1
|
Xue J, Zhang J, Zhu J. Unraveling molecular signatures and prognostic biomarkers in glioblastoma: a comprehensive study on treatment resistance and personalized strategies. Discov Oncol 2024; 15:743. [PMID: 39630160 PMCID: PMC11618281 DOI: 10.1007/s12672-024-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited treatment success and poor prognosis. Despite surgical resection and adjuvant therapies, GBM often recurs, and resistance to radiotherapy and temozolomide presents significant challenges. This study aimed to elucidate molecular signatures associated with treatment responses, identify potential biomarkers, and enhance personalized treatment strategies for GBM. METHODS We conducted a comprehensive analysis using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The GEO dataset (GSE206225) was used to identify differentially expressed genes (DEGs) between radiation-sensitive/resistant and temozolomide-sensitive/resistant GBM samples. TCGA data were utilized for subsequent analyses, including Lasso-Cox regression, risk score model construction, Kaplan-Meier survival analysis, and gene set enrichment analysis (GSEA). Hub genes were identified through survival analysis, and a gene prognostic nomogram was developed. Additionally, validation of the three-gene risk signature through multiple external cohorts and validation of protein expression levels were performed. RESULTS DEG analysis identified 111 genes associated with chemoradiotherapy resistance, providing insights into the complex landscape of GBM treatment response. The risk score model effectively stratified patients, showing significant differences in overall survival and progression-free survival. GSEA offered a deeper understanding of pathway activities, emphasizing the intricate molecular mechanisms involved. NNAT, IGFBP6, and CYGB were identified as hub genes, and a gene prognostic nomogram demonstrated predictive accuracy. CONCLUSION This study sheds light on the molecular intricacies governing GBM treatment response. The identified hub genes and the gene prognostic nomogram offer valuable tools for predicting patient outcomes and guiding personalized treatment strategies. These findings contribute to advancing our understanding of GBM biology and may pave the way for improved clinical management.
Collapse
Affiliation(s)
- Jinmin Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Sharifian MJ, Igland J, Klungsøyr K, Engeland A, Zhou A, Bjørge T. Incidence trends of adult glioma in Norway and its association with occupation and education: A registry-based cohort study. Cancer Epidemiol 2024; 89:102524. [PMID: 38367313 DOI: 10.1016/j.canep.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Gliomas constitute 75 % of all malignant primary adult brain tumors. Being the most frequent histologic subtype, glioblastomas (GBMs) cause substantial morbidity and mortality worldwide and the Nordic countries have some of the highest incidence rates in the world. Therefore, we investigated the incidence of gliomas in Norway including time trends and associations with education and occupation. METHODS We retrieved individual-level data from databases at Statistics Norway containing information on education and occupation and linked them to data on adult glioma patients diagnosed during 2004-21 from the Cancer Registry of Norway. Age-standardized incidence rates (ASIRs) (World Standard Population) were calculated and analyzed with regards to sex and morphology. Poisson regression was used to test for time-trends, and to analyze the associations between education, occupation and glioma incidence, adjusted for age, sex, and calendar year. Estimates were reported as incidence rate ratios (IRRs) with 95 % confidence intervals (CIs). RESULTS The overall ASIR of gliomas (per 100,000 person-years) was 7.1 (95 % CI 6.9-7.3), with no specific time trend during the study period. The incidence increased with age. Compared to the other subtypes, GBMs were diagnosed at older ages. The risks of developing glioma overall and GBM were associated with occupation but not with educational level. The relative risk of glioma and GBM were respectively 1.17 (95 % CI 1.05-1.31) and 1.17 (95 % CI 1.02-1.35) among high-skilled white-collar workers compared to blue-collar workers. CONCLUSIONS The overall and sex-specific ASIRs of gliomas and GBMs did not show any noticeable time trends. The higher risk of developing glioma overall and GBM in high-skilled white-collar workers compared to blue-collar workers calls for further investigations.
Collapse
Affiliation(s)
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Health and Social Science, Centre for Evidence-Based Practice, Western Norway University of Applied Sciences, Bergen, Norway
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Anders Engeland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Ange Zhou
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Statistics and Biostatistics, Cal State East Bay, Hayward, CA, USA
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
3
|
Kesler SR, Harrison RA, Schutz ADLT, Michener H, Bean P, Vallone V, Prinsloo S. Strength of spatial correlation between gray matter connectivity and patterns of proto-oncogene and neural network construction gene expression is associated with diffuse glioma survival. Front Neurol 2024; 15:1345520. [PMID: 38601343 PMCID: PMC11004301 DOI: 10.3389/fneur.2024.1345520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Like other forms of neuropathology, gliomas appear to spread along neural pathways. Accordingly, our group and others have previously shown that brain network connectivity is highly predictive of glioma survival. In this study, we aimed to examine the molecular mechanisms of this relationship via imaging transcriptomics. Methods We retrospectively obtained presurgical, T1-weighted MRI datasets from 669 adult patients, newly diagnosed with diffuse glioma. We measured brain connectivity using gray matter networks and coregistered these data with a transcriptomic brain atlas to determine the spatial co-localization between brain connectivity and expression patterns for 14 proto-oncogenes and 3 neural network construction genes. Results We found that all 17 genes were significantly co-localized with brain connectivity (p < 0.03, corrected). The strength of co-localization was highly predictive of overall survival in a cross-validated Cox Proportional Hazards model (mean area under the curve, AUC = 0.68 +/- 0.01) and significantly (p < 0.001) more so for a random forest survival model (mean AUC = 0.97 +/- 0.06). Bayesian network analysis demonstrated direct and indirect causal relationships among gene-brain co-localizations and survival. Gene ontology analysis showed that metabolic processes were overexpressed when spatial co-localization between brain connectivity and gene transcription was highest (p < 0.001). Drug-gene interaction analysis identified 84 potential candidate therapies based on our findings. Discussion Our findings provide novel insights regarding how gene-brain connectivity interactions may affect glioma survival.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
| | - Rebecca A. Harrison
- Division of Neurology, BC Cancer, The University of British Columbia, Vancouver, BC, Canada
| | - Alexa De La Torre Schutz
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
| | - Hayley Michener
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, United States
| | - Paris Bean
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, United States
| | - Veronica Vallone
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Prinsloo
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Francis SS, Ostrom QT, Cote DJ, Smith TR, Claus E, Barnholtz-Sloan JS. The Epidemiology of Central Nervous System Tumors. Hematol Oncol Clin North Am 2022; 36:23-42. [PMID: 34801162 DOI: 10.1016/j.hoc.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the current epidemiology of central nervous system tumors. Population-level basic epidemiology, nationally and internationally, and current understanding of germline genetic risk are discussed, with a focus on known and well-studied risk factors related to the etiology of central nervous system tumors.
