1
|
Li Q, Ye Z, Wang G, Chen Y, Deng J, Wang D, Wang Y. Natural Products as Novel Therapeutic Agents for Triple-Negative Breast Cancer: Current Evidence, Mechanisms, Challenges, and Opportunities. Molecules 2025; 30:1201. [PMID: 40141978 PMCID: PMC11944566 DOI: 10.3390/molecules30061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) tops the list of causes for female fatalities globally, with the elusive triple-negative breast cancer (TNBC) constituting 10-20% of all cases. Current clinical strategies for combating TNBC encompass a multifaceted approach, including surgical intervention, radiation therapy, chemotherapy, and advanced targeted drugs and immunotherapies. While these modalities have catalyzed significant advancements in TNBC management, lingering limitations continue to pose formidable challenges. There is an acute need for novel therapeutics in the realm of TNBC treatment. Natural products (NPs) have emerged as a rich reservoir for pharmaceutical innovation, owing to their extraordinary range of structures and physicochemical properties. Scholars have reported diverse evidence of NPs' efficacy against TNBC. This review aims to comprehensively explore the bioactive constituents, specifics and commonalities of chemical structure, and pharmacological mechanisms of NPs, specifically examining their multifaceted roles in impeding TNBC. NPs, which have recently garnered significant interest, are intriguing in terms of their capacity to combat TNBC through multifaceted mechanisms, including the suppression of tumor cell proliferation, the induction of apoptosis, and the inhibition of tumor metastasis. These natural agents primarily encompass a range of compounds, including terpenoids, glycosides, phenolic compounds, and alkaloids. An in-depth exploration has unveiled their involvement in key signaling pathways, including the transforming growth factor-beta (TGF-β), vascular endothelial growth factor A (VEGFA), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Wingless/Int-1 (Wnt) /β-catenin, and mitogen-activated protein kinase (MAPK) pathways. Meanwhile, this review also looks at the challenges and opportunities that arise from harnessing natural compounds to influence TNBC, while outlining the prospective trajectory for future research in the field of NPs.
Collapse
Affiliation(s)
- Qingzhou Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Guilin Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Yuhui Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Jinghong Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| |
Collapse
|
2
|
Valsan A, Omanakuttan VK, Radhakrishnan KV, Maiti KK. A Comprehensive Appraisal of Bisbenzylisoquinoline Alkaloids Isolated From Genus Cyclea for Anticancer Potential. J Biochem Mol Toxicol 2025; 39:e70137. [PMID: 39835479 DOI: 10.1002/jbt.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
The pharmaceutical industry and academia are continuously searching for novel and effective anticancer lead compounds to ensure patient safety, provide a cure, and surpass all other obstacles. Given the indeterminate nature of cancer etiology, the importance of drugs capable of targeting multiple pathways cannot be overstated. Among naturally occurring compounds, bisbenzylisoquinoline (BBIQ) alkaloids, such as berberine, tetrandrine, chelidonine, and berbamine, have demonstrated significant anticancer potential by modulating diverse signaling pathways. Several of these compounds are currently in clinical trials, highlighting their relevance in cancer treatment. This review emphasizes the need for further investigation into the anticancer properties of BBIQ alkaloids, particularly those isolated from eight Cyclea species in India. With around 27 BBIQ alkaloids identified, these compounds hold promise, especially in combating multidrug resistance-a critical challenge in cancer therapy. Given the rising cancer incidence, these alkaloids warrant a deeper exploration of their therapeutic potential.
Collapse
Affiliation(s)
- Alisha Valsan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vishnu K Omanakuttan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kokuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
4
|
Chen JS, Guo X, Sun JY, Wang MX, Gao XZ, Wang Z, Han JL, Sun H, Zhang K, Liu C. Fangchinoline derivatives inhibits PI3K signaling in vitro and in vivo in non-small cell lung cancer. Bioorg Chem 2023; 138:106623. [PMID: 37295240 DOI: 10.1016/j.bioorg.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Fangchinoline (Fan) are extracted from the traditional Chinese medicine Stephania tetrandra S., which is a bis-benzyl isoquinoline alkaloids with anti-tumor activity. Therefore, 25 novel Fan derivatives have been synthesized and evaluated for their anti-cancer activity. In CCK-8 assay, these fangchinoline derivatives displayed higher proliferation inhibitory activity on six tumor cell lines than the parental compound. Compared to the parent Fan, compound 2h presented the anticancer activity against most cancer cells, especially A549 cells, with an IC50 value of 0.26 μM, which was 36.38-fold, and 10.61-fold more active than Fan and HCPT, respectively. Encouragingly, compound 2h showed low biotoxicity to the human normal epithelial cell BEAS-2b with an IC50 value of 27.05 μM. The results indicated compound 2h remarkably inhibited the cell migration by decreasing MMP-2 and MMP-9 expression and inhibited the proliferation of A549 cells by arresting the G2/M cell cycle. Meanwhile, compound 2h could also induce A549 cell apoptosis by promoting endogenous pathways of mitochondrial regulation. In nude mice presented that the growth of tumor tissues was markedly inhibited by the consumption of compound 2h in a dose-dependent manner, and it was found that compound 2h could inhibit the mTOR/PI3K/AKT pathway in vivo. In docking analysis, high affinity interaction between 2h and PI3K was responsible for drastic kinase inhibition by the compound. To conclude, this derivative compound may be useful as a potent anti-cancer agent for treatment of NSCLC.
