1
|
Zhu X, Su J, Wang F, Chai X, Chen G, Xu A, Meng X, Qiu H, Sun Q, Wang Y, Lv Z, Zhang Y, Liu Y, Han Z, Li N, Sun H, Lu Q. Sodium pump subunit NKAα1 protects against diabetic endothelial dysfunction by inhibiting ferroptosis through the autophagy-lysosome degradation of ACSL4. Clin Transl Med 2025; 15:e70221. [PMID: 39902679 PMCID: PMC11995423 DOI: 10.1002/ctm2.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
The sodium pump Na+/K+-ATPase (NKA), an enzyme ubiquitously expressed in various tissues and cells, is a critical player in maintaining cellular ion homeostasis. Dysregulation of α1 subunit of NKA (NKAα1) has been associated with cardiovascular and metabolic disorders, yet the exact role of NKAα1 in diabetes-induced endothelial malfunction remains incompletely understood. The NKAα1 expression and NKA activity were examined in high-glucose (HG)-exposed endothelial cells (ECs) and mouse aortae, as well as in high-fat-diet (HFD)-fed mice. Acetylcholine (Ach) was utilised to assess endothelium-dependent relaxation (EDR) in isolated mouse aortae. We found that both NKAα1 protein and mRNA levels were significantly downregulated in the aortae of HFD-fed mice, and HG-incubated mouse aortae and ECs. Gain- and loss-of-function experiments revealed that NKAα1 preserves EDR by mitigating oxidative/nitrative stresses in ECs. Overexpression of NKAα1 facilitated EC viability, migration, and angiogenesis by inhibiting the overproduction of superoxide and peroxynitrite. Mechanistically, dysfunctional NKAα1 impaired autophagy process, and prevented the transfer of acyl-CoA synthetase long-chain family member 4 (ACSL4) to the lysosome for degradation, thereby resulting in lipid peroxidation and ferroptosis in ECs. Induction of ferroptosis and inhibition of the autophagy-lysosome pathway blocked the protective effects of NKAα1 on EDR. Eventually, we identified Hamaudol as a potent activator of NKAα1 by restraining the phosphorylation and endocytosis of NKAα1, restoring EDR in obese diabetic mice. Overall, NKAα1 facilitates the autophagic degradation of ACSL4 via the lysosomal pathway, preventing ferroptosis and oxidative/nitrative stress in ECs. NKAα1 may serve as an attractive candidate for the management of vascular disorders associated with diabetes. KEY POINTS: NKAα1 downregulation impairs endothelial function in diabetes by promoting oxidative/nitrative stress and ferroptosis. NKAα1 supports lysosomal degradation of ACSL4 via autophagy, preventing lipid peroxidation and ferroptosis. Hamaudol, an activator of NKAα1, restores endothelial relaxation in diabetic mice by inhibiting NKAα1 phosphorylation and endocytosis.
Collapse
Affiliation(s)
- Xue‐Xue Zhu
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Jia‐Bao Su
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Fang‐Ming Wang
- Department of Rheumatology and ImmunologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| | - Xiao‐Ying Chai
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| | - Guo Chen
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - An‐Jing Xu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Xin‐Yu Meng
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Hong‐Bo Qiu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Qing‐Yi Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yao Wang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhuo‐Lin Lv
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yuan Zhang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yao Liu
- Department of Cardiac UltrasoundThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhi‐Jun Han
- Department of Clinical Research CenterJiangnan University Medical Center (Wuxi No.2 People's Hospital)Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Na Li
- Research Institute for Reproductive Health and Genetic DiseasesWuxi Maternity and Child Health Care HospitalWuxiChina
| | - Hai‐Jian Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| | - Qing‐Bo Lu
- Department of Basic MedicineDepartment of EndocrinologyAffiliated Hospital of Jiangnan UniversityJiangnan UniversityWuxiChina
| |
Collapse
|
2
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Xu CF, Liu PC, Chapman JW, Wotton KR, Qi GJ, Wang YM, Hu G. Energy Reserve Allocation in the Trade-Off between Migration and Reproduction in Fall Armyworm. INSECTS 2024; 15:809. [PMID: 39452385 PMCID: PMC11509284 DOI: 10.3390/insects15100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Striking a trade-off between migration and reproduction becomes imperative during long-range migration to ensure proper energy allocation. However, the mechanisms involved in this trade-off remain poorly understood. Here, we used a takeoff assay to distinguish migratory from non-migratory individuals in the fall armyworm, which is a major migratory insect worldwide. Migratory females displayed delayed ovarian development and flew further and faster than non-migratory females during tethered flight. Transcriptome analyses demonstrated an enrichment of fatty acid genes across successive levels of ovarian development and different migratory behaviors. Additionally, genes with roles in phototransduction and carbohydrate digestion along with absorption function were enriched in migratory females. Consistent with this, we identified increased abdominal lipids in migratory females that were mobilized to supply energy to the flight muscles in the thorax. Our study reveals that the fall armyworm faces a trade-off in allocating abdominal triglycerides between migration and reproduction during flight. The findings provide valuable insights for future research on this trade-off and highlight the key energy components involved in this strategic balance.