Collapse
Affiliation(s)
- Stephen S Francis
- Department of Neurological Surgery, Division of Neuro and Molecular Epidemiology, University of California San Francisco School of Medicine, 1450 3rd Street, HD442, San Francisco, CA 94158, USA.
| | - Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, 571 Research Drive, MSRB-1, Rm 442, Durham, NC 27710, USA
| | - David J Cote
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, 1200 N State Street, Suite 3300, Los Angeles, CA 90033, USA
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Avenue, Boston, MA 02115, USA
| | - Elizabeth Claus
- Department of Neurosurgery, Yale University, Yale School of Public Health, Brigham and Women's Hospital, 60 College Street, New Haven, CT 06510, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), NCI Shady Grove, 9609 Medical Center Dr, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Choi KH, Ha J, Bae S, Lee AK, Choi HD, Ahn YH, Ha M, Joo H, Kwon HJ, Jung KW. Mobile Phone Use and Time Trend of Brain Cancer Incidence Rate in Korea. Bioelectromagnetics 2021; 42:629-648. [PMID: 34541704 DOI: 10.1002/bem.22373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
This study evaluated the time trends in mobile phone subscriber number by mobile network generation (G) and brain cancer incidence by type in Korea. We obtained data from the Information Technology Statistics of Korea (1984-2017) and Korea Central Cancer Registry (1999-2017). The average annual percent change was estimated using Joinpoint regression analysis. We evaluated 29,721 brain cancer cases with an age-standardized incidence rate (ASR) of 2.89/100,000 persons. The glioma and glioblastoma annual ASR significantly increased in 2.6% and 3.9% of males and 3.0% and 3.8% of females, respectively. The ASR for frontal lobe involvement was the highest. The ASR of gliomas of unspecified grade annually increased by 7.8%; those for unspecified topology and histology decreased. The incidence of glioma, glioblastoma, frontal, temporal, and high-grade glioma increased among those aged ≥60 years. No association was observed between the mobile phone subscriber number and brain cancer incidence in Korea. Furthermore, long-term research is warranted because of the latency period of brain cancer. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Johyun Ha
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ae-Kyoung Lee
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Hyung-Do Choi
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Young Hwan Ahn
- Department of Neurosurgery, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hyunjoo Joo
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Kyu-Won Jung
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
7
|
Yuan Z, Yang Y, Zhang N, Soto C, Jiang X, An Z, Zheng WJ. Human Endogenous Retroviruses in Glioblastoma Multiforme. Microorganisms 2021; 9:764. [PMID: 33917421 PMCID: PMC8067472 DOI: 10.3390/microorganisms9040764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor. It is primarily diagnosed in the elderly and has a 5-year survival rate of less than 6% even with the most aggressive therapies. The lack of biomarkers has made the development of immunotherapy for GBM challenging. Human endogenous retroviruses (HERVs) are a group of viruses with long terminal repeat (LTR) elements, which are believed to be relics from ancient viral infections. Recent studies have found that those repetitive elements play important roles in regulating various biological processes. The differentially expressed LTR elements from HERVs are potential biomarkers for immunotherapy to treat GBM. However, the understanding of the LTR element expression in GBM is greatly lacking. METHODS We obtained 1077.4 GB of sequencing data from public databases. These data were generated from 111 GBM tissue studies, 30 GBM cell lines studies, and 45 normal brain tissues studies. We analyzed repetitive elements that were differentially expressed in GBM and normal brain samples. RESULTS We found that 48 LTR elements were differentially expressed (p-value < 0.05) between GBM and normal brain tissues, of which 46 were HERV elements. Among these 46 elements, 34 significantly changed HERVs belong to the ERV1 superfamily. Furthermore, 43 out of the 46 differentially expressed HERV elements were upregulated. CONCLUSION Our results indicate significant differential expression of many HERV LTR elements in GBM and normal brain tissues. Expression levels of these elements could be developed as biomarkers for GBM treatments.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Z.Y.); (Y.Y.); (X.J.)
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Yuntao Yang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Z.Y.); (Y.Y.); (X.J.)
| | - Ningyan Zhang
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Claudio Soto
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Z.Y.); (Y.Y.); (X.J.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Wenjin Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Z.Y.); (Y.Y.); (X.J.)