Collapse
Affiliation(s)
- Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Xiu-Zheng Gao
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Zhen Wang
- Arura Tibetan Medicine (Shandong) Health Industry Co., Jinan 250100, China
| | - Jin-Long Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China.
| | - Hui Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China.
| | - Kai Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, JingwuRoad, Jinan, Shandong 250021,China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China.
| |
Collapse
|
5
|
Fahmy NM, El-Din MIG, Salem MM, Rashedy SH, Lee GS, Jang YS, Kim KH, Kim CS, El-Shazly M, Fayez S. Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking. Mar Drugs 2023; 21:404. [PMID: 37504935 PMCID: PMC10381385 DOI: 10.3390/md21070404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Brown algae comprise up to 2000 species with wide dissemination in temperate zones. A comprehensive untargeted metabolic profiling guided by molecular networking of three uninvestigated Red-Sea-derived brown algae, namely Sirophysalis trinodis, Polycladia myrica, and Turbinaria triquetra, led to the identification of over 115 metabolites categorized as glycerolipids, fatty acids, sterol lipids, sphingolipids, and phospholipids. The three algae exhibited low-to-moderate antioxidant capacity using DPPH and ABTS assays. Preliminary in vitro antiproliferative studies showed that the algal extracts displayed high cytotoxic activity against a panel of cancer cell lines. The most potent activity was recorded against MCF-7 with IC50 values of 51.37 ± 1.19, 63.44 ± 1.13, and 59.70 ± 1.22 µg/mL for S. trinodis, P. myrica, and T. triquetra, respectively. The cytotoxicity of the algae was selective to MCF-7 without showing notable effects on the proliferation of normal human WISH cells. Morphological studies revealed that the algae caused cell shrinkage, increased cellular debris, triggered detachment, cell rounding, and cytoplasmic condensation in MCF-7 cancer cells. Mechanistic investigations using flow cytometry, qPCR, and Western blot showed that the algae induced apoptosis, initiated cell cycle arrest in the sub-G0/G1 phase, and inhibited the proliferation of cancer cells via increasing mRNA and protein expression of p53, while reducing the expression of PI3K, Akt, and mTOR.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sarah H Rashedy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| |
Collapse
|
6
|
Wang Z, Wang X, Guo Z, Liao H, Chai Y, Wang Z, Wang Z. In silico high-throughput screening system for AKT1 activators with therapeutic applications in sepsis acute lung injury. Front Cell Infect Microbiol 2022; 12:1050497. [PMID: 36579349 PMCID: PMC9792167 DOI: 10.3389/fcimb.2022.1050497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose AKT1 is an important target in sepsis acute lung injury (SALI). The current study was aim to construct a high-throughput screening (HTS) system based on the ChemDiv database (https://www.chemdiv.com/complete-list/) and use the system to screen for AKT1 activation agents, which may provide clues for the research and development of new drugs to treat SALI. Methods Based on the existing X-ray structure of AKT1 and known AKT activators, a large-scale virtual HTS was performed on the ChemDiv database of small molecules by the cascade docking method and demonstrated both accuracy and screening efficiency. Molecular docking and molecular dynamics simulations were used to assess the stability and binding characteristics of the identified small-molecule compounds. The protective effect of the new highly selective compound on SALI were verified both in vitro and in vivo experiments. Results The small-molecule compound 7460-0250 was screened out as a specific activator of AKT1. Molecular validation experiments confirmed that compound 7460-0250 specifically promoted the phosphorylation of AKT1 and down-regulated the LPS-induced apoptosis of human umbilical vein endothelial cells (HUVECs) by activating the AKT-mTOR pathway. Up-regulated mTOR was detected to directly interact with Bax to reduce apoptosis. In vivo, compound 7460-0250 could improved survival rate and alleviated lung injury of sepsis mice induced by cecum ligation and puncture (CLP), parallel with the activation of the AKT-mTOR pathway. Conclusion Small-molecule compound 7460-0250 was successfully screened and confirmed as a highly selective AKT1 activator, which is a critical target in the development of new therapeutics for SALI.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China,Department of Liver Intensive Care Unit, Beijing Tsinghua Changguang Hospital, Beijing, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Chai
- School of Clinical Medicine, Tsinghua University, Beijing, China,Emergency Department, Beijing Friendship Hospital Affiliated Capital Medical University, Beijing, China
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China,*Correspondence: Zhong Wang,
| |
Collapse
|
7
|
Jung YY, Um JY, Sethi G, Ahn KS. Fangchinoline abrogates growth and survival of hepatocellular carcinoma by negative regulation of c-met/HGF and its associated downstream signaling pathways. Phytother Res 2022; 36:4542-4557. [PMID: 35867025 DOI: 10.1002/ptr.7573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 12/13/2022]
Abstract
