glioblastoma using ultrasound localization microscopy (ULM). METHODS The in vivo study was conducted via craniotomy in six Sprague-Dawley rats. Capillary pattern, capillary hemodynamics, and functional quantitative parameters were compared among tumor core, invasive zone, and normal brain tissue with ex vivo micro-computed tomography (micro-CT) and scanning electron microscopy. Correlations between quantitative parameters and histopathological vascular density (VD-H), proliferation index, and histopathological vascular maturity index (VMI-H) were evaluated. Kruskal-Wallis H, ANOVA, Mann-Whitney U, Pearson, and Spearman correlation statistics were used. RESULTS Compared to the tumor core, the invasive zone exhibited higher microvascularity structural disorder and complexity, increased hemodynamic heterogeneity, higher local blood flow perfusion (p ≤ 0.033), and slightly lower average flow velocity (p = 0.873). Significant differences were observed between the invasive zone and normal brain tissue across all parameters (p ≤ 0.001). ULM demonstrated higher microstructural resolution compared to micro-CT and a nonsignificant difference compared to scanning electron microscopy. The invasive zone vascular density correlated with VD-H (r = 0.781, p < 0.001). Vessel diameter (r = 0.960, p < 0.001), curvature (r = 0.438, p = 0.047), blood flow velocity (r = 0.487, p = 0.025), and blood flow volume (r = 0.858, p < 0.001) correlated with proliferation index. Vascular density (r = -0.444, p = 0.044) and fractal dimension (r = -0.933, p < 0.001) correlated with VMI-H. CONCLUSION ULM provided high-resolution, noninvasive imaging of glioblastoma microvascularity, offering insights into structural/functional abnormalities. RELEVANCE STATEMENT ULM technology based on ultrafast ultrasound can accurately quantify the microvessels of glioblastoma, providing a new method for evaluating the effectiveness of antiangiogenic therapy and visualizing disease progression. This method may facilitate early therapeutic assessment. KEY POINTS ULM reliably captures the vascular structures and hemodynamic features of glioblastoma in rats. Micro-CT and scanning electron microscopy validated its effectiveness in microvascular non-invasion characterization. ULM is expected to effectively evaluate glioblastoma anti-vascular therapy response.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Gaobo Zhang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, E Fudan Univertity, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China.
| |
Collapse
|
4
|
Sharina I, Awad R, Cobb S, Martin E, Marrelli SP, Reddy AK. Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. CELL REPORTS METHODS 2025; 5:100983. [PMID: 39954674 PMCID: PMC11955264 DOI: 10.1016/j.crmeth.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Non-invasive and high-temporal resolution methods for characterizing blood flow in mouse cranial arteries, such as the ophthalmic artery (OphA), are lacking. We present an application of pulsed Doppler ultrasound to provide real-time, non-invasive measurement of blood flow velocity in the OphA through an identified soft tissue window in the mouse head. We confirmed the identity of the artery and mapped its origin from the internal carotid artery by a combination of microcomputed tomography (microCT) vascular imaging and transient occlusion of the internal carotid artery. Application of our approach demonstrated sex differences in the OphA vasodilative response to agonists. We also evaluated real-time flow characteristics in the OphA in response to transient carotid artery ligation. The method will provide a simple and low-cost approach for screening drugs targeting ophthalmic blood flow and can be used as a more accessible surrogate of cerebral blood flow in both acute and longitudinal imaging studies.
Collapse
Affiliation(s)
- Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA.