| |
Collapse
|
8
|
Tamtaji OR, Behnam M, Pourattar MA, Hamblin MR, Mahjoubin-Tehran M, Mirzaei H, Asemi Z. PIWI-interacting RNAs and PIWI proteins in glioma: molecular pathogenesis and role as biomarkers. Cell Commun Signal 2020; 18:168. [PMID: 33109195 PMCID: PMC7590611 DOI: 10.1186/s12964-020-00657-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common primary brain tumor, and is a major health problem throughout the world. Today, researchers have discovered many risk factors that are associated with the initiation and progression of gliomas. Studies have shown that PIWI-interacting RNAs (piRNAs) and PIWI proteins are involved in tumorigenesis by epigenetic mechanisms. Hence, it seems that piRNAs and PIWI proteins may be potential prognostic, diagnostic or therapeutic biomarkers in the treatment of glioma. Previous studies have demonstrated a relationship between piRNAs and PIWI proteins and some of the molecular and cellular pathways in glioma. Here, we summarize recent evidence and evaluate the molecular mechanisms by which piRNAs and PIWI proteins are involved in glioma. Video abstract
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Yuan Z, Ye X, Zhu L, Zhang N, An Z, Zheng WJ. Virome assembly and annotation in brain tissue based on next-generation sequencing. Cancer Med 2020; 9:6776-6790. [PMID: 32738030 PMCID: PMC7520322 DOI: 10.1002/cam4.3325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
The glioblastoma multiforme (GBM) is one of the deadliest tumors. It has been speculated that virus plays a role in GBM but the evidences are controversy. Published researches are mainly limited to studies on the presence of human cytomegalovirus (HCMV) in GBM. No comprehensive assessment of the brain virome, the collection of viral material in the brain, based on recently sequenced data has been performed. Here, we characterized the virome from 111 GBM samples and 57 normal brain samples from eight projects in the SRA database by a tested and comprehensive assembly approach. The annotation of the assembled contigs showed that most viral sequences in the brain belong to the viral family Retroviridae. In some GBM samples, we also detected full genome sequence of a novel picornavirus recently discovered in invertebrates. Unlike previous reports, our study did not detect herpes virus such as HCMV in GBM from the data we used. However, some contigs that cannot be annotated with any known genes exhibited antibody epitopes in their sequences. These findings provide several avenues for potential cancer therapy: the newly discovered picornavirus could be a starting point to engineer novel oncolytic virus; and the exhibited antibody epitopes could be a source to explore potential drug targets for immune cancer therapy. By characterizing the virosphere in GBM and normal brain at a global level, the results from this study strengthen the link between GBM and viral infection which warrants the further investigation.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Xiaohua Ye
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Lisha Zhu
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Ningyan Zhang
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Zhiqiang An
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - W. Jim Zheng
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
10
|
Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ, Kim KW. Optimized Image-Based Surrogate Endpoints in Targeted Therapies for Glioblastoma: A Systematic Review and Meta-Analysis of Phase III Randomized Controlled Trials. Korean J Radiol 2020; 21:471-482. [PMID: 32193895 PMCID: PMC7082650 DOI: 10.3348/kjr.2019.0839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Objective We aimed to determine the optimized image-based surrogate endpoints (IBSEs) in targeted therapies for glioblastoma through a systematic review and meta-analysis of phase III randomized controlled trials (RCTs). Materials and Methods A systematic search of OVID-MEDLINE and EMBASE for phase III RCTs on glioblastoma was performed in December 2017. Data on overall survival (OS) and IBSEs, including progression-free survival (PFS), 6-month PFS (6moPFS), 12-month PFS (12moPFS), median PFS, and objective response rate (ORR) were extracted. Weighted linear regression analysis for the hazard ratio for OS and the hazard ratios or odds ratios for IBSEs was performed. The associations between IBSEs and OS were evaluated. Subgroup analyses according to disease stage (newly diagnosed glioblastoma versus recurrent glioblastoma), types of test treatment, and types of response assessment criteria were performed. Results Twenty-three phase III RCTs published between 2000 and 2017, including 8387 patients, met the inclusion criteria. OS showed strong correlations with PFS (standardized β coefficient [R] = 0.719), 6moPFS (R = 0.647), and 12moPFS (R = 0.638). OS showed no correlations with median PFS and ORR. In subgroup analysis according to types of therapies, PFS showed the highest correlations with OS in targeted therapies for cell cycle pathways (R = 0.913) and growth factor receptors and their downstream pathways (R = 0.962). 12moPFS showed the highest correlation with OS in antiangiogenic therapy (R = 0.821). The response assessment in neuro-oncology criteria provided higher correlation coefficients between OS and IBSEs than the Macdonald criteria. Conclusion Overall, PFS is an optimized IBSE in targeted therapies for glioblastoma; however, 12moPFS is optimal in antiangiogenic therapy.
Collapse
Affiliation(s)
- Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Choong Gon Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
11
|
Sharifi G, Pajavand AM, Nateghinia S, Meybodi TE, Hasooni H. Glioma Migration Through the Corpus Callosum and the Brainstem Detected by Diffusion and Magnetic Resonance Imaging: Initial Findings. Front Hum Neurosci 2020; 13:472. [PMID: 32161524 PMCID: PMC7052521 DOI: 10.3389/fnhum.2019.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: Glioma cell infiltration, in which the glioma tumor cells spread long distances from the primary location using white matter (WM) or blood vessels, is known as a significant challenge for surgery or localized chemotherapy and radiation therapy. Following the World Health Organization (WHO), the glioma grading system ranges from stages I to IV, in which lower-grade gliomas represent benign tumors, and higher grade gliomas are considered the most malignant. Materials and Methods: We gathered magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for seven patients with right precentral gyrus-located tumors and six age- and sex-matched healthy subjects for analysis. Tract-Based Spatial Statistics (TBSS) was utilized to evaluate whole-brain WM implication due to probable tumor infiltration. Also, along-tract statistics were used in order to trace the implicated WM tracts. Finally, for cortical evaluation of probable tumor cell migration, voxel-based morphometry (VBM) was utilized, which allowed us to do whole-brain cortical estimation. Results: The TBSS results revealed significantly higher fractional anisotropy (FA) and lower mean diffusivity (MD) in the left side superior corona radiata. Also, higher FA was observed in the right corticostriatal tract. Along-tract statistics were also compiled on the corpus callosum (CC), which is anatomically known as a hub between hemispheres. The body of the CC, which connected with the superior corona radiata anatomically, showed significantly higher FA values relative to healthy subjects, which are in line with the TBSS results. Consistent with these results, whole-brain gray matter changes were analyzed via VBM, which showed significant hypertrophy of both sides of the brainstem. Conclusion: In future investigations, focusing on the genetic basis of the glioma patients in line with imaging studies on a larger sample size, which is known as genetics imaging, would be a suitable approach for tracing this process.