Collapse
Affiliation(s)
- Chuan-Feng Xu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- College of Ecology and Environment, YuZhang Normal University, Nanchang 330103, China
| | - Peng-Cheng Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| | - Guo-Jun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yu-Meng Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
- Guizhou Education Department, Guiyang University, Guiyang 550005, China
| |
Collapse
|
4
|
Zhu XX, Zhao CY, Meng XY, Yu XY, Ma LC, Chen TX, Chang C, Chen XY, Zhang Y, Hou B, Cai WW, Du B, Han ZJ, Qiu LY, Sun HJ. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1015. [PMID: 39204119 PMCID: PMC11357665 DOI: 10.3390/ph17081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- Department of Physiology, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xiao-Yi Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Lin-Chun Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China;
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
5
|
Sun HJ, Ni ZR, Liu Y, Fu X, Liu SY, Hu JY, Sun QY, Li YC, Hou XH, Zhang JR, Zhu XX, Lu QB. Deficiency of neutral cholesterol ester hydrolase 1 (NCEH1) impairs endothelial function in diet-induced diabetic mice. Cardiovasc Diabetol 2024; 23:138. [PMID: 38664801 PMCID: PMC11046792 DOI: 10.1186/s12933-024-02239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Aorta/enzymology
- Aorta/physiopathology
- Aorta/metabolism
- Aorta/drug effects
- Aorta/pathology
- Caveolin 1/metabolism
- Caveolin 1/deficiency
- Caveolin 1/genetics
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diet, High-Fat
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/enzymology
- Obesity/physiopathology
- Obesity/metabolism
- Signal Transduction
- Sterol Esterase/metabolism
- Sterol Esterase/genetics
- Ubiquitination
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Zhang-Rong Ni
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Xiao Fu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Shi-Yi Liu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yu-Chao Li
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hui Hou
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ji-Ru Zhang
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xue-Xue Zhu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China.
