1
|
Wang Z, Yin H, Wang R. Supramolecular Partners: Precision On/Off Neuromuscular Blockage for Prolonged Surgeries. J Med Chem 2025; 68:6955-6957. [PMID: 40045846 PMCID: PMC11997994 DOI: 10.1021/acs.jmedchem.5c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Indexed: 04/11/2025]
Abstract
The development of a long-acting neuromuscular blocking agent and its on-demand reversal is highly desired for prolonged surgeries. This viewpoint discussed the discovery of supramolecular partners, an imidazolium-based macrocycle (YW70271) and acyclic cucurbit[n]uril (WY22051), for ultralong neuromuscular blockade and rapid reversal.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research
in Chinese Medicine, Institute of Chinese Medical Sciences, &
Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hang Yin
- State Key Laboratory of Quality Research
in Chinese Medicine, Institute of Chinese Medical Sciences, &
Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research
in Chinese Medicine, Institute of Chinese Medical Sciences, &
Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
2
|
Yang J, Wu Y, Liu YY, Yu SB, Feng K, Wang H, Zhou W, Ma D, Zhao G, Zhang J, Zhang DW, Li ZT. Discovery of an Ultralong-acting Nondepolarizing Neuromuscular Blocker That Displays Short Onset Time and On-Demand Rapid Reversal by a Biocompatible Antagonist. J Med Chem 2025; 68:7031-7043. [PMID: 39854499 DOI: 10.1021/acs.jmedchem.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The combination of ultralong-acting neuromuscular block and subsequent on-demand rapid reversal may provide prolonged surgeries with improved conditions by omitting continuous or repetitive blocker administration, enabling a more stable and predictable hemodynamic profile and eliminating residual block. For this target, we prepared 19 imidazolium-incorporated tetracationic macrocycles. In vivo studies with rats revealed that one macrocycle (IMC-14) displays extremely high blocking activity. At the dose of 12.5-fold ED90, IMC-14 exhibits an onset time shorter than that of cisatracurium of 2-fold dose and a duration time corresponding to more than 13 h for human adults. Moreover, within the dose range of 12.5-187.5-fold ED90, the profound block induced by IMC-14 can be rapidly reversed at any stage by a highly biocompatible acyclic cucurbit[n]uril antagonist, with a reversal time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, a clinically widely used intermediate-acting neuromuscular blocking agent.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ke Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
| | - Gang Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Zhao X, Zhong Q, Abudouaini N, Zhao Y, Zhang J, Tan G, Miao G, Wang X, Liu J, Pan Y, Wang X. Switchable Nanophotosensitizers as Pyroptosis Inducers for Targeted Boosting of Antitumor Photoimmunotherapy. Biomacromolecules 2025. [PMID: 40200409 DOI: 10.1021/acs.biomac.5c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their "always-on" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinjie Zhong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Naibijiang Abudouaini
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
4
|
Yang J, Liu K, Chen Y, Ye H, Hao G, Du F, Wang P. A supramolecular bactericidal material for preventing and treating plant-associated biofilms. Nat Commun 2025; 16:2627. [PMID: 40097425 PMCID: PMC11914267 DOI: 10.1038/s41467-025-57839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Treating bacterial biofilms on plants poses challenges due to biofilm induced resistance and poor agent adhesion on plant leaves. Here, we report on a host-guest self-assembled material which is biocompatible, has a lamellar supramolecular structure for leaf retention and prevents and treats bacterial biofilms. Phosphate/isopropanolamine-modified ferrocene forms a host-guest complex with β-CD which assembles into a lamella structure. The agent shows control efficacy against bacterial blight, bacterial leaf streak, and citrus canker in testing.
Collapse
Affiliation(s)
- Jinghan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Kongjun Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yazhen Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Haojie Ye
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Peiyi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China.
| |
Collapse
|
5
|
Wu S, Feng K, Niu J, Xu J, Mo H, She X, Yu SB, Li ZT, Yan S. Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host-Guest Chemistry and Bioluminescent Immunoassay. Toxins (Basel) 2025; 17:104. [PMID: 40137877 PMCID: PMC11945384 DOI: 10.3390/toxins17030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus species, represents a significant health hazard due to its widespread contamination of agricultural products. The urgent need for sensitive and sustainable detection methods has driven the development of diverse analytical approaches, most of which heavily rely on organic solvents, posing environmental challenges for routine food safety analysis. Here, we introduce a supramolecular platform leveraging acyclic cucurbit[n]uril (acCB) as a host molecule for environmentally sustainable AFB1 detection. Screening various acCB derivatives identified acCB6 as a superior host capable of forming a stable 1:1 complex with AFB1 in an aqueous solution, exhibiting a high binding affinity. Proton nuclear magnetic resonance (1H NMR) spectroscopy confirmed that AFB1 was deeply encapsulated within the host cavity, with isothermal titration calorimetry (ITC) experiments and molecular dynamics simulations further substantiating the stability of the interaction, driven by enthalpic and entropic contributions. This supramolecular host was incorporated into a scaffold-assembly-based bioluminescent enzyme immunoassay (SA-BLEIA), providing a green detection platform that rivals the performance of traditional organic solvent-based assays. Our findings highlight the potential of supramolecular chemistry as a foundation for eco-friendly mycotoxin detection and offer valuable insights into designing environmentally sustainable analytical methods.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.W.); (J.N.); (J.X.); (H.M.)
| | - Ke Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China; (K.F.); (Z.-T.L.)
| | - Jinlu Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.W.); (J.N.); (J.X.); (H.M.)
| | - Jintao Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.W.); (J.N.); (J.X.); (H.M.)
| | - Hualian Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.W.); (J.N.); (J.X.); (H.M.)
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China; (K.F.); (Z.-T.L.)
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China; (K.F.); (Z.-T.L.)
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.W.); (J.N.); (J.X.); (H.M.)
| |
Collapse
|
6
|
Li S, Li P, Tian Y, Zeng R, Zhang Q, Pi C. A mini review of supramolecular antagonists based on macrocyclic host compounds. Bioorg Chem 2024; 153:107974. [PMID: 39571303 DOI: 10.1016/j.bioorg.2024.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
In the interdisciplinary domains of medicine and chemistry, addressing the issue of residual drugs (toxicants) that fail to fully exert therapeutic effects while potentially inducing toxic side effects has become increasingly critical. Researchers are actively seeking innovative solutions to this multifaceted challenge. Conventional small-molecule antagonists, commonly used in clinical settings, typically depend on "drug-receptor interactions" yet pose substantial developmental challenges. Recent advancements in the investigation of macrocyclic host compounds present a promising alternative. By leveraging the principles of host-guest chemistry, these macrocyclic hosts form stable inclusion complexes with residual drugs (toxicants), thereby decreasing their free concentration in the bloodstream and effectively mitigating associated toxic side effects. Consequently, macrocyclic host compounds represent a novel class of supramolecular antagonists (SAs). This article reviews recent progress in the application of macrocyclic host molecules-such as cyclodextrin, calix[n]arene, pillar[n]arene, and cucurbit[n]uril-as SA and examines current issues and future development prospects within the field.