Among all cancers, hepatocellular carcinoma (HCC) remains a lethal disease with limited treatment options. In this study, we have analyzed the possible inhibitory effects of Fangchinoline (FCN) on c-Met, a protein known to regulate the rapid phosphorylation of downstream signals, as well as mediate aberrant growth, metastasis, survival, and motility in cancer. FCN inhibited the activation of c-Met and its downstream signals PI3K, AKT, mTOR, MEK, and ERK under in vitro settings. Moreover, c-Met gene silencing lead to suppression of PI3K/AKT/mTOR and MEK/ERK signaling pathways, and induced apoptotic cell death upon exposure to FCN. In addition, FCN markedly inhibited the expression of the various oncogenic proteins such as Bcl-2/xl, survivin, IAP-1/2, cyclin D1, and COX-2. In vivo studies in HepG2 cells xenograft mouse model showed that FCN could significantly attenuate the tumor volume and weight, without affecting significant loss in the body weight. Similar to in vitro studies, expression level of c-Met and PI3K/AKT/mTOR, MEK/ERK signals was also suppressed by FCN in the tissues obtained from mice. Therefore, the novel findings of this study suggest that FCN can potentially function as a potent anticancer agent against HCC.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
8
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
El-Din MIG, Fahmy NM, Wu F, Salem MM, Khattab OM, El-Seedi HR, Korinek M, Hwang TL, Osman AK, El-Shazly M, Fayez S. Comparative LC-LTQ-MS-MS Analysis of the Leaf Extracts of Lantana camara and Lantana montevidensis Growing in Egypt with Insights into Their Antioxidant, Anti-Inflammatory, and Cytotoxic Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131699. [PMID: 35807651 PMCID: PMC9269492 DOI: 10.3390/plants11131699] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 05/05/2023]
Abstract
Lantana camara L. and Lantana montevidensis Briq. (F. Verbenaceae) are invasive ornamental weeds native to the tropical regions of Africa and America. The leaves of both species have been traditionally used as infusions for treating fever, rheumatism, and cancer. LC-MS-MS-guided profiling of the methanolic extracts of the leaves of L. camara and L. montevidensis growing in Egypt led to the putative identification of 59 compounds belonging to terpenoids, flavonoids, iridoid glycosides, phenolic acids, and their derivatives. The in-vitro antioxidants and anti-inflammatory and anticancer activities of the two extracts were investigated. L. camara and L. montevidensis inhibited DPPH• (IC50 = 34.01 ± 1.32 and 47.43 ± 1.74 µg/mL), ABTS+ (IC50 = 30.73 ± 1.42 and 40.37 ± 1.51 µg/mL), and superoxide anion (IC50 = 1.57 ± 0.19 and 1.31 ± 0.14 μg/mL) free radicals. A potent anti-inflammatory effect was observed for both species through the inhibition of elastase release in fMLF/CB-induced human neutrophils (IC50 = 2.40 ± 0.16 and 1.90 ± 0.07 μg/mL). The extracts showed significant cytotoxic activity against a panel of cancer cell lines with the most potent activity against Caco cells (IC50 = 45.65 ± 1.64 and 40.67 ± 1.52 µg/mL for L. camara and L. montevidensis, respectively). Western blotting supported by FACS analysis revealed that the extracts inhibited cancer cell proliferation, reduced metastasis, and induced apoptosis resulting in cell cycle arrest. This was achieved via increasing mRNA and protein expressions of p53 and GSK-3β as well as decreasing the expression of PI3K, Akt, and cyclin D1.
Collapse
Affiliation(s)
- Mariam I. Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (M.I.G.E.-D.); (N.M.F.); (S.F.)
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (M.I.G.E.-D.); (N.M.F.); (S.F.)
| | - Fulin Wu
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; (F.W.); (O.M.K.); (H.R.E.-S.)
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Maha M. Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Omar M. Khattab
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; (F.W.); (O.M.K.); (H.R.E.-S.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; (F.W.); (O.M.K.); (H.R.E.-S.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Correspondence: (T.-L.H.); (M.E.-S.); Tel.: +886-3-2118800 (ext. 5523) (T.-L.H.); +20-1001401091 (M.E.-S.)
| | - Ahmed K. Osman
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (M.I.G.E.-D.); (N.M.F.); (S.F.)
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Correspondence: (T.-L.H.); (M.E.-S.); Tel.: +886-3-2118800 (ext. 5523) (T.-L.H.); +20-1001401091 (M.E.-S.)
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (M.I.G.E.-D.); (N.M.F.); (S.F.)
| |
Collapse
|
10
|
Jung YY, Chinnathambi A, Alahmadi TA, Alharbi SA, Kumar AP, Sethi G, Ahn KS. Fangchinoline targets epithelial-mesenchymal transition process by modulating activation of multiple cell-signaling pathways. J Cell Biochem 2022; 123:1222-1236. [PMID: 35621239 DOI: 10.1002/jcb.30279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key process, which can promote the transition of tumor cells into other organs by weakening the cell-cell junctions. Tumor cell invasion and metastasis arising because of EMT can determine the prognosis of cancer. EMT can be induced by several growth factors including transforming growth factor-β (TGF-β), which can exert their effects by affecting several cell-signaling pathways. Fangchinoline (FCN), a kind of bisbenzylisoquinoline, belongs to the family Menispermaceae. FCN can display substantial antitumor effects against various malignant cell lines but its possible impact on EMT has not been explored. We examined the potential impact of FCN in affecting the activation of EMT in human colon cancer cells. We evaluated the influence of FCN on EMT in colon cancer cells by using Western blot analysis and reverse transcription-polymerase chain reaction assays. The cellular invasion and migration were observed by Boyden chamber and wound healing assays. Thereafter, the effect of the drug on proliferation and invasion was also evaluated by real-time cell analysis. FCN suppressed the levels of TGF-β-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail. However, FCN markedly enhanced the expression of epithelial markers such as occludin and E-cadherin. These results imply that FCN can potentially inhibit tumor metastasis through abrogating EMT. In addition, FCN downregulated c-Met/PI3K/Akt/mTOR and Wnt/β-catenin cell signaling pathways and mitigated tumor migration as well as invasion. Overall, our study suggests a potential novel role of FCN as an antimetastatic agent against human colon cancer cells.