| |
Collapse
|
6
|
Sun HJ, Tan JX, Shan XD, Wang ZC, Wu ZY, Bian JS, Nie XW. DR region of NKAα1 is a target to ameliorate hepatic lipid metabolism disturbance in obese mice. Metabolism 2023; 145:155579. [PMID: 37127227 DOI: 10.1016/j.metabol.2023.155579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Na+/K+-ATPase (NKA), an ion pumping enzyme ubiquitously expressed in various cells, is critically involved in cellular ion homeostasis and signal transduction. However, the role of NKA in hepatic lipid homeostasis has yet to be fully characterized. METHODS The activity of NKA and NKAα1 expression were determined in steatotic cells, mice and patients. The roles of NKAα1 in hepatosteatosis were detected using hepatocyte knockout or specific overexpression of NKAα1 in mice. RESULTS Herein, we demonstrated that the expression and activity of α1 subunit of NKA (NKAα1) were lowered in the livers of nonalcoholic fatty liver disease (NAFLD) patients, high-fat diet (HFD)-induced obese mice, and genetically obese (ob/ob, db/db) mice, as well as oleic acid-induced hepatocytes. Hepatic deficiency of NKAα1 exacerbated, while adeno-associated virus-mediated liver specific overexpression of NKAα1 alleviated hepatic steatosis through regulation of fatty acid oxidation (FAO) and lipogenesis. Mechanistically, we revealed that NKAα1 upregulated sirtuin 1 (SIRT1) via interacting with ubiquitin specific peptidase 22 (USP22), a deubiquitinating enzyme for the stabilization and deubiquitination of SIRT1, thus activating the downstream autophagy signaling. Blockade of the SIRT1/autophagy signaling pathway eliminated the protective effects of NKAα1 against lipid deposition in hepatocytes. Importantly, we found that an antibody against the DR region (897DVEDSYGQQWTYEQR911) of NKAα1 subunit (DR-Ab) ameliorated hepatic steatosis through maintaining the membrane density of NKAα1 and inducing its activation. CONCLUSIONS Collectively, this study renews the functions of NKAα1 in liver lipid metabolism and provides a new clue for gene therapy or antibody treatment of hepatic lipid metabolism disturbance by targeting NKAα1.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Basic School, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jian-Xin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Xiao-Dong Shan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Zi-Chao Wang
- Department of Basic School, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518020, China.
| |
Collapse
|
7
|
Zhang Q, Li RL, Wang LY, Zhang T, Qian D, Tang DD, He CX, Wu CJ, Ai L. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum Maxim. has antidiabetic effects on high-fat-fed and streptozotocin-treated mice via increasing glycogen synthesis by regulation of PI3K/Akt/GSK-3β/GS signaling. Front Pharmacol 2022; 13:1089558. [PMID: 36582530 PMCID: PMC9792598 DOI: 10.3389/fphar.2022.1089558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia. The fruits of Zanthoxylum bungeanum Maxim. is a common spice and herbal medicine in China, and hydroxy-α-sanshool (HAS) is the most abundant amide in Z. bungeanum and reported to have significant hypoglycemic effects. The purpose of this study was to evaluate the ameliorative effects of HAS on T2DM and the potential mechanisms responsible for those effects. An acute toxicity test revealed the median lethal dose (LD50) of HAS is 73 mg/kg. C57BL/6 J mice were fed a high-fat diet and given an intraperitoneal injection of streptozotocin (STZ) to induce T2DM in mice to evaluate the hypoglycemic effects of HAS. The results showed that HAS significantly reduced fasting blood glucose, reduced pathological changes in the liver and pancreas, and increased liver glycogen content. In addition, glucosamine (GlcN)-induced HepG2 cells were used to establish an insulin resistance cell model and explore the molecular mechanisms of HAS activity. The results demonstrated that HAS significantly increases glucose uptake and glycogen synthesis in HepG2 cells and activates the PI3K/Akt pathway in GlcN-induced cells, as well as increases GSK-3β phosphorylation, suppresses phosphorylation of glycogen synthase (GS) and increases glycogen synthesis in liver cells. Furthermore, these effects of HAS were blocked by the PI3K inhibitor LY294002. The results of our study suggest that HAS reduces hepatic insulin resistance and increases hepatic glycogen synthesis by activating the PI3K/Akt/GSK-3β/GS signaling pathway.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan-Dan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Chun-Jie Wu, ; Li Ai,
| | - Li Ai
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Chun-Jie Wu, ; Li Ai,
| |
Collapse
|
8
|
Bora VR, Gohel D, Singh R, Patel BM. Evaluation of selected antidiabetics in cardiovascular complications associated with cancer cachexia. Mol Cell Biochem 2022; 478:807-820. [PMID: 36098898 DOI: 10.1007/s11010-022-04552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