| | - Radwa Awad
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Soren Cobb
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77054, USA
| | - Sean P Marrelli
- Department of Neurology, The University of Texas-McGovern Medical School, Houston, TX 77030, USA
| | - Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Indus Instruments, Webster, TX 77598, USA
| |
Collapse
|
5
|
Coudert A, Chavignon A, Denis L, Couture O. Volumetric Ultrasound Localization Microscopy With Diverging Cylindrical Waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1657-1665. [PMID: 38466586 DOI: 10.1109/tuffc.2024.3375896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Transcranial ultrasound plays a limited role in neuroradiology due to its lack of resolution, planar imaging, and user dependency. By breaching the diffraction limit using injected microbubbles, volumetric ultrasound localization microscopy (ULM) could help alleviate those issues. However, performing 3-D ultrasound imaging at a high frame rate with sufficient signal-to-noise ratio (SNR) to track individual microbubbles through the skull remains a challenge, especially with a portable scanner. In this study, we describe a ULM sequence suitable for volumetric transcranial imaging exploiting cylindrical emissions on multiplexed matrix probes, through simulations, hydrophone measurements, and flow phantoms. This geometry leads to a doubling of the peak acoustic pressure, up to 400 kPa, with respect to spherical emission and improved volume rate, up to 180 Hz. Cylindrical emissions also improve the ULM saturation rate by 60% through a skull phantom. The assessment of microbubble velocity was also improved from a 33% error in the average flow measured with spherical waves to a 5% error with cylindrical waves. Conversely, we demonstrate the detrimental impacts of cylindrical waves toward the field of view and isotropic sensitivity. Nevertheless, due to its enhanced SNR and 3-D nature, such a cylindrical volumetric sequence could be beneficial for ULM as a diagnostic tool in humans, especially when portability is a necessity.
Collapse
|
6
|
Wang D, Wang Q, Su Q, Wang S, Jian Z, Li J, Ye F, Hou Y, Wan M. Multi-Parametric Retinal Microvascular Functional Perfusion Imaging Based on Dynamic Fundus Fluorescence Angiography. IEEE Trans Biomed Eng 2024; 71:3123-3133. [PMID: 38829760 DOI: 10.1109/tbme.2024.3408636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Retinal microvascular disease has caused serious visual impairment widely in the world, which can be hopefully prevented via early and precision microvascular hemodynamic diagnosis. Due to artifacts from choroidal microvessels and tiny movements, current fundus microvascular imaging techniques including fundus fluorescein angiography (FFA) precisely identify retinal microvascular microstructural damage and abnormal hemodynamic changes difficulty, especially in the early stage. Therefore, this study proposes an FFA-based multi-parametric retinal microvascular functional perfusion imaging (RM-FPI) scheme to assess the microstructural damage and quantify its hemodynamic distribution precisely. Herein, a spatiotemporal filter based on singular value decomposition combined with a lognormal fitting model was used to remove the above artifacts. Dynamic FFAs of patients (n = 7) were collected first. The retinal time fluorescence intensity curves were extracted and the corresponding perfusion parameters were estimated after decomposition filtering and model fitting. Compared with in vivo results without filtering and fitting, the signal-to-clutter ratio of retinal perfusion curves, average contrast, and resolution of RM-FPI were up to 7.32 ± 0.43 dB, 14.34 ± 0.24 dB, and 11.0 ± 2.0 µm, respectively. RM-FPI imaged retinal microvascular distribution and quantified its spatial hemodynamic changes, which further characterized the parabolic distribution of local blood flow within diameters ranging from 9 to 400 µm. Finally, RM-FPI was used to quantify, visualize, and diagnose the retinal hemodynamics of retinal vein occlusion from mild to severe. Therefore, this study provided a scheme for early and precision diagnosis of retinal microvascular disease, which might be beneficial in preventing its development.
Collapse
|
7
|
Furon J, Lebrun F, Yétim M, Levard D, Marie P, Orset C, Martinez de Lizarrondo S, Vivien D, Ali C. Parabiosis Discriminates the Circulating, Endothelial, and Parenchymal Contributions of Endogenous Tissue-Type Plasminogen Activator to Stroke. Stroke 2024; 55:747-756. [PMID: 38288607 DOI: 10.1161/strokeaha.123.045048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Intravenous injection of alteplase, a recombinant tPA (tissue-type plasminogen activator) as a thrombolytic agent has revolutionized ischemic stroke management. However, tPA is a more complex enzyme than expected, being for instance able to promote thrombolysis, but at the same time, also able to influence neuronal survival and to affect the integrity of the blood-brain barrier. Accordingly, the respective impact of endogenous tPA expressed/present in the brain parenchyma versus in the circulation during stroke remains debated. METHODS To address this issue, we used mice with constitutive deletion of tPA (tPANull [tPA-deficient mice]) or conditional deletion of endothelial tPA (VECad [vascular endothelial-Cadherin-Cre-recombinase]-Cre∆tPA). We also developed parabioses between tPANull and wild-type mice (tPAWT), anticipating that a tPAWT donor would restore levels of tPA to normal ones, in the circulation but not in the brain parenchyma of a tPANull recipient. Stroke outcomes were investigated by magnetic resonance imaging in a thrombo-embolic or a thrombotic stroke model, induced by local thrombin injection or FeCl3 application on the endothelium, respectively. RESULTS First, our data show that endothelial tPA, released into the circulation after stroke onset, plays an overall beneficial role following thrombo-embolic stroke. Accordingly, after 24 hours, tPANull/tPANull parabionts displayed less spontaneous recanalization and reperfusion and larger infarcts compared with tPAWT/tPAWT littermates. However, when associated to tPAWT littermates, tPANull mice had similar perfusion deficits, but less severe brain infarcts. In the thrombotic stroke model, homo- and hetero-typic parabionts did not differ in the extent of brain damages and did not differentially recanalize and reperfuse. CONCLUSIONS Together, our data reveal that during thromboembolic stroke, endogenous circulating tPA from endothelial cells sustains a spontaneous recanalization and reperfusion of the tissue, thus, limiting the extension of ischemic lesions. In this context, the impact of endogenous parenchymal tPA is limited.