Collapse
Affiliation(s)
- Young Y Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani A Alahmadi
- Department of Pediatrics, King Khalid University Hospital [Medical City], King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang S Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Fangchinoline induces gallbladder cancer cell apoptosis by suppressing PI3K/Akt/XIAP axis. PLoS One 2022; 17:e0266738. [PMID: 35446864 PMCID: PMC9022853 DOI: 10.1371/journal.pone.0266738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common biliary tract malignancy with a dismal prognosis. The development of new drugs may help to improve prognosis. This study found that fangchinoline, a bisbenzylisoquinoline alkaloids, inhibited the proliferation and clone formation of GBC cells in a dose-dependent manner. Moreover, Hoechst staining, TUNEL assays, and flow cytometry demonstrated that fangchinoline effectively induced apoptosis in GBC cells. Further studies found that an anti-apoptotic pathway, the PI3K/Akt/XIAP axis, was significantly inhibited in GBC cells after treating with fangchinoline. Finally, we confirmed that fangchinoline restrained xenograft tumor growth in vivo. Our findings indicate that fangchinoline can be considered a potential drug for GBC treatment.
Collapse
|
12
|
Fangchinoline diminishes STAT3 activation by stimulating oxidative stress and targeting SHP-1 protein in multiple myeloma model. J Adv Res 2022; 35:245-257. [PMID: 35024200 PMCID: PMC8721253 DOI: 10.1016/j.jare.2021.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant STAT3 activation can promote neoplastic transformation by affecting cellular proliferation, invasion, metastasis, angiogenesis, and anti-apoptosis induction. Fangchinoline abrogated protein expression levels of STAT3 and upstream signals (JAK1/2 and Src) in different tumor cells. Fangchinoline inhibited the levels of various tumorigenic markers and promoted marked apoptosis through degradation of PARP and caspase-3. Fangchinoline attenuated the level of STAT3 and upstream signals and suppressed the level of anti- apoptotic proteins in xenograft mice model.
Introduction The development of cancer generally occurs as a result of various deregulated molecular mechanisms affecting the genes that can control normal cellular growth. Signal transducer and activator of transcription 3 (STAT3) pathway, once aberrantly activated can promote carcinogenesis by regulating the transcription of a number of oncogenic genes. Objectives Here, we evaluated the impact of fangchinoline (FCN) to attenuate tumor growth and survival through modulation of oncogenic STAT3 signaling pathway using diverse tumor cell lines and a xenograft mouse model. Methods To evaluate the action of FCN on STAT3 cascade, protein levels were analyzed by Western blot analysis and electrophoretic mobility shift assay (EMSA). Translocation of STAT3 was detected by immunocytochemistry. Thereafter, FCN-induced ROS was measured by GSH/GSSG assay and H2DCF-DA. FCN-induced apoptosis was analyzed using Western blot analysis and flow cytometry for various assays. Finally, anti-cancer effects of FCN in vivo was evaluated in a myeloma model. Results We noted that FCN abrogated protein expression levels of STAT3 and upstream signals (JAK1/2 and Src). In addition, FCN also attenuated DNA binding ability of STAT3 and its translocation into the nucleus. It altered the levels of upstream signaling proteins, increased SHP-1 levels, and induced substantial apoptosis in U266 cells. FCN also promoted an increased production of reactive oxygen species (ROS) and altered GSSG/GSH ratio in tumor cells. Moreover, FCN effectively abrogated tumor progression and STAT3 activation in a preclinical myeloma model. Conclusion Overall, this study suggests that FCN may have a tremendous potential to alter abnormal STAT3 activation and induce cell death in malignant cells along with causing the suppression of pathogenesis and growth of cancer through a pro-oxidant dependent molecular mechanism.
Collapse
Key Words
- Apoptosis
- DAPI, 4′,6-Diamidino-2-Phenylindole, Dihydrochloride
- DMEM, Dulbecco’s Modified Eagle Medium
- FBS, Fetal bovine serum
- FCN, Fangchinoline
- Fangchinoline
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase
- GSH
- HRP, Horseradish peroxidase
- ICC, Immunocytochemistry
- IHC, Immunohistochemistry
- JAK, Janus kinase
- MMP, Matrix metalloproteinase
- Multiple myeloma
- NT, Non treat
- P/S, Penicillin-streptomycin
- PARP, Poly (ADP-ribose) polymerase
- ROS
- RT-PCR, Reverse transcription polymerase chain reaction
- RTCA, Real-time cell analysis
- SHP-1, Src homology 2 domain-containing protein tyrosine phosphatase-1
- STAT3
- STAT3, signal transducer and activator of transcription 3
- VEGF, vascular endothelial growth factor
- c/w, Cell per well
- ip, Intraperitoneal injection
Collapse
|
13
|
Zhang Y, Wang S, Chen Y, Zhang J, Yang J, Xian J, Li L, Zhao H, Hoffman RM, Zhang Y, Jia L. Fangchinoline Inhibits Human Esophageal Cancer by Transactivating ATF4 to Trigger Both Noxa-Dependent Intrinsic and DR5-Dependent Extrinsic Apoptosis. Front Oncol 2021; 11:666549. [PMID: 34195076 PMCID: PMC8236818 DOI: 10.3389/fonc.2021.666549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a recalcitrant cancer. The Chinese herbal monomer fangchinoline (FCL) has been reported to have anti-tumor activity in several human cancer cell types. However, the therapeutic efficacy and underlying mechanism on ESCC remain to be elucidated. In the present study, for the first time, we demonstrated that FCL significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistic studies revealed that FCL-induced G1 phase cell-cycle arrest in ESCC which is dependent on p21 and p27. Moreover, we found that FCL coordinatively triggered Noxa-dependent intrinsic apoptosis and DR5-dependent extrinsic apoptosis by transactivating ATF4, which is a novel mechanism. Our findings elucidated the tumor-suppressive efficacy and mechanisms of FCL and demonstrated FCL is a potential anti-ESCC agent.