Collapse
Affiliation(s)
- Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Pajavand
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute for Cognitive and Brain Sciences, Shahid Beheshti University GC, Tehran, Iran
| | - Saeedeh Nateghinia
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Emami Meybodi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Hasooni
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ostrom QT, Fahmideh MA, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neuro Oncol 2019; 21:1357-1375. [PMID: 31301133 PMCID: PMC6827837 DOI: 10.1093/neuonc/noz123] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary brain tumors account for ~1% of new cancer cases and ~2% of cancer deaths in the United States; however, they are the most commonly occurring solid tumors in children. These tumors are very heterogeneous and can be broadly classified into malignant and benign (or non-malignant), and specific histologies vary in frequency by age, sex, and race/ethnicity. Epidemiological studies have explored numerous potential risk factors, and thus far the only validated associations for brain tumors are ionizing radiation (which increases risk in both adults and children) and history of allergies (which decreases risk in adults). Studies of genetic risk factors have identified 32 germline variants associated with increased risk for these tumors in adults (25 in glioma, 2 in meningioma, 3 in pituitary adenoma, and 2 in primary CNS lymphoma), and further studies are currently under way for other histologic subtypes, as well as for various childhood brain tumors. While identifying risk factors for these tumors is difficult due to their rarity, many existing datasets can be leveraged for future discoveries in multi-institutional collaborations. Many institutions are continuing to develop large clinical databases including pre-diagnostic risk factor data, and developments in molecular characterization of tumor subtypes continue to allow for investigation of more refined phenotypes. Key Point 1. Brain tumors are a heterogeneous group of tumors that vary significantly in incidence by age, sex, and race/ethnicity.2. The only well-validated risk factors for brain tumors are ionizing radiation (which increases risk in adults and children) and history of allergies (which decreases risk).3. Genome-wide association studies have identified 32 histology-specific inherited genetic variants associated with increased risk of these tumors.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David J Cote
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ivo S Muskens
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy M Schraw
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Sharma N, Purkayastha A, Pandya T. Is High Altitude an Emergent Occupational Hazard for Primary Malignant Brain Tumors in Young Adults? A Hypothesis. Indian J Med Paediatr Oncol 2019. [DOI: 10.4103/ijmpo.ijmpo_72_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abstract
Introduction: Brain cancer accounts for approximately 1.4% of all cancers and 2.3% of all cancer-related deaths. Although relatively rare, the associated morbidity and mortality affecting young- and middle-aged individuals has a major bearing on the death-adjusted life years compared to other malignancies. Over the years, we have observed an increase in the incidence of primary malignant brain tumors (PMBTs) in young adults. This observational analysis is to study the prevalence and pattern of brain tumors in young population and find out any occupational correlation. Materials and Methods: The data were obtained from our tertiary care cancer institute's malignant diseases treatment center registry from January 2008 to January 2018. A total of 416 cases of PMBT were included in this study. Results: Our analysis suggested an overall male predominance with most PMBTs occurring at ages of 20–49 years. The glial tumors constituted 94.3% while other histology identified were gliosarcoma (1) gliomatosis cerebri (1), hemangiopericytoma (3), and pineal tumors (3). In our institute, PMBT constituted 1% of all cancers while 2/416 patients had secondary glioblastoma multiforme with 40% showing positivity for O-6-methylguanine-DNA-methyltransferase promoter methylation. Conclusions: Most patients belonged to a very young age group without any significant family history. A probable hypothesis could be excessive cosmic radiation exposure to persons staying at high altitude areas due to occupational exigencies for which in-depth case–control epidemiological studies are required to reach any conclusion.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Radiation Oncology, Army Hospital (Research and Referral), New Delhi, India
| | - Abhishek Purkayastha
- Department of Radiation Oncology, Command Hospital (Southern Command), Pune, Maharashtra, India
| | - Tejas Pandya
- Department of Radiation Oncology, Army Hospital (Research and Referral), New Delhi, India
| |
Collapse
|
14
|
Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z. New trends in glioma cancer therapy: Targeting Na + /H + exchangers. J Cell Physiol 2019; 235:658-665. [PMID: 31250444 DOI: 10.1002/jcp.29014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Glioma is the oneof the most prevalent primarybrain tumors. There is a variety of oxidative stresses, inflammatory pathways, apoptosis signaling, and Na+ /H + exchangers (NHEs) involved in the pathophysiology of glioma. Previous studies have indicated a relationship between NHEs and some molecular pathways in glioma. NHEs, including NHE1, NHE5, and NHE9 affect apoptosis, tumor-associated macrophage inflammatory pathways, matrix metalloproteinases, cancer-cell growth, invasion, and migration of glioma. Also, inhibition of NHEs contributes to increased survival in animal models of glioma. Limited studies, however, have assessed the relationship between NHEs and molecular pathways in glioma. This review summarizes current knowledge and evidence regarding the relationship between NHEs and glioma, and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Shamshirian
- Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Röösli M, Lagorio S, Schoemaker MJ, Schüz J, Feychting M. Brain and Salivary Gland Tumors and Mobile Phone Use: Evaluating the Evidence from Various Epidemiological Study Designs. Annu Rev Public Health 2019; 40:221-238. [PMID: 30633716 DOI: 10.1146/annurev-publhealth-040218-044037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mobile phones (MPs) are the most relevant source of radiofrequency electromagnetic field (RF-EMF) exposure to the brain and the salivary gland. Whether this exposure implies a cancer risk has been addressed in several case-control and few cohort studies. A meta-analysis of these studies does not show increased risks for meningioma, pituitary, and salivary gland tumors. For glioma and acoustic neuroma, the results are heterogeneous, with few case-control studies reporting substantially increased risks. However, these elevated risks are not coherent with observed incidence time trends, which are considered informative for this specific topic owing to the steep increase in MP use, the availability of virtually complete cancer registry data from many countries, and the limited number of known competing environmental risk factors. In conclusion, epidemiological studies do not suggest increased brain or salivary gland tumor risk with MP use, although some uncertainty remains regarding long latency periods (>15 years), rare brain tumor subtypes, and MP usage during childhood.