Collapse
Affiliation(s)
- Jonathane Furon
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Mervé Yétim
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Damien Levard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
- Department of Clinical Research, Caen-Normandie University Hospital, Centre Hospitalier Universitaire (CHU), France (D.V.)
| | - Pauline Marie
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Cyrille Orset
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| | - Carine Ali
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Groupement d'Intérêt Public (GIP) Cyceron, Institut Blood and Brain @ Caen-Normandie, Caen, France (J.F., F.L., M.Y., D.L., P.M., C.O., S.M.d.L., D.V., C.A.)
| |
Collapse
|
8
|
Franx BAA, Lebrun F, Chin Joe Kie L, Deffieux T, Vivien D, Bonnard T, Dijkhuizen RM. Dynamics of cerebral blood volume during and after middle cerebral artery occlusion in rats - Comparison between ultrafast ultrasound and dynamic susceptibility contrast-enhanced MRI measurements. J Cereb Blood Flow Metab 2024; 44:333-344. [PMID: 38126356 PMCID: PMC10870967 DOI: 10.1177/0271678x231220698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI). To that end, we assessed hemodynamics based on uUS (n = 6) or DSC-MRI (n = 7) before, during and up to three hours after 90-minute filament-induced middle cerebral artery occlusion (MCAO) in rats. Recanalization was followed by a brief hyperperfusion response, after which CBV and CBFv temporarily normalized but progressively declined after one hour in the lesion territory. DSC-MRI data corroborated the incomplete restoration of CBV after recanalization, which may have been caused by the free-breathing anesthetic regimen. During occlusion, MCAO-induced hypoperfusion was more discrepant between either technique, likely attributable to artefactual signal mechanisms related to slow flow, and processing algorithms employed for either technique. In vivo uUS- and DSC-MRI-derived measures of CBV enable serial whole-brain assessment of post-stroke hemodynamics, but readouts from both techniques need to be interpreted cautiously in situations of very low blood flow.
Collapse
Affiliation(s)
- Bart AA Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- ETAP-Lab, STROK@LLIANCE, 13 Rue du bois de la champelle, 54500, Vandoeuvre-les-Nancy, France
| | - Lois Chin Joe Kie
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Thomas Deffieux
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- CHU Caen, Department of Clinical Research, CHU Caen, Côte de Nacre, France
| | - Thomas Bonnard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Bourquin C, Porée J, Rauby B, Perrot V, Ghigo N, Belgharbi H, Bélanger S, Ramos-Palacios G, Cortes N, Ladret H, Ikan L, Casanova C, Lesage F, Provost J. Quantitative pulsatility measurements using 3D dynamic ultrasound localization microscopy. Phys Med Biol 2024; 69:045017. [PMID: 38181421 DOI: 10.1088/1361-6560/ad1b68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
A rise in blood flow velocity variations (i.e. pulsatility) in the brain, caused by the stiffening of upstream arteries, is associated with cognitive impairment and neurodegenerative diseases. The study of this phenomenon requires brain-wide pulsatility measurements, with large penetration depth and high spatiotemporal resolution. The development of dynamic ultrasound localization microscopy (DULM), based on ULM, has enabled pulsatility measurements in the rodent brain in 2D. However, 2D imaging accesses only one slice of the brain and measures only 2D-projected and hence biased velocities . Herein, we present 3D DULM: using a single ultrasound scanner at high frame rate (1000-2000 Hz), this method can produce dynamic maps of microbubbles flowing in the bloodstream and extract quantitative pulsatility measurements in the cat brain with craniotomy and in the mouse brain through the skull, showing a wide range of flow hemodynamics in both large and small vessels. We highlighted a decrease in pulsatility along the vascular tree in the cat brain, which could be mapped with ultrasound down to a few tens of micrometers for the first time. We also performed an intra-animal validation of the method by showing consistent measurements between the two sides of the Willis circle in the mouse brain. Our study provides the first step towards a new biomarker that would allow the detection of dynamic abnormalities in microvessels in the brain, which could be linked to early signs of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Bourquin
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Jonathan Porée
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Brice Rauby
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Vincent Perrot
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Nin Ghigo