So far, the cardio-protective potential of antidiabetics is proved, but their effect on cardiovascular complications associated with cancer cachexia is not explored until now. Insulin resistance and glucose intolerance along with systemic inflammation are prominent in cachexia but the potential effect of antidiabetic agents especially those belonging to biguanide, DPP4 inhibitors and SGLT2 on the heart are not studied till now. In present study, the effect of metformin, vildagliptin, teneligliptin, dapagliflozin and empagliflozin on cardiovascular complications associated with cancer cachexia by using B16F1 induced metastatic cancer cachexia and urethane-induced cancer cachexia was studied. These antidiabetic agents proved to be beneficial against cachexia-induced atrophy of the heart, preserved ventricular weights, maintained cardiac hypertrophic index, preserved the wasting of cardiac muscles assessed by HE staining, Masson trichrome staining, periodic acid Schiff staining and picro-Sirius red staining. Altered cardiac gene expression was attenuated after treatment with selected antidiabetics, thus preventing cardiac atrophy. Also, antidiabetic agents treatment improved the serum creatinine kinase MB, Sodium potassium ATPase and collagen in the heart. Reduction in blood pressure and heart rate was observed after treatment with antidiabetic agents. Results of our study show that the selected antidiabetics prove to be beneficial in attenuating the cardiac atrophy and helps in regulation of hemodynamic stauts in cancer cachexia-induced cardiovascular complications. Our study provides some direction towards use of selected antidiabetic agents in the management of cardiovascular complications associated with cancer cachexia and the study outcomes can be useful in desiging clinical trials.
Collapse
Affiliation(s)
- Vivek R Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, Gujarat, 382481, India
| | - Dhruv Gohel
- Department of Biochemistry, M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
9
|
Wu Y, Wang MH, Yang T, Qin TY, Qin LL, Hu YM, Zhang CF, Sun BJ, Ding L, Wu LL, Liu TH. Mechanisms for Improving Hepatic Glucolipid Metabolism by Cinnamic Acid and Cinnamic Aldehyde: An Insight Provided by Multi-Omics. Front Nutr 2022; 8:794841. [PMID: 35087857 PMCID: PMC8786797 DOI: 10.3389/fnut.2021.794841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cinnamic acid (AC) and cinnamic aldehyde (AL) are two chemicals enriched in cinnamon and have been previously proved to improve glucolipid metabolism, thus ameliorating metabolic disorders. In this study, we employed transcriptomes and proteomes on AC and AL treated db/db mice in order to explore the underlying mechanisms for their effects. Db/db mice were divided into three groups: the control group, AC group and AL group. Gender- and age-matched wt/wt mice were used as a normal group. After 4 weeks of treatments, mice were sacrificed, and liver tissues were used for further analyses. Functional enrichment of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. DEPs were further verified by parallel reaction monitoring (PRM). The results suggested that AC and AL share similar mechanisms, and they may improve glucolipid metabolism by improving mitochondrial functions, decreasing serotonin contents and upregulating autophagy mediated lipid clearance. This study provides an insight into the molecular mechanisms of AC and AL on hepatic transcriptomes and proteomes in disrupted metabolic situations and lays a foundation for future experiments.
Collapse
Affiliation(s)
- You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hui Wang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yu Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Ling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Yao-Mu Hu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng-Fei Zhang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Ju Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ding
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Li Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tong-Hua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zou M, Chen Y, Zheng Z, Sheng S, Jia Y, Wang X, Ren S, Yang Y, Li X, Dong W, Guan M, Zhang Q, Xue Y. High-Salt Attenuates the Efficacy of Dapagliflozin in Tubular Protection by Impairing Fatty Acid Metabolism in Diabetic Kidney Disease. Front Pharmacol 2022; 12:741087. [PMID: 34987387 PMCID: PMC8720966 DOI: 10.3389/fphar.2021.741087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
High-salt intake leads to kidney damage and even limits the effectiveness of drugs. However, it is unclear whether excessive intake of salt affects renal tubular energy metabolism and the efficacy of dapagliflozin on renal function in diabetic kidney disease (DKD). In this study, we enrolled 350 DKD patients and examined the correlation between sodium level and renal function, and analyzed influencing factors. The results demonstrated that patients with macroalbuminuria have higher 24 h urinary sodium levels. After establishment of type 2 diabetes mellitus model, the animals received a high-salt diet or normal-salt diet. In the presence of high-salt diet, the renal fibrosis was aggravated with fatty acid metabolism dysregulation. Furthermore, Na+/K+-ATPase expression was up-regulated in the renal tubules of diabetic mice, while the fatty acid metabolism was improved by inhibiting Na+/K+-ATPase of renal tubular epithelial cells. Of note, the administration with dapagliflozin improved renal fibrosis and enhanced fatty acid metabolism. But high salt weakened the above-mentioned renal protective effects of dapagliflozin in DKD. Similar results were recapitulated in vitro after incubating proximal tubular epithelial cells in high-glucose and high-salt medium. In conclusion, our results indicate that high salt can lead to fatty acid metabolism disorders by increasing Na+/K+-ATPase expression in the renal tubules of DKD. High salt intake diminishes the reno-protective effect of dapagliflozin in DKD.