Collapse
Affiliation(s)
- Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland;
- University of Basel, 4001 Basel, Switzerland
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Rome, Italy
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Karipidis K, Elwood M, Benke G, Sanagou M, Tjong L, Croft RJ. Mobile phone use and incidence of brain tumour histological types, grading or anatomical location: a population-based ecological study. BMJ Open 2018; 8:e024489. [PMID: 30530588 PMCID: PMC6292417 DOI: 10.1136/bmjopen-2018-024489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Some studies have reported increasing trends in certain brain tumours and a possible link with mobile phone use has been suggested. We examined the incidence time trends of brain tumour in Australia for three distinct time periods to ascertain the influence of improved diagnostic technologies and increase in mobile phone use on the incidence of brain tumours. DESIGN In a population-based ecological study, we examined trends of brain tumour over the periods 1982-1992, 1993-2002 and 2003-2013. We further compared the observed incidence during the period of substantial mobile phone use (2003-2013) with predicted (modelled) incidence for the same period by applying various relative risks, latency periods and mobile phone use scenarios. SETTING National Australian incidence registration data on primary cancers of the brain diagnosed between 1982 and 2013. POPULATION 16 825 eligible brain cancer cases aged 20-59 from all of Australia (10 083 males and 6742 females). MAIN OUTCOME MEASURES Annual percentage change (APC) in brain tumour incidence based on Poisson regression analysis. RESULTS The overall brain tumour rates remained stable during all three periods. There was an increase in glioblastoma during 1993-2002 (APC 2.3, 95% CI 0.8 to 3.7) which was likely due to advances in the use of MRI during that period. There were no increases in any brain tumour types, including glioma (-0.6, -1.4 to 0.2) and glioblastoma (0.8, -0.4 to 2.0), during the period of substantial mobile phone use from 2003 to 2013. During that period, there was also no increase in glioma of the temporal lobe (0.5, -1.3 to 2.3), which is the location most exposed when using a mobile phone. Predicted incidence rates were higher than the observed rates for latency periods up to 15 years. CONCLUSIONS In Australia, there has been no increase in any brain tumour histological type or glioma location that can be attributed to mobile phones.
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria, Australia
| | - Mark Elwood
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria, Australia
| | - Lydiawati Tjong
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria, Australia
| | - Rodney J Croft
- Australian Centre for Electromagnetic Bioeffects Research, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Trends in the incidence of primary brain, central nervous system and intracranial tumors in Israel, 1990–2015. Cancer Epidemiol 2018; 56:6-13. [DOI: 10.1016/j.canep.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
|
18
|
Li K, Lu D, Guo Y, Wang C, Liu X, Liu Y, Liu D. Trends and patterns of incidence of diffuse glioma in adults in the United States, 1973-2014. Cancer Med 2018; 7:5281-5290. [PMID: 30175510 PMCID: PMC6198197 DOI: 10.1002/cam4.1757] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The objective of the study was to identify trends in incidence of adult diffuse gliomas in the United States and evaluate the contribution of age, period, and cohort effects to the trends. METHODS Using the Surveillance, Epidemiology, and End Results 9 database, primary diffuse glioma patients (≥20 years old) diagnosed from 1973 to 2014 were identified. Incidence trends were analyzed using joinpoint regression and age-period-cohort modeling. RESULTS Overall, the incidence for adult glioma decreased slowly from 1985 to 2014 (annual percent change [APC] = 0.5%, 95% confidence intervals [CI], 0.3%-0.6%). In histology subtype-stratified analysis, glioblastoma and nonglioblastoma exhibited opposite trends. The incidence for glioblastoma increased from 1978 to 2014 (APC for year 1978-1992 = 2.7%, 95% CI, 1.8%-3.6%; APC for 1992-2014 = 0.3%, 95% CI, 0%-0.6%), while the incidence for nonglioblastoma decreased significantly from 1982 to 2014 (APC = 2.2%, 95% CI, 2.0%-2.5%). Age-period-cohort modeling revealed significant period and cohort effects, with the patterns for glioblastoma and nonglioblastoma distinctive from each other. Compared with adults born 1890s, those born 1920s had approximately 4-fold the risk of glioblastoma after adjustment of age and period effects, while the risk of nonglioblastoma was reduced by half in individuals in the 1939 cohort as compared with those in the 1909 cohort. CONCLUSIONS The results support the hypothesis of etiological heterogeneity of diffuse gliomas by histology subtypes. The established risk factors cannot fully explain the distinct patterns by histology subtypes, which necessitate further epidemiological studies.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Dan Lu
- Medical Examination Center, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Changwei Wang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Xiao Liu
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Yu Liu
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Dezhong Liu
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| |
Collapse
|
19
|
Abstract
Incidence, prevalence, and survival for brain tumors varies by histologic type, age at diagnosis, sex, and race/ethnicity. Significant progress has been made in identifying potential risk factors for brain tumors, although more research is warranted. The strongest risk factors that have been identified thus far include allergies/atopic disease, ionizing radiation, and heritable genetic factors. Further analysis of large, multicenter, epidemiologic studies, as well as well annotated omic datasets (including genomic, epigenomic, transcriptomic, proteomic, or metabolomics data) can potentially lead to further understanding of the relationship between gene and environment in the process of brain tumor development.