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Hatim Belgharbi
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | | | | | - Nelson Cortes
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Hugo Ladret
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, F-13005, France
| | - Lamyae Ikan
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Christian Casanova
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Frédéric Lesage
- Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| |
Collapse
|
10
|
Nowak TS, Farr TD. Commentary to Brain-wide continuous functional ultrasound imaging for real-time monitoring of hemodynamics during ischemic stroke. J Cereb Blood Flow Metab 2024; 44:3-5. [PMID: 37871620 PMCID: PMC10905633 DOI: 10.1177/0271678x231207182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Functional ultrasound (FUS) has emerged as a novel imaging method to reliably assess relative cerebral blood volume (rCBV) and infer perfusion, with good spatiotemporal resolution. Brunner and colleagues provide what appears to be its first application to characterize peri-infarct spreading depolarizations (SDs) in experimental stroke through recording of transient hyperemic events. They also report incomplete overlap between acute perfusion deficits and subsequent infarct distribution, specifically noting a rostral expansion to involve penumbral territory from which propagating depolarizations had preferentially originated. This observation would not be straightforward using other methodologies. Other strengths and limitations of the study are considered.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology, The University of Tennessee Health Science Center, Tennessee, USA
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Brunner C, Denis NL, Gertz K, Grillet M, Montaldo G, Endres M, Urban A. Brain-wide continuous functional ultrasound imaging for real-time monitoring of hemodynamics during ischemic stroke. J Cereb Blood Flow Metab 2024; 44:6-18. [PMID: 37503862 PMCID: PMC10905631 DOI: 10.1177/0271678x231191600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Ischemic stroke occurs abruptly causing sudden neurologic deficits, and therefore, very little is known about hemodynamic perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were analyzed brain-wide and continuously at high spatiotemporal resolution (100 μm, 2 Hz) until 70mins after stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries (CCAo + MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the ischemic core. The severity and location of the ischemia were variable within groups. On average, the severity of the ischemia was in good agreement with the lesion volume (24 hrs after stroke) for MCAo group, while larger for the CCAo + MCAo model. For both groups, we observed that infarcts extended to initially non-ischemic regions located rostrally to the ischemic core. These regions strongly colocalize with the origin of transient hemodynamic events associated with spreading depolarizations.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nielsen Lagumersindez Denis
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karen Gertz
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Micheline Grillet
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Brunner C, Montaldo G, Urban A. Functional ultrasound imaging of stroke in awake rats. eLife 2023; 12:RP88919. [PMID: 37988288 PMCID: PMC10662948 DOI: 10.7554/elife.88919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Gabriel Montaldo
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Alan Urban
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| |
Collapse
|
13
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
14
|
Menozzi L, Del Águila Á, Vu T, Ma C, Yang W, Yao J. Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT) for NonInvasive Whole-Brain Imaging of Ischemic Stroke. J Vis Exp 2023:10.3791/65319. [PMID: 37335115 PMCID: PMC10411115 DOI: 10.3791/65319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Presented here is an experimental ischemic stroke study using our newly developed noninvasive imaging system that integrates three acoustic-based imaging technologies: photoacoustic, ultrasound, and angiographic tomography (PAUSAT). Combining these three modalities helps acquire multi-spectral photoacoustic tomography (PAT) of the brain blood oxygenation, high-frequency ultrasound imaging of the brain tissue, and acoustic angiography of the cerebral blood perfusion. The multi-modal imaging platform allows the study of cerebral perfusion and oxygenation changes in the whole mouse brain after stroke. Two commonly used ischemic stroke models were evaluated: the permanent middle cerebral artery occlusion (pMCAO) model and the photothrombotic (PT) model. PAUSAT was used to image the same mouse brains before and after a stroke and quantitatively analyze both stroke models. This imaging system was able to clearly show the brain vascular changes after ischemic stroke, including significantly reduced blood perfusion and oxygenation in the stroke infarct region (ipsilateral) compared to the uninjured tissue (contralateral). The results were confirmed by both laser speckle contrast imaging and triphenyltetrazolium chloride (TTC) staining. Furthermore, stroke infarct volume in both stroke models was measured and validated by TTC staining as the ground truth. Through this study, we have demonstrated that PAUSAT can be a powerful tool in noninvasive and longitudinal preclinical studies of ischemic stroke.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University