Collapse
Affiliation(s)
- Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China.
| | - Chuan Pi
- Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China
| |
Collapse
|
7
|
Onaciu A, Toma V, Borșa RM, Chiș V, Știufiuc GF, Culic C, Lucaciu CM, Știufiuc RI. Investigating Nanoscale Interactions of Host-Guest Complexes Formed Between CB[7] and Atenolol by Quantum Chemistry and Ultrasensitive Vibrational Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:7156. [PMID: 39598934 PMCID: PMC11598021 DOI: 10.3390/s24227156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In addition to the course of over 20 years of cucurbit-7-uril (CB[7]) in the pharmaceutical industry, the present study brings together the most recent observations from the perspective of ultrasensitive Raman spectroscopy and Density Functional Theory (DFT) related to the interaction of this molecule with atenolol (Ate) enantiomers during the formation of these host-guest complexes. Quantum chemistry calculations based on DFT were first used to understand the interaction geometry between CB[7] and Ate. These results were further confirmed by ultrasensitive vibrational spectroscopy. The spectral features associated with each enantiomer in the presence of CB[7] were analyzed by means of SERS, highlighting distinct interaction profiles. These experimental findings validated quantum chemical calculations, offering a comprehensive understanding of the host-guest interactions at the nanoscale level.
Collapse
Affiliation(s)
- Anca Onaciu
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania; (V.T.); (R.-M.B.)
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Valentin Toma
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania; (V.T.); (R.-M.B.)
| | - Rareș-Mario Borșa
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania; (V.T.); (R.-M.B.)
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetics, Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Clinicilor 32, 400001 Cluj-Napoca, Romania
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (V.C.); (G.-F.Ș.)
| | - Gabriela-Fabiola Știufiuc
- Faculty of Physics, Babeş-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (V.C.); (G.-F.Ș.)
| | - Carina Culic
- Department of Conservative Odontology, Division Odontology, Endodontics, Cariology, Oral Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Moților 33, 400089 Cluj-Napoca, Romania;
| | - Constantin-Mihai Lucaciu
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Rareș-Ionuț Știufiuc
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania; (V.T.); (R.-M.B.)
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
- Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iaşi, Romania
| |
Collapse
|
8
|
Feng K, Liu YY, Zong Y, Lei Z, Wu Y, Yang J, Lin F, Qi QY, Li Q, Zhuang SY, Zhang J, Tian J, Zhou W, Ma D, Zhang DW, Li ZT, Yu SB. Structure-Activity Relationship Studies Leading to the Discovery of Highly Water-Soluble and Biocompatible Acyclic Cucurbit[ n]uril FY-3451 as a Universal Antagonist That Rapidly Reverses Neuromuscular Blocking Agents In Vivo. J Med Chem 2024; 67:17905-17918. [PMID: 39324796 DOI: 10.1021/acs.jmedchem.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The development of a reversal agent that can rapidly reverse clinically used nondepolarizing neuromuscular blocking agents (NMBAs) has long been a challenge. Here, we report the synthesis of a series of highly water-soluble acyclic cucurbit[n]urils (acCBs). Systematic structure-activity relationship studies reveal that introducing two propylidene units on the peripheral benzene rings not only remarkably improves the activity of the corresponding derivative acCB6 (FY 3451) in reversing the neuromuscular block of rocuronium, cisatracurium, vecuronium, and pancuronium, the four clinically used NMBAs, through stable inclusion, but also allows for high water-solubility as well as a maximum tolerated dose (2000 mg/kg on rats). In vivo experiments with rats show that, at the identical dose of 25 mg/kg, for rocuronium, vecuronium, and pancuronium, acCB6 can achieve a recovery time shorter than that of sugammadex for rocuronium and, at the dose of 100 mg/kg, realize comparably rapid reversal for cisatracurium.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yang Zong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Zhuo Lei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yan Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Furong Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Sheng-Yi Zhuang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jiangshan Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering, Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
9
|
Wilson C, Puckett AO, Murray IM, Oliver AG, Hof F. Extended Sulfo-Pillar[6]arenes ─ a New Host Family and Its Application in the Binding of Direct Oral Anticoagulants. J Am Chem Soc 2024; 146. [PMID: 39356656 PMCID: PMC11487555 DOI: 10.1021/jacs.4c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Herein, we report the synthesis of extended sulfo-pillar[6]arenes (sP6), a new host class with a pedigree in salt tolerance and ultrahigh binding affinity toward multiple drug classes. The parent sulfo-pillar[6]arene is a high-affinity host with the potential to act as a supramolecular reversal agent. However, it lacks synthetic diversification of the core scaffold. The new extended sulfo-pillar[6]arenes have either a monodirectional (A1sP6) or bidirectional (A1A2sP6) extension of the hydrophobic cavity. This new functionality enables more noncovalent interactions and strong affinity toward guests, which we demonstrate using the direct oral anticoagulants (DOACs) dabigatran, betrixaban, and edoxaban. DOACs are highly prescribed therapeutics that are underexplored in host-guest chemistry. These agents prevent the formation of blood clots and are prime targets for supramolecular sequestration. This functionalization also introduces new fluorescent properties to the sulfo-pillar[6]arene family via an incorporated p-terphenyl (A1A2sP6). We show that these new hosts have ultrahigh affinity toward dabigatran (Kd = 27 nM, A1A2sP6) in salty solutions and that the A1A2sP6 analogue can bind betrixaban in bovine plasma with a physiologically relevant Kd (7 μM).