Collapse
Affiliation(s)
- Meina Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanrong Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyue Sheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Dong
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wen XP, Wan QQ. Regulatory effect of insulin on the structure, function and metabolism of Na +/K +-ATPase (Review). Exp Ther Med 2021; 22:1243. [PMID: 34539839 PMCID: PMC8438676 DOI: 10.3892/etm.2021.10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Na+/K+-ATPase is an ancient enzyme, the role of which is to maintain Na+ and K+ gradients across cell membranes, thus preserving intracellular ion homeostasis. The regulation of Na+/K+-ATPase is affected by several regulatory factors through a number of pathways, with hormones serving important short-term and long-term regulatory functions. Na+/K+-ATPase can also be degraded through activation of the ubiquitin proteasome and autophagy-lysosomal pathways, thereby affecting its abundance and enzymatic activity. As regards the regulatory effect of insulin, it has been found to upregulate the relative abundance of Na+/K+-ATPase and restore the transport efficiency in multiple in vitro and in vivo experiments. Therefore, elucidating the role of insulin in the regulation Na+/K+-ATPase may help uncover new drug targets for the treatment of related diseases. The aim of the present study was to review the structure and function of Na+/K+-ATPase and to discuss the possible mechanisms through which it may be regulated by insulin, in order to investigate the possibility of designing new therapies for related diseases.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi-Quan Wan
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
12
|
Li Y, Tang Y, Shi S, Gao S, Wang Y, Xiao D, Chen T, He Q, Zhang J, Lin Y. Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus via the PI3K/Akt Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40354-40364. [PMID: 34410099 DOI: 10.1021/acsami.1c11468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) is one of the essential conditions in the development of type 2 diabetes mellitus (T2DM). IR occurs in hepatic cells when the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is downregulated; thus, activating this pathway can significantly improve insulin sensitivity and ameliorate T2DM. Tetrahedral framework nucleic acids (tFNAs), a DNA nanomaterial, are synthesized from four single-stranded DNA molecules. tFNAs possess excellent biocompatibility and good water solubility and stability. tFNAs can promote cell proliferation, cell autophagy, wound healing, and nerve regeneration by activating the PI3K/Akt pathway. Herein, we explore the effects and underlying mechanisms of tFNAs on IR. The results displayed that tFNAs could increase glucose uptake and ameliorate IR by activating the IRS-1/PI3K/Akt pathway in glucosamine (GlcN)-stimulated HepG2 cells. By employing a PI3K inhibitor, we confirmed that tFNAs reduce IR through the PI3K/Akt pathway. Moreover, tFNAs can promote hepatic cell proliferation and inhibit GlcN-induced cell apoptosis. In a T2DM mouse model, tFNAs reduce blood glucose levels and ameliorate hepatic IR via the PI3K/Akt pathway. Taken together, tFNAs can improve hepatic IR and alleviate T2DM through the PI3K/Akt pathway, making contribution to the potential application of tFNAs in T2DM.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Prosthodontics, Tianjin Medical University School of Stomatology, Tianjin 300070, P. R. China
| | - Yuanlin Tang
- West China Medical Center, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qing He
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P. R. China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School of Stomatology, Tianjin 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- West China Medical Center, Sichuan University, Chengdu 610041, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|