| | - Ángela Del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine
| | - Tri Vu
- Department of Biomedical Engineering, Duke University
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine;
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University;
| |
Collapse
|
15
|
Choudhary M, Chaudhari S, Gupta T, Kalyane D, Sirsat B, Kathar U, Sengupta P, Tekade RK. Stimuli-Responsive Nanotherapeutics for Treatment and Diagnosis of Stroke. Pharmaceutics 2023; 15:1036. [PMID: 37111522 PMCID: PMC10141724 DOI: 10.3390/pharmaceutics15041036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Stroke is the second most common medical emergency and constitutes a significant cause of global morbidity. The conventional stroke treatment strategies, including thrombolysis, antiplatelet therapy, endovascular thrombectomy, neuroprotection, neurogenesis, reducing neuroinflammation, oxidative stress, excitotoxicity, hemostatic treatment, do not provide efficient relief to the patients due to lack of appropriate delivery systems, large doses, systemic toxicity. In this context, guiding the nanoparticles toward the ischemic tissues by making them stimuli-responsive can be a turning point in managing stroke. Hence, in this review, we first outline the basics of stroke, including its pathophysiology, factors affecting its development, current treatment therapies, and their limitations. Further, we have discussed stimuli-responsive nanotherapeutics used for diagnosing and treating stroke with challenges ahead for the safe use of nanotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rakesh K. Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
16
|
Shen G, Sanchez K, Hu S, Zhao Z, Zhang L, Ma Q. 3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice. PLoS One 2023; 18:e0285434. [PMID: 37159455 PMCID: PMC10168578 DOI: 10.1371/journal.pone.0285434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Cerebral blood flow (CBF) acutely reduces in neonatal hypoxic-ischemic encephalopathy (HIE). Clinic studies have reported that severe CBF impairment can predict HIE outcomes in neonates. Herein, the present study uses a non-invasive 3D ultrasound imaging approach to evaluate the changes of CBF after HI insult, and explores the correlation between CBF alterations and HI-induced brain infarct in mouse pups. The neonatal HI brain injury was induced in postnatal day 7 mouse pups using the Rice-Vannucci model. Non-invasive 3D ultrasound imaging was conducted to image CBF changes with multiple frequencies on mouse pups before common carotid artery (CCA) ligation, immediately after ligation, and 0 or 24 hours after HI. Vascularity ratio of the ipsilateral hemisphere was acutely reduced after unilateral ligation of the CCA alone or in combination with hypoxia, and partially restored at 24 hours after HI. Moreover, regression analysis showed that the vascularity ratio of ipsilateral hemisphere was moderately correlated with brain infarct size 24 hours after HI, indicating that CBF reduction contributes to of HI brain injury. To further verify the association between CBF and HI-induced brain injury, a neuropeptide C-type natriuretic peptide (CNP) or PBS was intranasally administrated to the brain of mouse pups one hour after HI insult. Brain infarction, CBF imaging and long-term neurobehavioral tests were conducted. The result showed that intranasal administration of CNP preserved ipsilateral CBF, reduced the infarct size, and improved neurological function after HI brain injury. Our findings suggest that CBF alteration is an indicator for neonatal HI brain injury, and 3D ultrasound imaging is a useful non-invasive approach for assessment of HI brain injury in mouse model.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA, United States of America
| | - Kayla Sanchez
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Zhen Zhao
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| |
Collapse
|
17
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
18
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
19
|
Abstract
Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.