Collapse
Affiliation(s)
- Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiwen Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingrong Xian
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, San Diego, CA, United States.,Anticancer Inc., San Diego, CA, United States
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Chan EWC, Wong SK, Chan HT. An overview on the chemistry, pharmacology and anticancer properties of tetrandrine and fangchinoline (alkaloids) from Stephania tetrandra roots. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:311-316. [PMID: 33583757 DOI: 10.1016/j.joim.2021.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/26/2023]
Abstract
Tetrandrine (TET) and fangchinoline (FAN) are dominant bisbenzylisoquinoline (BBIQ) alkaloids from the roots of Stephania tetrandra of the family Menispermaceae. BBIQ alkaloids comprise two benzylisoquinoline units linked by oxygen bridges. The molecular structures of TET and FAN are exactly the same, except that TET has a methoxy (-OCH3) group, while FAN has a hydroxyl (-OH) group at C7. In this overview, the current knowledge on the chemistry, pharmacology and anticancer properties of TET and FAN have been updated. The focus is on colon and breast cancer cells, because they are most susceptible to TET and FAN, respectively. Against colon cancer cells, TET inhibits cell proliferation and tumor growth by inducing apoptosis and G1 cell cycle arrest, and suppresses adhesion, migration and invasion of cells. Against breast cancer cells, FAN inhibits cell proliferation by inducing apoptosis, G1-phase cell cycle arrest and inhibits cell migration. The processes involve various molecular mechanisms and signaling pathways. Some insights on the ability of TET and FAN to reverse multi-drug resistance in cancer cells and suggestions for future research are provided.
Collapse
Affiliation(s)
| | - Siu Kuin Wong
- School of Foundation Studies, Xiamen University Malaysia, Selangor 43900, Malaysia
| | - Hung Tuck Chan
- Secretariat of the International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
15
|
The tumor suppressor Zinc finger protein 471 suppresses breast cancer growth and metastasis through inhibiting AKT and Wnt/β-catenin signaling. Clin Epigenetics 2020; 12:173. [PMID: 33203470 PMCID: PMC7672945 DOI: 10.1186/s13148-020-00959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Zinc-finger protein 471 (ZNF471) is a member of the Krüppel-associated box domain zinc finger protein (KRAB-ZFP) family. ZNF471 is methylated in squamous cell carcinomas of tongue, stomach and esophageal. However, its role in breast carcinogenesis remains elusive. Here, we studied its expression, functions, and molecular mechanisms in breast cancer. Methods We examined ZNF471 expression by RT-PCR and qPCR. Methylation-specific PCR determined its promoter methylation. Its biological functions and related molecular mechanisms were assessed by CCK-8, clonogenicity, wound healing, Transwell, nude mice tumorigenicity, flow cytometry, BrdU-ELISA, immunohistochemistry and Western blot assays.
Results ZNF471 was significantly downregulated in breast cell lines and tissues due to its promoter CpG methylation, compared with normal mammary epithelial cells and paired surgical-margin tissues. Ectopic expression of ZNF471 substantially inhibited breast tumor cell growth in vitro and in vivo, arrested cell cycle at S phase, and promoted cell apoptosis, as well as suppressed metastasis. Further knockdown of ZNF471 verified its tumor-suppressive effects. We also found that ZNF471 exerted its tumor-suppressive functions through suppressing epithelial-mesenchymal transition, tumor cell stemness and AKT and Wnt/β-catenin signaling. Conclusions ZNF471 functions as a tumor suppressor that was epigenetically inactivated in breast cancer. Its inhibition of AKT and Wnt/β-catenin signaling pathways is one of the mechanisms underlying its anti-cancer effects.
Collapse
|
16
|
Kyrodimos E, Papanikolaou V, Tsiambas E, Kikidis D, Peschos D, Ragos V, Mastronikolis N, Riziotis C, Chrysovergis A. Cyclin D1 Gene Numerical Imbalances in Laryngeal Squamous Cell Carcinoma: A Tissue Microarray Grid Based Analysis. Asian Pac J Cancer Prev 2020; 21:379-384. [PMID: 32102514 PMCID: PMC7332136 DOI: 10.31557/apjcp.2020.21.2.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Deregulation of critical proteins involved in cell cycle stability, such as cyclins, is a frequent genetic event in the development and progression of solid malignancies. Concerning laryngeal squamous cell carcinoma (LSCC), cyclin D1 oncogenic transformation leads to an aberrant protein expression and seems to affect the biological behaviour of the neoplasm. The aim of this study was to determine the correlation of cyclin D1 numerical imbalances with the corresponding protein expression levels in LSCCs. MATERIAL AND METHOD Using tissue microarray (TMA) technology, fifty (n=50) histologically confirmed primary LSSCs were cored at a diameter of 1.5 mm. Immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) analyses were applied. Concerning the screening process in CISH slides, a novel real-time reference and calibration grid platform was implemented. RESULTS Protein overexpression was observed in 22/50 (44%) cases; whereas, gene amplification was seen in 13/50 (26%) cases (p=0.02). Combined protein/ gene deregulation was associated with the stage of malignancy (p= 0.0014, p=0.001), whereas overall protein expression was strongly correlated with the grade of tumour (p= 0.001). CONCLUSION Cyclin D1 gene amplification led to aberrant protein expression in LSCCs and it was also correlated with an aggressive biological behaviour. To best of our knowledge, this study was the first described grid based CISH analysis under conventional bright field microscopy for detecting gene numerical imbalances while providing a novel and accurate description for screening-mapping process in the entire slide area.<br />.