Collapse
|
20
|
Logun M, Zhao W, Mao L, Karumbaiah L. Microfluidics in Malignant Glioma Research and Precision Medicine. ADVANCED BIOSYSTEMS 2018; 2:1700221. [PMID: 29780878 PMCID: PMC5959050 DOI: 10.1002/adbi.201700221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, GA 30602-2771, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602-2771, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| |
Collapse
|
21
|
Miller B, Peeri NC, Nabors LB, Creed JH, Thompson ZJ, Rozmeski CM, LaRocca RV, Chowdhary S, Olson JJ, Thompson RC, Egan KM. Handedness and the risk of glioma. J Neurooncol 2018; 137:639-644. [PMID: 29332185 DOI: 10.1007/s11060-018-2759-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/05/2018] [Indexed: 12/01/2022]
Abstract
Gliomas are the most common type of malignant primary brain tumor and few risk factors have been linked to their development. Handedness has been associated with several pathologic neurological conditions such as schizophrenia, autism, and epilepsy, but few studies have evaluated a connection between handedness and risk of glioma. In this study, we examined the relationship between handedness and glioma risk in a large case-control study (1849 glioma cases and 1354 healthy controls) and a prospective cohort study (326,475 subjects with 375 incident gliomas). In the case-control study, we found a significant inverse association between left handedness and glioma risk, with left-handed persons exhibiting a 35% reduction in the risk of developing glioma [odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.51-0.83] after adjustment for age, gender, race, education, and state of residence; similar inverse associations were observed for GBM (OR = 0.69, 95% CI 0.52-0.91), and non-GBM (OR = 0.59, 95% CI 0.42-0.82) subgroups. The association was consistent in both males and females, and across age strata, and was observed in both glioblastoma and in lower grade tumors. In the prospective cohort study, we found no association between handedness and glioma risk (hazards ratio = 0.92, 95% CI 0.67-1.28) adjusting for age, gender, and race. Further studies on this association may help to elucidate mechanisms of pathogenesis in glioma.
Collapse
Affiliation(s)
- Briana Miller
- Neuro-Oncology Program, University of Alabama at Birmingham, FOT 1020, 510 20th St. South, Birmingham, AL, 35294, USA
| | - Noah C Peeri
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612-9416, USA
| | - Louis Burt Nabors
- Neuro-Oncology Program, University of Alabama at Birmingham, FOT 1020, 510 20th St. South, Birmingham, AL, 35294, USA
| | - Jordan H Creed
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612-9416, USA
| | - Zachary J Thompson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Carrie M Rozmeski
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612-9416, USA
| | - Renato V LaRocca
- Norton Cancer Institute, 676 So Floyd St., Louisville, KY, 40202, USA
| | - Sajeel Chowdhary
- Neuro-Oncology Program, Lynn Cancer Institute, 701 NW 13th Street, Boca Raton, FL, 33486, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, 1365-B Clifton Rd., NE, Ste. 2200, Atlanta, GA, 30322, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, 691 Preston Building, Nashville, TN, 37232, USA
| | - Kathleen M Egan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612-9416, USA.
| |
Collapse
|
22
|
Abstract
Glioblastoma (GBM) is a rare tumor and one of the most challenging malignancies to treat in all of oncology. Although advances have been made in the treatment of GBM, encouraging outcomes typically are not observed; patients diagnosed with these tumors generally have a dismal prognosis and poor quality of life as the disease progresses. This review summarizes the clinical presentation of GBM, diagnostic methods, evidentiary basis for the current standards of care, and investigational approaches to treat or manage GBM. Because the track record for developing effective therapies for GBM has been dismal, we also review the challenges to successful therapeutic and biomarker development.
Collapse
Affiliation(s)
- Brian M. Alexander
- Brian M. Alexander, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA; and Timothy F. Cloughesy, University of California Los Angeles, Los Angeles, CA
| | - Timothy F. Cloughesy
- Brian M. Alexander, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA; and Timothy F. Cloughesy, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
23
|
Abstract
Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.
Collapse
Affiliation(s)
- Katharine A McNeill
- Division of Neuroepidemiology, Department of Neurology, New York University School of Medicine, and the Laura and Isaac Perlmutter Cancer Center, 240 East 38th Street, 19th Floor, New York, NY 10016, USA.
| |
Collapse
|
24
|
Incidence and survival trends in oligodendrogliomas and anaplastic oligodendrogliomas in the United States from 2000 to 2013: a CBTRUS Report. J Neurooncol 2017; 133:17-25. [PMID: 28397028 DOI: 10.1007/s11060-017-2414-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Measuring tumor-specific trends in incidence is necessary to elucidate tumor-type contribution to overall cancer burden in the US population. Recently, there have been conflicting reports concerning the incidence of oligodendrogliomas (OD) and anaplastic oligodendrogliomas (AOD). Therefore, our goal was to examine trends in OD and AOD incidence and survival by age, gender and race. Data was analyzed from the Central Brain Tumor Registry of the United States (CBTRUS) from 2000 to 2013. Age-adjusted incidence rates per 100,000 person-years with 95% confidence intervals (CI) and annual percent changes (APCs) with 95% CI were calculated for OD and AOD by age, sex and race. Survival rates were calculated for age, sex and race using a subset of the CBTRUS data. OD and AOD incidence peaked at 36-40 and 56-60 years, respectively. AOD:OD ratio increased up to age 75. Overall, OD and AOD incidence decreased [OD: APC -3.2 (2000-2013), AOD: -6.5 (2000-2007)]. OD incidence was highest in Whites but decreased significantly (2000-2013: APC -3.1) while incidence in Black populations did not significantly decrease (2000-2013: APC -1.6). Survival rates decreased with advancing age for OD, while persons aged 0-24 had the lowest survival for AOD. The current study reports a decrease in overall OD and AOD incidence from 2000 to 2013. Furthermore, AOD makes up an increasing proportion of oligodendroglial tumors up to age 75. Lower AOD survival in 0-24 years old may indicate molecular differences in pediatric cases. Thus, surveillance of tumor-specific trends by age, race and sex can reveal clinically relevant variations.