Collapse
Affiliation(s)
- Gabriel Montaldo
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium;
| | - Alan Urban
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium; .,Department of Neuroscience, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Current address: Max Planck Institute for Biological Intelligence, In Foundation, Martinsried, Germany;
| |
Collapse
|
20
|
Huang L, Zhang J, Wei X, Jing L, He Q, Xie X, Wang G, Luo J. Improved Ultrafast Power Doppler Imaging by Using Spatiotemporal Non-Local Means Filtering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1610-1624. [PMID: 35271440 DOI: 10.1109/tuffc.2022.3158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The change of microvasculature is associated with the occurrence and development of many diseases. Ultrafast power Doppler imaging (uPDI) is an emerging technology for the visualization of microvessels due to the development of ultrafast plane wave (PW) imaging and advanced clutter filters. However, the low signal-to-noise ratio (SNR) caused by unfocused transmit of PW imaging deteriorates the subsequent imaging of microvasculature. Nonlocal means (NLM) filtering has been demonstrated to be effective in the denoising of both natural and medical images, including ultrasound power Doppler images. However, the feasibility and performance of applying an NLM filter on the ultrasound radio frequency (RF) data have not been investigated so far. In this study, we propose to apply an NLM filter on the spatiotemporal domain of clutter filtered blood flow RF data (St-NLM) to improve the quality of uPDI. Experiments were conducted to compare the proposed method with three different methods (under various similarity window sizes), including conventional uPDI without NLM filtering (Non-NLM), NLM filtering on the obtained power Doppler images (PD-NLM), and NLM filtering on the spatial domain of clutter filtered blood flow RF data (S-NLM). Phantom experiments, in vivo contrast-enhanced human spinal cord tumor experiments, and in vivo contrast-free human liver experiments were performed to demonstrate the superiority of the proposed St-NLM method over the other three methods. Qualitative and quantitative results show that the proposed St-NLM method can effectively suppress the background noise, improve the contrast between vessels and background, and preserve the details of small vessels at the same time. In the human liver study, the proposed St-NLM method achieves 31.05-, 24.49-, and 11.15-dB higher contrast-to-noise ratios (CNRs) and 36.86-, 36.86-, and 15.22-dB lower noise powers than Non-NLM, PD-NLM, and S-NLM, respectively. In the human spinal cord tumor, the full-width at half-maximums (FWHMs) of vessel cross Section are 76, 201, and [Formula: see text] for St-NLM, Non-NLM, and S-NLM, respectively. The proposed St-NLM method can enhance the microvascular visualization in uPDI and has the potential for the diagnosis of many microvessel-change-related diseases.
Collapse
|
21
|
Andersen SB, Taghavi I, Søgaard SB, Hoyos CAV, Nielsen MB, Jensen JA, Sørensen CM. Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics (Basel) 2022; 12:1111. [PMID: 35626267 PMCID: PMC9140053 DOI: 10.3390/diagnostics12051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Super-resolution ultrasound imaging, based on the localization and tracking of single intravascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla, and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick probe. The super-resolution images were manually segmented, separating cortex, outer medulla, and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule tracks using the arterial blood flow direction. The mean microbubble velocities from each scan were compared. This showed a significant prazosin-induced velocity decrease only in the cortical arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclusively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|
22
|
Brunner C, Macé E, Montaldo G, Urban A. Quantitative Hemodynamic Measurements in Cortical Vessels Using Functional Ultrasound Imaging. Front Neurosci 2022; 16:831650. [PMID: 35495056 PMCID: PMC9039668 DOI: 10.3389/fnins.2022.831650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 01/17/2023] Open
Abstract
Red blood cell velocity (RBCv), cerebral blood flow (CBF), and volume (CBV) are three key parameters when describing brain hemodynamics. Functional ultrasound imaging is a Doppler-based method allowing for real-time measurement of relative CBV at high spatiotemporal resolution (100 × 110 × 300 μm3, up to 10 Hz) and large scale. Nevertheless, the measure of RBCv and CBF in small cortical vessels with functional ultrasound imaging remains challenging because of their orientation and size, which impairs the ability to perform precise measurements. We designed a directional flow filter to overpass these limitations allowing us to measure RBCv in single vessels using a standard functional ultrasound imaging system without contrast agents (e.g., microbubbles). This method allows to quickly extract the number of vessels in the cortex that was estimated to be approximately 650/cm3 in adult rats, with a 55-45% ratio for penetrating arterioles versus ascending venules. Then, we analyzed the changes in RBCv in these vessels during forepaw stimulation. We observed that ∼40 vessels located in the primary somatosensory forelimb cortex display a significant increase of the RBCv (median ΔRBCv ∼15%, maximal ΔRBCv ∼60%). As expected, we show that RBCv was higher for penetrating arterioles located in the center than in the periphery of the activated area. The proposed approach extends the capabilities of functional ultrasound imaging, which may contribute to a better understanding of the neurovascular coupling at the brain-wide scale.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke: A Review. Biomedicines 2021; 9:biomedicines9111609. [PMID: 34829837 PMCID: PMC8615437 DOI: 10.3390/biomedicines9111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research. This review covers the current status of ultrasound applied to monitoring and treatment in experimental animal models of stroke and examines the safety, limitations, and future perspectives.