Collapse
Affiliation(s)
- Chelsea
R. Wilson
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Austia O. Puckett
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| | - Isabella M. Murray
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| | - Allen G. Oliver
- Department
of Chemistry and Biochemistry, University
of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Fraser Hof
- Department
of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
10
|
Zhao CD, Cai W, Chen WJ, Yao H, Wang SM, Li K, Ma YL, Wang LL, Yang LP. Amide naphthotube as a novel supramolecular sequestration agent for tetracaine and decamethonium. Theranostics 2024; 14:5219-5234. [PMID: 39267791 PMCID: PMC11388068 DOI: 10.7150/thno.93654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
RATIONALE Anesthetics are widely used for optimizing surgical conditions, postoperative pain management, and treating various chronic pain conditions. Tetracaine and decamethonium are representative drugs of local anesthetics and neuromuscular blocking agents, respectively. However, overdose and toxicity of the drugs always lead to serious adverse events. Thus, there is a strong demand for effective antidotes. METHODS The binding interactions of amide naphthotubes with tetracaine and decamethonium were systematically studied using 1H NMR, ITC, and DFT calculations. The antidotal effects of amide naphthotube to tetracaine toxicity were assessed in vitro and in vivo, and the mechanism of detoxification was explored at a cellular level. Additionally, mouse models were established to evaluate the reversal activities of amide naphthotube on decamethonium-induced mortality and muscle relaxation, and the reversal mechanism was investigated through pharmacokinetic experiments. RESULTS We have demonstrated that the anti-isomer of amide naphthotube exhibits significant binding affinities towards tetracaine (K a = 1.89×107 M-1) and decamethonium (K a = 1.01×107 M-1) in water. The host displayed good biocompatibility both in vitro and in vivo. The administration of amide naphthotube following tetracaine overdose in mouse models notably increased the overall survival rate, indicating its effective antidotal properties. The host could reverse the tetracaine-induced Na+ channels blockage at the cellular level. Moreover, the injection of amide naphthotube also reversed the mortality and paralysis induced by decamethonium in mouse models following a pharmacokinetic mechanism. CONCLUSION An emerging artificial receptor, amide naphthotube, has strong binding affinities towards tetracaine and decamethonium. It functions as a supramolecular antidote for tetracaine poisoning and a reversal agent for decamethonium by selectively sequestering these compounds in vivo.
Collapse
Affiliation(s)
- Cheng-Da Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Wen-Jie Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Huan Yao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Yan-Long Ma
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Li-Li Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liu-Pan Yang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
11
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
12
|
Karmakar P, Finnegan TJ, Rostam DC, Taneja S, Uçar S, Hansen AL, Moore CE, Hadad CM, Pratumyot K, Parquette JR, Badjić JD. Molecular bowls for inclusion complexation of toxic anticancer drug methotrexate. Chem Sci 2024; 15:10155-10163. [PMID: 38966368 PMCID: PMC11220613 DOI: 10.1039/d3sc05627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/13/2024] [Indexed: 07/06/2024] Open
Abstract
We describe the preparation and study of novel cavitands, molecular bowls 16+ and 26+, as good binders of the anticancer drug methotrexate (MTX). Molecular bowls are comprised of a curved tribenzotriquinacene (TBTQ) core conjugated to three macrocyclic pyridinium units at the top. The cavitands are easily accessible via two synthetic steps from hexabromo-tribenzotriquinacene in 25% yield. As amphiphilic molecules, bowls 16+ and 26+ self-associate in water by the nucleation-to-aggregation pathway (NMR). The bowls are preorganized, having a semi-rigid framework comprising a fixed bottom with a wobbling pyridinium rim (VT NMR and MD). Further studies, both experimental (NMR) and computational (DFT and MCMM), suggested that a folded MTX occupies the cavity of bowls wherein it forms π-π, C-H-π, and ion pairing intermolecular contacts but also undergoes desolvation to give stable binary complexes (μM) in water. Moreover, a computational protocol is introduced to identify docking pose(s) of MTX inside molecular bowls from NMR shielding data. Both molecular bowls have shown in vitro biocompatibility with liver and kidney cell lines (MTS assay). As bowl 26+ is the strongest binder of MTX reported to date, we envision it as an excellent candidate for further studies on the way toward developing an antidote capable of removing MTX from overdosed cancer patients.
Collapse
Affiliation(s)
- Pratik Karmakar
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod, Thung Khru Bangkok 10140 Thailand
| | - Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Darian C Rostam
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Sefa Uçar
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
- Atatürk University, Faculty of Science, Department of Chemistry Erzurum 25240 Turkey
| | - Alexandar L Hansen
- Campus Chemical Instrumentation Center, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Kornkanya Pratumyot
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod, Thung Khru Bangkok 10140 Thailand
| | - Jon R Parquette
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| |
Collapse
|
13
|
Zhang Y, Yu X, Gao D, Chen L, Zhang Z, Liu Y, Zheng Z, Chen J, Li C, Meng Q. Macrocyclic Neutralizer to Polybrene via Direct Host-Guest Complexation. J Med Chem 2024; 67:10425-10435. [PMID: 38848302 DOI: 10.1021/acs.jmedchem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hexadimethrine bromide (HB), a synthetic polycationic species, was introduced to clinical practice as a heparin antidote and recently used in gene therapy. However, HB causes various complications such as severe red blood cells (RBCs) aggregation and tissue damage. Herein, we have synthesized a water-soluble quaterphen[3]arene containing multiple sulfonate moieties (SQP3) as a novel macrocyclic neutralizer to reverse HB via direct host-guest complexation. SQP3 exhibited a robust binding affinity toward HB with a considerably high association constant of (4.73 ± 0.61) × 107 M-1. Co-dosed with 1 equiv of SQP3, HB-induced RBCs aggregation and blood coagulation could be effectively reversed. In vitro cellular assay verified that complexation of HB with SQP3 significantly decreased reactive oxygen species production, thereby suppressing cell apoptosis. In vivo neutralization efficacy studies demonstrated that HB/SQP3 was capable of alleviating related organic damage caused by HB and improving the survival rate of HB-treated mice from 20 to 100%.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Yu
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Di Gao
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Longming Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ziliang Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuanyuan Liu
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
14
|
Mecca T, Spitaleri F, La Spina R, Gioria S, Giglio V, Cunsolo F. HEMA-Lysine-Based Cryogels for Highly Selective Heparin Neutralization. Int J Mol Sci 2024; 25:6503. [PMID: 38928208 PMCID: PMC11203617 DOI: 10.3390/ijms25126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Unfractionated heparin (UFH) and its low-molecular-weight fragments (LMWH) are widely used as anticoagulants for surgical procedures and extracorporeal blood purification therapies such as cardiovascular surgery and dialysis. The anticoagulant effect of heparin is essential for the optimal execution of extracorporeal blood circulation. However, at the end of these procedures, to avoid the risk of bleeding, it is necessary to neutralize it. Currently, the only antidote for heparin neutralization is protamine sulphate, a highly basic protein which constitutes a further source of serious side events and is ineffective in neutralizing LMWH. Furthermore, dialysis patients, due to the routine administration of heparin, often experience serious adverse effects, among which HIT (heparin-induced thrombocytopenia) is one of the most severe. For this reason, the finding of new heparin antagonists or alternative methods for heparin removal from blood is of great interest. Here, we describe the synthesis and characterization of a set of biocompatible macroporous cryogels based on poly(2-hydroxyethyl methacrylate) (pHEMA) and L-lysine with strong filtering capability and remarkable neutralization performance with regard to UFH and LMWH. These properties could enable the design and creation of a filtering device to rapidly reverse heparin, protecting patients from the harmful consequences of the anticoagulant.