Collapse
|
25
|
de Vocht F. Inferring the 1985-2014 impact of mobile phone use on selected brain cancer subtypes using Bayesian structural time series and synthetic controls. ENVIRONMENT INTERNATIONAL 2016; 97:100-107. [PMID: 27835750 DOI: 10.1016/j.envint.2016.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mobile phone use has been increasing rapidly in the past decades and, in parallel, so has the annual incidence of certain types of brain cancers. However, it remains unclear whether this correlation is coincidental or whether use of mobile phones may cause the development, promotion or progression of specific cancers. The 1985-2014 incidence of selected brain cancer subtypes in England were analyzed and compared to counterfactual 'synthetic control' timeseries. METHODS Annual 1985-2014 incidence of malignant glioma, glioblastoma multiforme, and malignant neoplasms of the temporal and parietal lobes in England were modelled based on population-level covariates using Bayesian structural time series models assuming 5,10 and 15year minimal latency periods. Post-latency counterfactual 'synthetic England' timeseries were nowcast based on covariate trends. The impact of mobile phone use was inferred from differences between measured and modelled time series. RESULTS There is no evidence of an increase in malignant glioma, glioblastoma multiforme, or malignant neoplasms of the parietal lobe not predicted in the 'synthetic England' time series. Malignant neoplasms of the temporal lobe however, have increased faster than expected. A latency period of 10years reflected the earliest latency period when this was measurable and related to mobile phone penetration rates, and indicated an additional increase of 35% (95% Credible Interval 9%:59%) during 2005-2014; corresponding to an additional 188 (95%CI 48-324) cases annually. CONCLUSIONS A causal factor, of which mobile phone use (and possibly other wireless equipment) is in agreement with the hypothesized temporal association, is related to an increased risk of developing malignant neoplasms in the temporal lobe.
Collapse
Affiliation(s)
- Frank de Vocht
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK.
| |
Collapse
|
26
|
Arendash GW. Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer's Disease. J Alzheimers Dis 2016; 53:753-71. [PMID: 27258417 PMCID: PMC4981900 DOI: 10.3233/jad-160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
We have demonstrated in multiple studies that daily, long-term electromagnetic field (EMF) treatment in the ultra-high frequency range not only protects Alzheimer's disease (AD) transgenic mice from cognitive impairment, but also reverses such impairment in aged AD mice. Moreover, these beneficial cognitive effects appear to be through direct actions on the AD process. Based on a large array of pre-clinical data, we have initiated a pilot clinical trial to determine the safety and efficacy of EMF treatment to mild-moderate AD subjects. Since it is important to establish the safety of this new neuromodulatory approach, the main purpose of this review is to provide a comprehensive assessment of evidence supporting the safety of EMFs, particularly through transcranial electromagnetic treatment (TEMT). In addition to our own pre-clinical studies, a rich variety of both animal and cell culture studies performed by others have underscored the anticipated safety of TEMT in clinical AD trials. Moreover, numerous clinical studies have determined that short- or long-term human exposure to EMFs similar to those to be provided clinically by TEMT do not have deleterious effects on general health, cognitive function, or a variety of physiologic measures-to the contrary, beneficial effects on brain function/activity have been reported. Importantly, such EMF exposure has not been shown to increase the risk of any type of cancer in human epidemiologic studies, as well as animal and cell culture studies. In view of all the above, clinical trials of safety/efficacy with TEMT to AD subjects are clearly warranted and now in progress.
Collapse
|
27
|
Sato Y, Kiyohara K, Kojimahara N, Yamaguchi N. Time trend in incidence of malignant neoplasms of the central nervous system in relation to mobile phone use among young people in Japan. Bioelectromagnetics 2016; 37:282-9. [PMID: 27197787 DOI: 10.1002/bem.21982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
The aim of this study was to examine whether incidence of malignant neoplasms of the central nervous system from 1993 to 2010 has increased among young people in Japan, and whether the increase could be explained by increase in mobile phone use. Joinpoint regression analysis of incidence data was performed. Subsequently, the expected incidence rate was calculated assuming that the relative risk was 1.4 for those who used mobile phones more than 1640 h cumulatively. Annual percent change was 3.9% (95% confidence interval [CI], 1.6-6.3) for men in their 20s from 1993 to 2010, 12.3% (95% CI, 3.3-22.1) for women in their 20s from 2002 to 2010, 2.7% (95% CI, 1.3-4.1) for men in their 30s from 1993 to 2010, and 3.0% (95% CI, 1.4-4.7) for women in their 30s from 1993 to 2010. Change in incidence rates from 1993 to 2010 was 0.92 per 100,000 people for men in their 20s, 0.83 for women in their 20s, 0.89 for men in their 30s, and 0.74 for women in their 30s. Change in expected incidence rates from 1993 to 2010 was 0.08 per 100,000 people for men in their 20s, 0.03 for women in their 20s, 0.15 for men in their 30s, and 0.05 for women in their 30s. Patterns in sex-, age-, and period-specific incidence increases are inconsistent with sex-, age-, and period-specific prevalence trends, suggesting the overall incidence increase cannot be explained by heavy mobile phone use. Bioelectromagnetics. 37:282-289, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasuto Sato
- Department of Public Health, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosuke Kiyohara
- Department of Public Health, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriko Kojimahara
- Department of Public Health, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Naohito Yamaguchi
- Department of Public Health, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
28
|
Makale M, Kesari S. Cell Phones and Glioma Risk: An Update. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Krishnatreya M, Kataki AC, Sharma JD, Bhattacharyya M, Nandy P, Hazarika M. Brief descriptive epidemiology of primary malignant brain tumors from North-East India. Asian Pac J Cancer Prev 2015; 15:9871-3. [PMID: 25520120 DOI: 10.7314/apjcp.2014.15.22.9871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Brain tumors are a mixed group of neoplasms that originate from the intracranial tissues and the meninges with degrees of malignancy varying greatly from benign to aggressive. Not much is known about the epidemiology of primary malignant brain tumors (PMBTs) in our population in North-East India. In this analysis, an attempt was made to identify the age groups, gender distribution, topography and different histological types of PMBT with data from a hospital cancer registry. A total of 231 cases of PMBT were identified and included for the present analysis. Our analysis has shown that most of PMBT occur at 20-60 years of age, with a male to female ratio of 2.3:1. Some 70.5% of cases occurred in cerebral lobes except for the occipital lobe, and astrocytic tumors were the most common broad histological type. In our population the prevalence of PMBT is 1% of all cancers, mostly affecting young and middle aged patients. As brain tumors are rare, so case-control analytic epidemiological studies will be required to establish the risk factors prevalent in our population.