Collapse
Affiliation(s)
- Efthymios Kyrodimos
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Vasileios Papanikolaou
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Evangelos Tsiambas
- Department of Pathology-Cytology, 401 GAH, Athens, Greece.,Department of Pathology, 417 VA Hospital (NIMTS), Athens, Greece
| | - Dimitrios Kikidis
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Greece
| | - Nicholas Mastronikolis
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical School, University of Patras, Greece
| | - Christos Riziotis
- Theoretical and Physical Chemistry Institute, Photonics for Nanoapplications Laboratory, National Hellenic Research Foundation, Athens, Greece
| | | |
Collapse
|
17
|
Design, synthesis and in vitro evaluation of fangchinoline derivatives as potential anticancer agents. Bioorg Chem 2020; 94:103431. [DOI: 10.1016/j.bioorg.2019.103431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
|
18
|
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:449-489. [PMID: 32336965 PMCID: PMC7180683 DOI: 10.1007/s11101-020-09673-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
ABSTRACT Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as "Fen Fang Ji". It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Haitao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
19
|
Zhou L, Hong G, Li S, Liu Q, Song F, Zhao J, Yuan J, Tickner J, Xu J. Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling. Int J Biol Sci 2020; 16:309-319. [PMID: 31929758 PMCID: PMC6949157 DOI: 10.7150/ijbs.37162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a disease characterized by abnormally increased formation and function of osteoclasts. Anti-RANKL treatment using natural medicine is a potential therapy for osteoporosis. Here, we studied the effect of fangchinoline, which is extracted from the root of Stephania tetrandra S. Moore, on osteoclast formation and function. We found that fangchinoline inhibited osteoclastogenesis at doses of 0.5 and 1 µM. In addition, we also examined the mechanism of the inhibitory effect of fangchinoline on osteoclasts. We found that fangchinoline down regulated NFATc1 activity and expression. However, fangchinoline did not affect IκBα degradation and MAPK pathways. In addition, we also found that fangchinoline could protect against bone loss in OVX mice. Taken together, fangchinoline may be a potential compound for osteoporosis.
Collapse
Affiliation(s)
- Lin Zhou
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Endocrinology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Guoju Hong
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Orthopedic Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shangfu Li
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, 510630, P. R. China
| | - Qian Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Fangming Song
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
20
|
Tao D, Liang J, Pan Y, Zhou Y, Feng Y, Zhang L, Xu J, Wang H, He P, Yao J, Zhao Y, Ning Q, Wang W, Jiang W, Zheng J, Wu X. In Vitro and In Vivo Study on the Effect of Lysosome-associated Protein Transmembrane 4 Beta on the Progression of Breast Cancer. J Breast Cancer 2019; 22:375-386. [PMID: 31598338 PMCID: PMC6769385 DOI: 10.4048/jbc.2019.22.e43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Although the effect of lysosome-associated protein transmembrane 4 beta (LAPTM4B) on the proliferation, migration, and invasion of breast cancer (BC) cells has already been studied, its specific role in BC progression is still elusive. Here, we evaluated the effect of different levels of LAPTM4B expression on the proliferation, invasion, adhesion, and tumor formation abilities of BC cells in vitro, as well as on breast tumor progression in vivo. Methods We investigated the influence of LAPTM4B expression on MCF-7 cell proliferation, invasion, adhesion, and tube formation abilities in vitro through its overexpression or knockdown and on breast tumor progression in vivo. Results Cell growth curves and colony formation assays showed that LAPTM4B promoted the proliferation of breast tumor cells. Cell cycle analysis results revealed that LAPTM4B promoted the entry of cells from the G1 into the S phase. Transwell invasion and cell extracellular matrix adhesion assays showed that LAPTM4B overexpression increased the invasion and adhesion capabilities of MCF-7 cells. More branches were observed in MCF-7 cells overexpressing LAPTM4B under an electron microscope. In comparison with LAPTM4B overexpression, LAPTM4B knockdown decreased the expression of vascular endothelial growth factor-A and significantly inhibited the vasculogenic tube formation ability of tumors. These results were also verified with western blot analysis. Conclusion LAPTM4B promoted the proliferation of MCF-7 cells through the downregulation of p21 (WAF1/CIP1) and caspase-3, and induced cell invasion, adhesion, and angiogenesis through the upregulation of hypoxia-inducible factor 1 alpha, matrix metalloproteinase 2 (MMP2), and MMP9 expression. This specific role deems LAPTM4B as a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Deyou Tao
- Department of Oncological Surgery, Enze Hospital of Taizhou Enze Medical Group, Luqiao, Zhejiang, China
| | - Junqing Liang
- The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yihong Pan
- Gynecology of Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - Yanting Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jingjing Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinjie Ning
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xia Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Liu B, Lin J, Bai L, Zhou Y, Lu R, Zhang P, Chen D, Li H, Song J, Liu X, Wu Y, Wu J, Liang C, Zhou J. Paeoniflorin Inhibits Mesangial Cell Proliferation and Inflammatory Response in Rats With Mesangial Proliferative Glomerulonephritis Through PI3K/AKT/GSK-3β Pathway. Front Pharmacol 2019; 10:978. [PMID: 31551783 PMCID: PMC6745507 DOI: 10.3389/fphar.2019.00978] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MPGN) is the most common type of chronic kidney disease in China, characterized by mesangial cell proliferation and inflammatory response. Paeoniflorin, an effective composition extracted from Radix Paeoniae Alba, has been used for various kinds of kidney diseases. However, there are no studies reporting the effects of paeoniflorin on MPGN. The present study aims to investigate whether paeoniflorin plays a role in MPGN and confirm the underlying molecular mechanisms. Our results manifested that paeoniflorin strongly restrained 24 h urinary protein and promoted renal function and dyslipidemia in a MPGN rat model. Moreover, paeoniflorin attenuated mesangial cell proliferation and inflammation both in MPGN rats and human mesangial cells (HMCs) treated