Collapse
Affiliation(s)
- Tommaso Mecca
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (T.M.); (V.G.)
| | | | - Rita La Spina
- Joint Research Centre (JRC), European Commission (EC), 2440 Geel, Belgium; (R.L.S.); (S.G.)
| | - Sabrina Gioria
- Joint Research Centre (JRC), European Commission (EC), 2440 Geel, Belgium; (R.L.S.); (S.G.)
| | - Valentina Giglio
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (T.M.); (V.G.)
| | - Francesca Cunsolo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (T.M.); (V.G.)
| |
Collapse
|
15
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Zhang W, Bazan-Bergamino EA, Doan AP, Zhang X, Isaacs L. Pillar[6]MaxQ functions as an in vivo sequestrant for rocuronium and vecuronium. Chem Commun (Camb) 2024; 60:4350-4353. [PMID: 38546190 DOI: 10.1039/d4cc00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The binding affinity of pillar[6]MaxQ toward a panel of neuromuscular blockers and neurotransmitters was measured in phosphate buffered saline by isothermal titration calorimetry and 1H NMR spectroscopy. In vivo efficacy studies showed that P6MQ sequesters rocuronium and vecuronium and reverses their influence on the recovery of the train-of-four (TOF) ratio.
Collapse
Affiliation(s)
- Wanping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | | | - Anton P Doan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
17
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
18
|
Dohárszky A, Kalydi E, Völgyi G, Béni S, Fejős I. Cyclodextrin-Enabled Enantioselective Complexation Study of Cathinone Analogs. Molecules 2024; 29:876. [PMID: 38398627 PMCID: PMC10893103 DOI: 10.3390/molecules29040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The characteristic alkaloid component of the leaves of the catnip shrub (Catha edulis) is cathinone, and its synthetic analogs form a major group of recreational drugs. Cathinone derivatives are chiral compounds. In the literature, several chiral methods using cyclodextrins (CDs) have been achieved so far for diverse sets of analogs; however, a comprehensive investigation of the stability of their CD complexes has not been performed yet. To characterize the enantioselective complex formation, a systematic experimental design was developed in which a total number of 40 neutral, positively, and negatively charged CD derivatives were screened by affinity capillary electrophoresis and compared according to their cavity size, substituent type, and location. The functional groups responsible for the favorable interactions were identified in the case of para-substituted cathinone analog mephedrone, flephedrone, and 4-methylethcathinone (4-MEC) and in the case of 3,4-methylendioxy derivative butylone and methylenedioxypyrovalerone (MDPV). The succinylated-β-CD and subetadex exhibited the highest complex stabilities among the studied drugs. The complex stoichiometry was determined using the Job's plot method, and the complex structures were further studied using ROESY NMR measurements. The results of our enantioselective complex formation study can facilitate chiral method development and may lead to evaluate potential CD-based antidotes for cathinone analogs.
Collapse
Affiliation(s)
- András Dohárszky
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
| | - Eszter Kalydi
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, H-1092 Budapest, Hungary
| | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 7, H-1092 Budapest, Hungary;
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Ida Fejős
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
| |
Collapse
|
19
|
Wang R, Li WB, Deng JY, Han H, Chen FY, Li DY, Jing LB, Song Z, Fu R, Guo DS, Cai K. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral[5]arene. Angew Chem Int Ed Engl 2023:e202317402. [PMID: 38078790 DOI: 10.1002/anie.202317402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/29/2023]
Abstract
The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109 M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011 M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108 M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.
Collapse
Affiliation(s)
- Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Han Han
- College of Chemistry, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong SAR, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Li-Bo Jing
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zihang Song
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
20
|
Wang ZX, Chen X, Liu X, Li WZ, Ye YY, Xu SY, Zhang H, Wang XQ. Chaotropic Effect-Induced Self-Assembly of the Malachite Green and Boron Cluster for Toxicity Regulation and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55486-55494. [PMID: 37995715 DOI: 10.1021/acsami.3c13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Malachite green (MG), a toxic antibacterial agent, is widely used in the farming industry. Effectively regulating the biotoxicity of this highly water-soluble cationic dye is challenging. Here, we present a novel strategy to reduce the biotoxicity of MG through the self-assembly of MG and the closo-dodecaborate cluster ([B12H12]2-) driven by the chaotropic effect. [B12H12]2- and MG in an aqueous solution can rapidly form an insoluble cubic-type supramolecular complex (B12-MG), and the original toxicity of MG is completely suppressed. Surprisingly, this supramolecular complex, B12-MG, has a strong UV-vis absorption peak at 600-800 nm and significant photothermal conversion efficiency under 660 nm laser irradiation. On this basis, B12-MG, the supramolecular complex, can be used as an efficient photothermal agent for antimicrobial photothermal therapy (PTT) both in vitro and in vivo. As a molecular chaperone of MG, [B12H12]2- not only can be applied as an antidote to regulate the biotoxicity of MG but also provides a novel method for the construction of photothermal agents for PTT based on the chaotropic effect.