Collapse
Affiliation(s)
- Manigreeva Krishnatreya
- Department of Cancer Epidemiology and Biostatistics, Dr.B Borooah Cancer Institute, Guwahati, India E-mail :
| | | | | | | | | | | |
Collapse
|
30
|
Morgan LL. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol 2015; 17:623-4. [PMID: 25605816 PMCID: PMC4483082 DOI: 10.1093/neuonc/nou358] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/14/2014] [Indexed: 01/09/2023] Open
|
31
|
Abstract
Gliomas are the most common type of primary intracranial tumors. Some glioma subtypes cause significant mortality and morbidity that are disproportionate to their relatively rare incidence. A very small proportion of glioma cases can be attributed to inherited genetic disorders. Many potential risk factors for glioma have been studied to date, but few provide explanation for the number of brain tumors identified. The most significant of these factors includes increased risk due to exposure to ionizing radiation, and decreased risk with history of allergy or atopic disease. The potential effect of exposure to cellular phones has been studied extensively, but the results remain inconclusive. Recent genomic analyses, using the genome-wide association study (GWAS) design, have identified several inherited risk variants that are associated with increased glioma risk. The following chapter provides an overview of the current state of research in the epidemiology of intracranial glioma.
Collapse
|
32
|
Trabelsi S, Brahim DHB, Ladib M, Mama N, Harrabi I, Tlili K, Yacoubi MT, Krifa H, Hmissa S, Saad A, Mokni M. Glioma Epidemiology in the Central Tunisian Population: 1993-2012. Asian Pac J Cancer Prev 2014; 15:8753-7. [DOI: 10.7314/apjcp.2014.15.20.8753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Gittleman HR, Ostrom QT, Rouse CD, Dowling JA, de Blank PM, Kruchko CA, Elder JB, Rosenfeld SS, Selman WR, Sloan AE, Barnholtz-Sloan JS. Trends in central nervous system tumor incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010. Cancer 2014; 121:102-12. [PMID: 25155924 PMCID: PMC4298242 DOI: 10.1002/cncr.29015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Time trends in cancer incidence rates (IR) are important to measure the changing burden of cancer on a population over time. The overall IR of cancer in the United States is declining. Although central nervous system tumors (CNST) are rare, they contribute disproportionately to mortality and morbidity. In this analysis, the authors examined trends in the incidence of the most common cancers and CNST between 2000 and 2010. METHODS The current analysis used data from the United States Cancer Statistics publication and the Central Brain Tumor Registry of the United States. Age-adjusted IR per 100,000 population with 95% confidence intervals and the annual percent change (APC) with 95% confidence intervals were calculated for selected common cancers and CNST overall and by age, sex, race/ethnicity, selected histologies, and malignancy status. RESULTS In adults, there were significant decreases in colon (2000-2010: APC, -3.1), breast (2000-2010: APC, -0.8), lung (2000-2010: APC, -1.1), and prostate (2000-2010: APC, -2.4) cancer as well as malignant CNST (2008-2010: APC, -3.1), but a significant increase was noted in nonmalignant CNST (2004-2010: APC, 2.7). In adolescents, there were significant increases in malignant CNST (2000-2008: APC, 1.0) and nonmalignant CNST (2004-2010: APC, 3.9). In children, there were significant increases in acute lymphocytic leukemia (2000-2010: APC, 1.0), non-Hodgkin lymphoma (2000-2010: APC, 0.6), and malignant CNST (2000-2010: APC, 0.6). CONCLUSIONS Surveillance of IR trends is an important way to measure the changing public health and economic burden of cancer. In the current study, there were significant decreases noted in the incidence of adult cancer, whereas adolescent and childhood cancer IR were either stable or increasing.
Collapse
Affiliation(s)
- Haley R Gittleman
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol 2014; 16:896-913. [PMID: 24842956 PMCID: PMC4057143 DOI: 10.1093/neuonc/nou087] [Citation(s) in RCA: 1525] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/09/2014] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O⁶-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine-phosphate-guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults.
Collapse
|
35
|
Igissinov N, Akshulakov S, Igissinov S, Moore M, Adilbekov Y, Gaitova K, Kissaev Y, Mustafina M. Malignant tumours of the central nervous system in Kazakhstan--incidence trends from 2004-2011. Asian Pac J Cancer Prev 2014; 14:4181-6. [PMID: 23991973 DOI: 10.7314/apjcp.2013.14.7.4181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the article were observed the epidemiological aspects of malignant tumors of the central nervous system (MT CNS) in Kazakhstan in a retrospective study for the years 2004-2011. The material of the study was consolidated accounting data of oncology centers on patients with MT CNS (C70-72) with first time established diagnosis. Calculated were crude, age, standardized (world standard), aligned and predicted incidence of MT CNS among both male and female populations. It was found that over the studied period, there were 4,604 cases of MT CNS. The average annual crude incidence rate of MT CNS in total population was 3.7±0.10/0000. Trends in aligned incidence rates in the whole country had a tendency to increase (T=+0.9%). Defined levels of morbidity MT CNS in the whole population in different regions of Kazakhstan: low up to 2.870/0000, the average from 2.87 to 4.450/0000 and high from 4.450/0000 and above on the basis of which was given the space-time estimate. Age and sex differences in MT CNS incidence were also clearly established.
Collapse
|