Collapse
|
24
|
Gilbert A, Elorza-Vidal X, Rancillac A, Chagnot A, Yetim M, Hingot V, Deffieux T, Boulay AC, Alvear-Perez R, Cisternino S, Martin S, Taïb S, Gelot A, Mignon V, Favier M, Brunet I, Declèves X, Tanter M, Estevez R, Vivien D, Saubaméa B, Cohen-Salmon M. Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. eLife 2021; 10:71379. [PMID: 34723793 PMCID: PMC8598235 DOI: 10.7554/elife.71379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Absence of the astrocyte-specific membrane protein MLC1 is responsible for megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare type of leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation that lead to ataxia, spasticity, and cognitive decline. During postnatal development (from P5 to P15 in the mouse), MLC1 forms a membrane complex with GlialCAM (another astrocytic transmembrane protein) at the junctions between perivascular astrocytic processes. Perivascular astrocytic processes along with blood vessels form the gliovascular unit. It was not previously known how MLC1 influences the physiology of the gliovascular unit. Here, using the Mlc1 knock-out mouse model of MLC, we demonstrated that MLC1 controls the postnatal development and organization of perivascular astrocytic processes, vascular smooth muscle cell contractility, neurovascular coupling, and intraparenchymal interstitial fluid clearance. Our data suggest that MLC is a developmental disorder of the gliovascular unit, and perivascular astrocytic processes and vascular smooth muscle cell maturation defects are primary events in the pathogenesis of MLC and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France.,École doctorale Cerveau Cognition Comportement "ED3C" N°158, Pierre and Marie Curie University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Vincent Hingot
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | | | - Sabrina Martin
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Sonia Taïb
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Aontoinette Gelot
- Service d'anatomie et cytologie pathologie de l'hôpital Armand Trousseau, Paris, France
| | - Virginie Mignon
- Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | | | - Isabelle Brunet
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Xavier Declèves
- Université de Paris, Faculté de Santé, Paris, France.,Biologie du médicament et toxicologie, Assistance Publique - hôpitaux de Paris, APHP, Hôpital Cochin, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Bruno Saubaméa
- Université de Paris, Faculté de Santé, Paris, France.,Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| |
Collapse
|
25
|
Zhang M, Wang Z, Wang C, Wu Y, Li Z, Liu Z. Visualizing Oxidative Stress Level for Timely Assessment of Ischemic Stroke via a Ratiometric Near-Infrared-II Luminescent Nanoprobe. ACS NANO 2021; 15:11940-11952. [PMID: 34165280 DOI: 10.1021/acsnano.1c03117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ischemic stroke (IS) characterized with high morbidity and mortality rates is considered as one of the most dangerous brain diseases. The timely assessment of IS is crucial for making a clinical decision due to the severity of IS featured with time-dependence. Herein, we develop a highly reactive oxygen species (HROS)-responsive ratiometric near-infrared-II (NIR-II) nanoprobe based on a dye-sensitized system between IR-783 dye and lanthanide-doped nanoparticles. Once intravenously injected into the mice, the probe is rapidly accumulated at a lesion site by recognizing the activated endothelial cell or impaired blood-brain barrier (BBB) in the ischemic area and further responds to HROS, thereby allowing in vivo imaging of the oxidative stress level. The probe is not only able to discriminate the salvageable ischemic tissue from infarcted stroke core by visualizing the enriched degree of the probe at the lesion site but also can grade the salvageable ischemic tissue by analyzing the oxidative stress level. In addition, the ischemia area was clearly delineated by NIR-II luminescence imaging after cerebral ischemia for 30 min, which is significantly earlier than with the magnetic resonance imaging (MRI) method, thereby providing a practical tool for the timely assessing of IS.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zijun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Caixia Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuting Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Edelman BJ, Macé E. Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Hardy E, Porée J, Belgharbi H, Bourquin C, Lesage F, Provost J. Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM). Phys Med Biol 2021; 66. [PMID: 33761492 DOI: 10.1088/1361-6560/abf1b6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