Collapse
Affiliation(s)
- Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Xiaofang Chen
- Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P. R. China
| | - Xinyu Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yu-Yuan Ye
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry; Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
21
|
Xiao Y, Li H, Tu M, Sun L, Wang F. Novel AIEE pillar[5]arene-fluorene fluorescent copolymer for selective recognition of paraquat by forming polypseudorotaxane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123112. [PMID: 37478758 DOI: 10.1016/j.saa.2023.123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
A novel conjugated polymer (Co-P[5]Flu) was synthesized by copolymerizing a difunctionalized pillar[5]arene and a fluorene derivative monomer. Co-P[5]Flu displayed an aggregation-induced emission enhancement (AIEE) effect because of the restricted intramolecular rotations of the pillar[5]arene unit. Co-P[5]Flu exhibited high selectivity and sensitivity towards the pesticide paraquat (PQ) with excellent anti-interference properties. It presented fluorescence quenching response (1-I/I0=96.6%) only towards paraquat and not towards other competitive guests. The fluorescence titration experiments revealed that the detection limit (LOD) for paraquat was as low as 1.69×10-8 M, and the Stern-Volmer constant (KSV) was determined to be 2.11×104 M-1. The recognition mechanism was studied using both 1H NMR titration and theoretical calculations. The Co-P[5]Flu showed fluorescence quenching for PQ due to the synergistic effect of polypseudorotaxane formation and photoinduced electron transfer (PET). Additionally, the polymer chemosensor demonstrated potential for the detection of paraquat in practical samples.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lei Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
22
|
Peng WC, Lei Z, Lin QH, Wu Y, Yang JY, Wang H, Zhou W, Zhang DW, Li ZT, Ma D. Acyclic Cucurbit[n]urils: Effective Taste Masking Nanocontainers for Cationic Bitter Compounds. Chempluschem 2023; 88:e202300465. [PMID: 37752086 DOI: 10.1002/cplu.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.
Collapse
Affiliation(s)
- Wen-Chang Peng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhuo Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Qi-Han Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Jing-Yu Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Shifu Avenue 1139 Jiaojiang, Zhejiang, 318000, P. R. China
| |
Collapse
|
23
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
24
|
Kobylarz D, Noga M, Frydrych A, Milan J, Morawiec A, Glaca A, Kucab E, Jastrzębska J, Jabłońska K, Łuc K, Zdeb G, Pasierb J, Toporowska-Kaźmierak J, Półchłopek S, Słoma P, Adamik M, Banasik M, Bartoszek M, Adamczyk A, Rędziniak P, Frączkiewicz P, Orczyk M, Orzechowska M, Tajchman P, Dziuba K, Pelczar R, Zima S, Nyankovska Y, Sowińska M, Pempuś W, Kubacka M, Popielska J, Brzezicki P, Jurowski K. Antidotes in Clinical Toxicology-Critical Review. TOXICS 2023; 11:723. [PMID: 37755734 PMCID: PMC10534475 DOI: 10.3390/toxics11090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Poisoning and overdose are very important aspects in medicine and toxicology. Chemical weapons pose a threat to civilians, and emergency medicine principles must be followed when dealing with patients who have been poisoned or overdosed. Antidotes have been used for centuries and modern research has led to the development of new antidotes that can accelerate the elimination of toxins from the body. Although some antidotes have become less relevant due to modern intensive care techniques, they can still save lives or reduce the severity of toxicity. The availability of antidotes is crucial, especially in developing countries where intensive care facilities may be limited. This article aims to provide information on specific antidotes, their recommended uses, and potential risks and new uses. In the case of poisoning, supportive therapies are most often used; however, in many cases, the administration of an appropriate antidote saves the patient's life. In this review, we reviewed the literature on selected antidotes used in the treatment of poisonings. We also characterised the antidotes (bio)chemically. We described the cases in which they are used together with the dosage recommendations. We also analysed the mechanisms of action. In addition, we described alternative methods of using a given substance as a drug, an example of which is N-acetylcysteine, which can be used in the treatment of COVID-19. This article was written as part of the implementation of the project of the Polish Ministry of Education and Science, "Toxicovigilance, poisoning prevention, and first aid in poisoning with xenobiotics of current clinical importance in Poland", grant number SKN/SP/570184/2023.
Collapse
Affiliation(s)
- Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Morawiec
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Agata Glaca
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Emilia Kucab
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Julia Jastrzębska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Karolina Jabłońska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Klaudia Łuc
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Gabriela Zdeb
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Jakub Pasierb
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Joanna Toporowska-Kaźmierak
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Szczepan Półchłopek
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paweł Słoma
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Magdalena Adamik
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Mateusz Banasik
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Mateusz Bartoszek
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Aleksandra Adamczyk
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Patrycja Rędziniak
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paulina Frączkiewicz
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Michał Orczyk
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Martyna Orzechowska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paulina Tajchman
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Klaudia Dziuba
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Rafał Pelczar
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Sabina Zima
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Yana Nyankovska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Marta Sowińska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Wiktoria Pempuś
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Maria Kubacka
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Julia Popielska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Patryk Brzezicki
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
25
|
Grecu M, Minea B, Foia LG, Bostanaru-Iliescu AC, Miron L, Nastasa V, Mares M. Short Review on the Biological Activity of Cyclodextrin-Drug Inclusion Complexes Applicable in Veterinary Therapy. Molecules 2023; 28:5565. [PMID: 37513437 PMCID: PMC10383344 DOI: 10.3390/molecules28145565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclodextrins (CDs) are a family of carrier molecules used to improve the pharmacokinetic parameters of therapeutic molecules. These cyclic oligosaccharides have medical and pharmaceutical applications by being able to form inclusion complexes with molecules that are poorly soluble in water. The benefits of these complexes are directed towards improving the chemical and biological properties-i.e., solubility, bioavailability, stability, non-toxicity and shelf life of drug molecules. Since the 1960s, the first inclusion complexes used in therapeutics were those with α-, β- and γ-CD, which proved their usefulness, but had certain degrees of particularly renal toxicity. Currently, to correct these deficiencies, β-CD derivatives are most frequently used, such as sulfobutylether-β-CD, hydroxypropyl-β-CD, etc. Therefore, it is of interest to bring to the attention of those interested the diversity of current and potential future clinical applications of inclusion complexes in veterinary medicine and to present the contribution of these inclusion complexes in improving drug efficacy. The most important biological activities of β-CD complexed molecules in the veterinary field are summarized in this short review.