with lipopolysaccharide (LPS). In detail, paeoniflorin decreased the number of mesangial cells and expressions of proliferation marker Ki67 in MPGN rats. Paeoniflorin also inhibited HMC proliferation and blocked cell cycle progression. In addition, the contents of inflammatory factors and the expressions of macrophage marker iNOS were decreased after paeoniflorin treatment. Furthermore, we found that the protective effect of paeoniflorin was accompanied by a strong inhibition of the phosphatidylinositol 3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β pathway. Paeoniflorin enhanced the inhibitory effect of PI3K inhibitor LY294002 and suppressed the activated effect of PI3K agonist insulin-like growth factor 1 (IGF-1) on PI3K/AKT/GSK-3β pathway. In conclusion, these results demonstrated that paeoniflorin ameliorates MPGN by inhibiting mesangial cell proliferation and inflammatory response through the PI3K/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Bihao Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Lixia Bai
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peichun Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Science and Technology Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidan Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Fangchinoline, a Bisbenzylisoquinoline Alkaloid can Modulate Cytokine-Impelled Apoptosis via the Dual Regulation of NF-κB and AP-1 Pathways. Molecules 2019; 24:molecules24173127. [PMID: 31466313 PMCID: PMC6749215 DOI: 10.3390/molecules24173127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Fangchinoline (FCN) derived from Stephaniae tetrandrine S. Moore can be employed to treat fever, inflammation, rheumatism arthralgia, edema, dysuria, athlete’s foot, and swollen wet sores. FCN can exhibit a plethora of anti-neoplastic effects although its precise mode of action still remains to be deciphered. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) can closely regulate carcinogenesis and thus we analyzed the possible action of FCN may have on these two signaling cascades in tumor cells. The effect of FCN on NF-κB and AP-1 signaling cascades and its downstream functions was deciphered using diverse assays in both human chronic myeloid leukemia (KBM5) and multiple myeloma (U266). FCN attenuated growth of both leukemic and multiple myeloma cells and repressed NF-κB, and AP-1 activation through diverse mechanisms, including attenuation of phosphorylation of IκB kinase (IKK) and p65. Furthermore, FCN could also cause significant enhancement in TNFα-driven apoptosis as studied by various molecular techniques. Thus, FCN may exhibit potent anti-neoplastic effects by affecting diverse oncogenic pathways and may be employed as pro-apoptotic agent against various malignancies.
Collapse
|
23
|
Ma C, Shi X, Guo W, Niu J, Wang G. miR-107 Enhances the Sensitivity of Breast Cancer Cells to Paclitaxel. Open Med (Wars) 2019; 14:456-466. [PMID: 31206033 PMCID: PMC6555243 DOI: 10.1515/med-2019-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most commonly diagnosed cancer in Chinese women. Paclitaxel (PTX) is a chemotherapy medication used to treat breast cancer patients. However, a side effect of paclitaxel is the severe drug resistance. Previous studies demonstrated that dysregulation of microRNAs could regulate sensitivity to paclitaxel in breast cancer. Here, the present study aimed to lucubrate the underlying mechanisms of miR-107 in regulating the sensitivity of breast cancer cells to PTX. The results demonstrated that miR-107 was down-regulated in breast cancer tumor tissues, while TPD52 was significantly up-regulated compared with the non-tumor adjacent tissues. After confirming that TPD52 may be a major target of miR-107 via a dual-luciferase reporter assay, the western blot and RT-qPCR assays further demonstrated that miR-107 may reduce the expression level of TPD52 as well. In addition, miR-107 may prominently enhance PTX induced reduction of cell viability and the promotion of cell apoptosis in breast cancer, and the variation could be reversed by co-transfected with pcDNA3.1-TPD52. Finally, miR-107 could further reduce the decreased expression of TPD52, Wnt1, β-catenin and cyclin D1 that was induced by PTX in both mRNA and protein levels, which were rescued by pcDNA3.1-TPD52 indicating that miR-107 regulated breast cancer cell sensitivity to PTX may be targeting TPD52 through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Changpo Ma
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin301800, China
| | - Xuejun Shi
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin301800, China
| | - Wenchao Guo
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin301800, China
| | - Jianxin Niu
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin301800, China
| | | |
Collapse
|
24
|
Zhao W, Zhang T, Xu L, Yang Y, Wang Y, Jiang Z. Sevoflurane pretreatment attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis through activation of AKT/pim-1 and AKT/GSK3β signaling pathways. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1688685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Wensheng Zhao
- Department of Pain Medicine, Hang Zhou Red Cross Hospital, Hangzhou, RP China
| | - Tieshan Zhang
- Department of Pain Medicine, Hang Zhou Red Cross Hospital, Hangzhou, RP China
| | - Lulu Xu
- Department of Pain Medicine, Hang Zhou Red Cross Hospital, Hangzhou, RP China
| | - Yue Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yingchao Wang
- Department of Clinical Research Center, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| | - Zhenni Jiang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
25
|
Molecular Targets Modulated by Fangchinoline in Tumor Cells and Preclinical Models. Molecules 2018; 23:molecules23102538. [PMID: 30301146 PMCID: PMC6222742 DOI: 10.3390/molecules23102538] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023] Open
Abstract
Despite tremendous progress made during the last few decades in the treatment options for cancer, compounds isolated from Mother Nature remain the mainstay for therapy of various malignancies. Fangchinoline, initially isolated from the dried root of Stephaniae tetrandrine, has been found to exhibit diverse pharmacological effects including significant anticancer activities both in tumor cell lines and selected preclinical models. This alkaloid appears to act by modulating the activation of various important oncogenic molecules involved in tumorigenesis leading to a significant decrease in aberrant proliferation, survival and metastasis of tumor cells. This mini-review briefly describes the potential effects of fangchinoline on important hallmarks of cancer and highlights the molecular targets modulated by this alkaloid in various tumor cell lines and preclinical models.