Ultrasound localization microscopy (ULM) has recently enabled the mapping of the cerebral vasculaturein vivowith a resolution ten times smaller than the wavelength used, down to ten microns. However, with frame rates up to 20000 frames per second, this method requires large amount of data to be acquired, transmitted, stored, and processed. The transfer rate is, as of today, one of the main limiting factors of this technology. Herein, we introduce a novel reconstruction framework to decrease this quantity of data to be acquired and the complexity of the required hardware by randomly subsampling the channels of a linear probe. Method performance evaluation as well as parameters optimization were conductedin silicousing the SIMUS simulation software in an anatomically realistic phantom and then compared toin vivoacquisitions in a rat brain after craniotomy. Results show that reducing the number of active elements deteriorates the signal-to-noise ratio and could lead to false microbubbles detections but has limited effect on localization accuracy. In simulation, the false positive rate on microbubble detection deteriorates from 3.7% for 128 channels in receive and 7 steered angles to 11% for 16 channels and 7 angles. The average localization accuracy ranges from 10.6μm and 9.93μm for 16 channels/3 angles and 128 channels/13 angles respectively. These results suggest that a compromise can be found between the number of channels and the quality of the reconstructed vascular network and demonstrate feasibility of performing ULM with a reduced number of channels in receive, paving the way for low-cost devices enabling high-resolution vascular mapping.
Collapse
Affiliation(s)
- Erwan Hardy
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Jonathan Porée
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Hatim Belgharbi
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Chloé Bourquin
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada
| | - Frédéric Lesage
- Electrical Engineering Department, Polytechnique Montréal, Montréal, Canada.,Montréal Heart Institute, Montréal, Canada
| | - Jean Provost
- Engineering Physics Department, Polytechnique Montréal, Montréal, Canada.,Montréal Heart Institute, Montréal, Canada
| |
Collapse
|
28
|
Deffieux T, Demené C, Tanter M. Functional Ultrasound Imaging: A New Imaging Modality for Neuroscience. Neuroscience 2021; 474:110-121. [PMID: 33727073 DOI: 10.1016/j.neuroscience.2021.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. Much as functional MRI or functional optical imaging, functional Ultrasound (fUS) takes benefit of the neurovascular coupling. Its ease of use, portability, spatial and temporal resolution makes it an attractive tool for functional imaging of brain activity in preclinical imaging. A large and fast-growing number of studies in a wide variety of small to large animal models have demonstrated its potential for neuroscience research. Beyond preclinical imaging, first proof of concept applications in humans are promising and proved a clear clinical interest in particular in human neonates, per-operative surgery, or even for the development of non-invasive brain machine interfaces.
Collapse
Affiliation(s)
- Thomas Deffieux
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France.
| | - Charlie Demené
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| |
Collapse
|
29
|
Heiles B, Terwiel D, Maresca D. The Advent of Biomolecular Ultrasound Imaging. Neuroscience 2021; 474:122-133. [PMID: 33727074 DOI: 10.1016/j.neuroscience.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.
Collapse
Affiliation(s)
- Baptiste Heiles
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
30
|
New Opportunities for Diagnosis and Prognosis of Stroke: The Benefits of Across Border Approaches. Hamostaseologie 2021; 41:22-24. [PMID: 33588450 DOI: 10.1055/a-1339-7401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is a leading cause of disability, with its treatment not yet optimal. It is thus mandatory to make preclinical research on this topic more efficient. This review summarizes current development of research aimed to improve diagnosis and prognosis of ischemic stroke. For more details, see our recent review published in Lancet Neurology.
Collapse
|