Collapse
Affiliation(s)
- Mariana Grecu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Bogdan Minea
- Department of Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Liliana-Georgeta Foia
- Department of Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Andra-Cristina Bostanaru-Iliescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Liviu Miron
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
26
|
Nazarova A, Padnya P, Khannanov A, Khabibrakhmanova A, Zelenikhin P, Stoikov I. Towards Protection of Nucleic Acids from Herbicide Attack: Self-Assembly of Betaines Based on Pillar[5]arene with Glyphosate and DNA. Int J Mol Sci 2023; 24:ijms24098357. [PMID: 37176066 PMCID: PMC10179701 DOI: 10.3390/ijms24098357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Herbicides are one of the main parts of pesticides used today. Due to the high efficiency and widespread use of glyphosate-based herbicides, the search for substances reducing their genotoxicity is an important interdisciplinary task. One possible approach for solving the problem of herbicide toxicity is to use compounds that can protect DNA from damage by glyphosate derivatives. For the first time, a method for developing DNA-protecting measures against glyphosate isopropylamine salt (GIS) damage was presented and realized, based on low-toxicity water-soluble pillar[5]arene derivatives. Two- and three-component systems based on pillar[5]arene derivatives, GIS, and model DNA from salmon sperm, as well as their cytotoxicity, were studied. The synthesized pillar[5]arene derivatives do not interact with GIS, while GIS is able to bind DNA from salmon sperm with lgKa = 4.92. The pillar[5]arene betaine derivative containing fragments of L-phenylalanine and the ester derivative with diglycine fragments bind DNA with lgKa = 5.24 and lgKa = 4.88, respectively. The study of the associates (pillar[5]arene-DNA) with GIS showed that the interaction of GIS with DNA is inhibited only by the betaine pillar[5]arene containing fragments of L-Phe (lgKa = 3.60). This study has shown a possible application of betaine pillar[5]arene derivatives for nucleic acid protection according to its competitive binding with biomacromolecules.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Aleksandra Khabibrakhmanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
- Federal Center for Toxicological, Radiation, and Biological Safety, Nauchny Gorodok-2, 420075 Kazan, Russia
| |
Collapse
|
27
|
Zhao Y, Chen L, Chen J, Li J, Meng Q, Sue ACH, Li C. Water-soluble terphen[3]arene macrocycle: a versatile reversal agent of neuromuscular blockers. Chem Commun (Camb) 2023; 59:5858-5861. [PMID: 37083858 DOI: 10.1039/d3cc01405c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Herein we report the design and synthesis of a terphen[n]arene derivative functionalised with sulfate acid ester groups. This water-soluble terphen[3]arene host effectively encapsulates a multitude of neuromuscular blocking agents (NMBAs) with high affinity, showing great potential as a NMBAs reversal agent in pharmaceutical research.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300387, P. R. China.
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jian Li
- School of Chemistry and Chemical Engineering, Henan Normal University, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Andrew C-H Sue
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300387, P. R. China.
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
28
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
29
|
Zhou S, Chen Y, Xu J, Yin Y, Yu J, Liu W, Chen S, Wang L. Supramolecular detoxification of nitrogen mustard via host-guest encapsulation by carboxylatopillar[5]arene. J Mater Chem B 2023; 11:2706-2713. [PMID: 36876404 DOI: 10.1039/d2tb02211g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nitrogen mustard (NM), a kind of alkylating agent similar to sulfur mustard, remains a threat to public health. However, there is nearly no satisfactory antidote for nitrogen mustard. Herein, we developed a supramolecular antidote to nitrogen mustard through efficient complexation of NM by carboxylatopillar[5]arene potassium salts (CP[5]AK). The cavity of methoxy pillar[5]arene (P5A) is sufficient to encapsulate NM with an association constant of 1.27 × 102 M-1, which was investigated by 1H NMR titration, density functional theory studies and independent gradient model studies. NM degrades to the reactive aziridinium salt (2) in the aqueous phase which irreversibly alkylates DNA and proteins, causing severe tissue damage. Considering the size/charge matching with toxic intermediate 2, water-soluble CP[5]AK was selected to encapsulate the toxic aziridinium salt (2), resulting in a high association constant of 4.10 × 104 M-1. The results of protection experiments of guanosine 5'-monophosphate (GMP) by CP[5]AK indicated that the formation of a complex could effectively inhibit the alkylation of DNA. Besides, in vitro and in vivo experiments also indicated that the toxicity of the aziridinium salt (2) is inhibited with the formation of a stable host-guest complex, and CP[5]AK has a good therapeutic effect on the damage caused by NM. This study provides a new mechanism and strategy for the treatment of NM exposure-induced skin injuries.
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Yi Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jie Xu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Yongfei Yin
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jianqing Yu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China.
| | - Shigui Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Lu Wang
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
30
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
31
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
32
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
33
|
Wang X, Pavlović RZ, Finnegan TJ, Karmakar P, Moore CE, Badjić JD. Rapid Access to Chiral and Tripodal Cavitands from β-Pinene. Chemistry 2022; 28:e202202416. [PMID: 36168151 PMCID: PMC9797447 DOI: 10.1002/chem.202202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 12/31/2022]
Abstract
We report Pd-catalyzed cyclotrimerization of (+)-α-bromoenone, obtained from monoterpene β-pinene, into an enantiopure cyclotrimer. This C3 symmetric compound has three bicyclo[3.1.1]heptane rings fused to its central benzene with each ring carrying a carbonyl group. The cyclotrimer undergoes diastereoselective threefold alkynylation with the lithium salts of five terminal alkynes (41-63 %, de=4-83 %). The addition enabled a rapid synthesis of a small library of novel chiral cavitands that, in shape, resemble a tripod stand. These molecular tripods include a tris-bicycloannelated benzene head attached to three alkyne legs twisted in one direction to form a nonpolar cavity with polar groups as feet. Tripods with methylpyridinium and methylisoquinolinium legs, respectively, form inclusion complexes with anti-inflammatory and chiral drugs (R)/(S)-ibuprofen and (R)/(S)-naproxen. The mode of binding shows drug molecules docked in the cavity of the host through ion-ion, cation-π, and C-H-π contacts that, in addition of desolvation, give rise to complexes having millimolar to micromolar stability in water. Our findings open the door to creating a myriad of enantiopure tripods with tunable functions that, in the future, might give novel chemosensors, catalysts or sequestering agents.
Collapse
Affiliation(s)
- Xiuze Wang
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Radoslav Z. Pavlović
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Tyler J. Finnegan
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Pratik Karmakar
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
- Department of ChemistryKing Mongkut's University of Technology Thonburi (KMUTT)126 Pracha Uthit Rd., Bang ModThung Khru, Bangkok10140Thailand
| | - Curtis E. Moore
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Jovica D. Badjić
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| |
Collapse
|
34
|
Liu HK, Lin F, Yu SB, Wu Y, Lu S, Liu YY, Qi QY, Cao J, Zhou W, Li X, Wang H, Zhang DW, Li ZT, Ma D. Highly Water-Soluble Cucurbit[8]uril Derivative as a Broad-Spectrum Neuromuscular Block Reversal Agent. J Med Chem 2022; 65:16893-16901. [PMID: 36480913 DOI: 10.1021/acs.jmedchem.2c01677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Broad-spectrum agents for the reversal of residual curarization induced by neuromuscular blocking agents are of great significance. Here, we report a highly water-soluble cucurbit[8]uril (CB[8]) derivative as a broad-spectrum neuromuscular block reversal agent induced by both benzylisquinolinium and aminosteroid neuromuscular block agents by the supramolecular sequestration strategy. The UV/Vis competition titration assays suggest the high binding affinity of the CB[8] derivative toward both benzylisquinolinium-type cisatracurium besylate and aminosteroid-type rocuronium, vecuronium, and pancuronium, at the level of 107 M-1. In vivo studies demonstrate that the administration of the CB[8] derivative could significantly accelerate the recovery time compared to the placebo or neostigmine groups. The reversal activity of the CB[8] derivative is comparable to or higher than that of clinically approved sugammadex. Acute toxicity evaluations reveal that the CB[8]-derivative displays outstanding biocompatibility, with the maximum tolerance dose as high as 960 mg kg-1.
Collapse
Affiliation(s)
- Hong-Kun Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P.R. China
| | - Yue-Yang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jin Cao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wei Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P.R. China
| | - Hui Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Da Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
35
|
Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. Int J Mol Sci 2022; 23:ijms232315298. [PMID: 36499625 PMCID: PMC9740030 DOI: 10.3390/ijms232315298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.
Collapse
|
36
|
Espitia-Galindo N, Hernández DJ, Zapata-Rivera J, Vargas EF. Complexation of sodium sulfamerazine with an ionic resorcin[4]arene: thermodynamic and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
37
|
Zhang Y, Ma M, Chen L, Du X, Meng Z, Zhang H, Zheng Z, Chen J, Meng Q. A Biocompatible Liquid Pillar[n]arene-Based Drug Reservoir for Topical Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122621. [PMID: 36559115 PMCID: PMC9783689 DOI: 10.3390/pharmaceutics14122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Advanced external preparations that possess a sustained-release effect and integrate few irritant elements are urgently needed to satisfy the special requirements of topical administration in the clinic. Here, a series of liquid pillar[n]arene-bearing varying-length oligoethylene oxide chains (OEPns) were designed and synthesized. Following rheological property and biocompatibility investigations, pillar[6]arene with triethylene oxide substituents (TEP6) with satisfactory cavity size were screened as optimal candidate compounds. Then, a supramolecular liquid reservoir was constructed from host-guest complexes between TEP6 and econazole nitrate (ECN), an external antimicrobial agent without additional solvents. In vitro drug-release studies revealed that complexation by TEP6 could regulate the release rate of ECN and afford effective cumulative amounts. In vivo pharmacodynamic studies confirmed the formation of a supramolecular liquid reservoir contributed to the accelerated healing rate of a S. aureus-infected mouse wound model. Overall, these findings have provided the first insights into the construction of a supramolecular liquid reservoir for topical administration.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| |
Collapse
|
38
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
40
|
Zhai C, Isaacs L. New Synthetic Route to Water‐Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties**. Chemistry 2022; 28:e202201743. [DOI: 10.1002/chem.202201743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| |
Collapse
|
41
|
Li ZT, Yu SB, Liu Y, Tian J, Zhang DW. Supramolecular Organic Frameworks: Exploring Water-Soluble, Regular Nanopores for Biomedical Applications. Acc Chem Res 2022; 55:2316-2325. [PMID: 35916446 DOI: 10.1021/acs.accounts.2c00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In past decades, regular porous architectures have received a great amount of attention because of their versatile functions and applications derived from their efficient adsorption of various guests. However, most reported porous architectures exist only in the solid state. Therefore, their applications as biomaterials may face several challenges, such as phase separation, slow degradation, and long-term accumulation in the body. This Account summarizes our efforts with respect to the development and biomedical applications of water-soluble 3D diamondoid supramolecular organic frameworks (dSOFs), a family of supramolecular polymers that possess intrinsic regular nanoscale porosity.dSOFs have been constructed from tetratopic components and cucurbit[8]uril (CB[8]) through hydrophobically driven encapsulation by CB[8] for intermolecular dimers formed by peripheral aromatic subunits of the tetratopic components in water. All dSOFs exhibit porosity regularity or periodicity in aqueous solution, which is confirmed by solution-phase synchrotron SAXS and XRD experiments. Dynamic light scattering (DLS) reveals that their sizes range from 50 to 150 nm, depending on the concentrations of the components. As nonequilibrium supramolecular architectures, dSOFs can maintain their nanoscale sizes at micromolar concentrations for dozens of hours. Their diamondoid pores have aperture sizes ranging from 2.1 to 3.6 nm, whereas their water solubility and porosity regularity allow them to rapidly include discrete guests driven by ion-pair electrostatic attraction, hydrophobicity, or a combination of the two interactions. The guests may be small molecule or large macromolecular drugs, photodynamic agents (PDAs), or DNA.The rapid inclusion of bioactive guests into dSOFs has led to two important biofunctions. The first is to function as antidotes through including residual drugs. For heparins, the inclusion results in full neutralization of their anticoagulant activity. For clinically used porphyrin PDAs, the inclusion can alleviate their long-term posttreatment phototoxicity but does not reduce their photodynamic efficacy. The second is to function as in situ loading carriers for the intracellular delivery of antitumor drugs or DNA. Their nanoscale sizes bring out their ability to overcome the multidrug resistance of tumor cells, which leads to a remarkable enhancement of the bioactivity of the included drugs. By conjugating aldoxorubicin to tetrahedral components, albumin-mimicking prodrugs have also been constructed, which conspicuously improves the efficacy of aldoxorubicin toward multi-drug-resistant tumors through the delivery of the frameworks. As new supramolecular drugs and carriers, dSOFs are generally biocompatible. Thus, further efforts might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
42
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
43
|
Reversing neuromuscular blocking agent decamethonium by carboxylatopillar[6]arene based on host-guest encapsulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Lin F, Yu SB, Liu YY, Liu CZ, Lu S, Cao J, Qi QY, Zhou W, Li X, Liu Y, Tian J, Li ZT. Porous Polymers as Universal Reversal Agents for Heparin Anticoagulants through an Inclusion-Sequestration Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200549. [PMID: 35499202 DOI: 10.1002/adma.202200549] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Heparins are widely used anticoagulants for surgical procedures and extracorporeal therapies. However, all of them have bleeding risks. Protamine sulfate, the only clinically approved antidote for unfractionated heparin (UFH), has adverse effects. Moreover, protamine can only partially neutralize low-molecular-weight heparins (LMWHs) and is not effective for fondaparinux. Here, an inclusion-sequestration strategy for efficient neutralization of heparin anticoagulants by cationic porous supramolecular organic frameworks (SOFs) and porous organic polymers (POPs) is reported. Isothermal titration calorimetric and fluorescence experiments show strong binding affinities of these porous polymers toward heparins, whereas dynamic light scattering and zeta potential analysis confirm that the heparin sequences are adsorbed into the interior of the porous hosts. Activated partial thromboplastin time, anti-FXa, and thromboelastography assays indicate that their neutralization efficacies are higher than or as high as that of protamine for UFH and generally superior to protamine for LMWHs and fondaparinux, which is further confirmed by tail-transection model in mice and ex vivo aPTT or anti-FXa analysis in rats. Acute toxicity evaluations reveal that one of the SOFs displays outstanding biocompatibility. This work suggests that porous polymers can supply safe and rapid reversal of clinically used heparins, as protamine surrogates, providing an improved approach for their neutralization.
Collapse
Affiliation(s)
- Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Chuan-Zhi Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Jin Cao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
45
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Zhao L, Chen J, Tian L, Zhang Y, Chen L, Du X, Ma M, Li J, Meng Q, Li C. Supramolecular Detoxification of Macromolecular Biotoxin through the Complexation by a Large-Sized Macrocycle. Adv Healthc Mater 2022; 11:e2200270. [PMID: 35543330 DOI: 10.1002/adhm.202200270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Biotoxins are diverse, complex, and hypertoxic, ultimately serving as grave and lasting menaces to humanity. Here, it is aimed to introduce a new detoxification methodology for macromolecular biotoxin through complexation by a very large macrocycle. A 25-mer peptide isolated from Lycosa erythrognatha spider venom (LyeTxI) is selected as the model macromolecular biotoxin. Quaterphen[4]arene, with a side length of ≈1.6 nm, has a sufficient cavity to bind LyeTxI. Hence, the water-soluble derivative of Quaterphen[4]arene (H) is designed and synthesized. H exhibits an overall host-guest complexation toward LyeTxI, resulting in a considerably high association constant of (7.01 ± 0.18) × 107 m-1 . This encapsulation of peptide is interesting as traditional macrocycles can only engulf the amino acid residues of peptides due to their limited cavity size. In vitro assay verifies that complexation by H inhibits the interactions of LyeTxI with cell membranes, thereby reducing its cytotoxicity, suppressing hemolysis, and decreasing the release of lactate dehydrogenase. Notably, the intravenous administration of H has a significant therapeutic effect on LyeTxI-poisoned mice, alleviating inflammation and tissue damage, and markedly improving the survival rate from 10% to 80%. An efficient and potentially versatile approach is provided to detoxify macromolecular biotoxins, with giant macrocycle serving as an antidote.
Collapse
Affiliation(s)
- Liang Zhao
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Xinbei Du
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Jian Li
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
47
|
Zong Y, Xu YY, Wu Y, Liu Y, Li Q, Lin F, Yu SB, Wang H, Zhou W, Sun XW, Zhang DW, Li ZT. Porous dynamic covalent polymers as promising reversal agents for heparin anticoagulants. J Mater Chem B 2022; 10:3268-3276. [PMID: 35357392 DOI: 10.1039/d2tb00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparins are natural and partially degraded polyelectrolytes that consist of sulfated polysaccharide backbones. However, as clinically used anticoagulants, heparins are associated with clinical bleeding risks and thus require rapid neutralization. Protamine sulfate is the only clinically approved antidote for unfractionated heparin (UFH), which not only may cause severe adverse reactions in patients, but also is only partially effective against low molecular weight heparins (LMWHs). We here present the facile synthesis of four porous multicationic dynamic covalent polymers (DCPs) from the condensation of tritopic aldehyde and acylhydrazine precursors. We show that, as new water-soluble polymeric antidotes, the new DCPs can effectively include both UFH and LMWHs and thus reverse their anticoagulating activity, which is confirmed by the activated partial thromboplastin time and thromboelastographic assays as well as mouse tail transection assay (bleeding model). The neutralization activities of two of the DCPs were found to be overall superior to that of protamine and have wider concentration windows and good biocompatibility. This pore-inclusion neutralization strategy paves the way for the development of water-soluble polymers as universal heparin binding agents.
Collapse
Affiliation(s)
- Yang Zong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xing-Wen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
48
|
Liu Y, Liu CZ, Wang ZK, Zhou W, Wang H, Zhang YC, Zhang DW, Ma D, Li ZT. Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials 2022; 284:121467. [DOI: 10.1016/j.biomaterials.2022.121467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
|
49
|
Pejchal J, Jošt P, Múčková L, Andrýs R, Lísa M, Zdarova Karasova J. A systematic evaluation of the cucurbit[7]uril pharmacokinetics and toxicity after a single dose and short-term repeated administration in mice. Arch Toxicol 2022; 96:1411-1421. [DOI: 10.1007/s00204-022-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
50
|
Sun JD, Li Q, Haoyang WW, Zhang DW, Wang H, Zhou W, Ma D, Hou JL, Li ZT. Adsorption-Based Detoxification of Endotoxins by Porous Flexible Organic Frameworks. Mol Pharm 2022; 19:953-962. [PMID: 35102736 DOI: 10.1021/acs.molpharmaceut.1c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial lipopolysaccharides (LPS, endotoxins) cause sepsis that is responsible for a huge amount of mortality globally. However, their neutralization or detoxification remains an unmet medical need. We envisaged that cationic organic frameworks with persistent hydrophobic porosity may adsorb and thus neutralize LPS through a combination of cooperative ion-pairing electrostatic attraction and hydrophobicity. We here report the preparation of two water-soluble flexible organic frameworks (FOF-1 and FOF-2) from tetratopic and ditopic precursors through quantitative formation of hydrazone bonds at room temperature. The two FOFs are revealed to possess hydrodynamic diameters, which range from 20 to 120 nm, depending on the concentrations. Dynamic light scattering and isothermal titration calorimetric and chromogenic limulus amebocyte lysate experiments indicate that both frameworks are able to adsorb and thus reduce the concentration of free LPS molecules in aqueous solution, whereas cytokine inhibition experiments with RAW264.7 support that this adsorption can significantly decrease the toxicity of LPS. In vivo experiments with mice (five males per group) show that the injection of FOF-1 at a dose of 0.6 mg/kg realizes the survival of all of the mice administrated with LPS of the d-galactosamine (d-Gal)-sensitized absolute lethal dose (LD100, 0.05 mg/kg), whereas its maximum tolerated dose for mice is determined to be 10 mg/kg. These findings provide a new promising sequestration strategy for the development of porous agents for the neutralization of LPS.
Collapse
Affiliation(s)
- Jian-Da Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei-Wei Haoyang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|