Collapse
|
26
|
Sun H, Chen G, Wen B, Sun J, An H, Pang J, Xu W, Yang X, He S. Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl 4 -induced liver fibrosis by suppressing NF-κB signaling and Wnt/β-catenin signaling. J Pharmacol Sci 2018; 136:133-141. [DOI: 10.1016/j.jphs.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
|
27
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
28
|
Wang B, Xing Z, Wang F, Yuan X, Zhang Y. Fangchinoline inhibits migration and causes apoptosis of human breast cancer MDA-MB-231 cells. Oncol Lett 2017; 14:5307-5312. [PMID: 29098027 PMCID: PMC5652195 DOI: 10.3892/ol.2017.6831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
In order to improve outcomes after breast cancer treatment, it is essential to understand the mechanisms of action of potential therapeutic agents. The effect of fangchinoline (FAN) on migration and apoptosis of human breast cancer MDA-MB-231 cells and its underlying mechanisms were investigated. MDA-MB-231 cells were treated with different concentrations of FAN, growth inhibition rates were measured by MTT assay and morphological changes of apoptotic cells were observed by Hoechst staining. The wound-healing assay was used to determine of the effect of FAN on the migration of MDA-MB-231 cells. ELISA was used to detect the expression of MMP-2 and −9 in MDA-MB-231 cells treated with different concentrations of FAN and western blot analysis was used to quantify expression of NF-κβ and Iκβ proteins in the same cells. Our results showed that FAN significantly inhibited the growth of MDA-MB-231 cells in concentration-dependent manner and it induced MDA-MB-231 cell apoptosis. With the high FAN concentrations and long exposure times, the levels of MMP-2 and −9 decreased and the expression of NF-κβ decreased, while the expression of Iκβ protein increased. Based on these results, the antitumor effects of FAN on breast cancer cells can be explained at least partially by inducing apoptosis and inhibiting the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Binggao Wang
- Breast Center, Qingdao Central Hospital, Qingdao, Shandong 266033, P.R. China
| | - Zhibo Xing
- Breast Center, Qingdao Central Hospital, Qingdao, Shandong 266033, P.R. China
| | - Fengmei Wang
- Department of Cardiology, Qingdao Central Hospital, Qingdao, Shandong 266033, P.R. China
| | - Xinyan Yuan
- Department of Obstetrics, Qingdao Central Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yanhui Zhang
- Breast Center, Qingdao Central Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
29
|
Shi J, Guo B, Hui Q, Chang P, Tao K. Fangchinoline suppresses growth and metastasis of melanoma cells by inhibiting the phosphorylation of FAK. Oncol Rep 2017; 38:63-70. [PMID: 28560386 PMCID: PMC5492563 DOI: 10.3892/or.2017.5678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/22/2017] [Indexed: 11/07/2022] Open
Abstract
Melanoma is a malignant tumor with high degree of malignancy, metastasis and high mortality. The etiology of melanoma has not been fully elucidated, and there is no effective drug for the complete treatment of melanoma. In recent years, many traditional Chinese herbal medicines have played an important role in clinical treatment and experimental research on cancer. As a natural product, fangchinoline has the characteristics of enhancing immune function, low toxicity and good liver protection features, so it is considered to be a new type of anticancer drug. In the present study, we found that fangchinoline has inhibitory effects on the proliferation and metastasis of A375 and A875 cells in a concentration-dependent manner. Fangchinoline inhibited the proliferation of A375 and A875 cell activity with IC50 values of 12.41 and 16.20 µM. We also found that fangchinoline could significantly reduce the phosphorylation of Focal adhesion kinase (FAK). In summary, we demonstrated that fangchinoline inhibits the proliferation and metastasis of melanoma cells by suppressing FAK and its downstream signaling pathway. More importantly, we provide a novel mechanism that fangchinoline could be an effective candidate for the treatment of melanoma.
Collapse
Affiliation(s)
- Jie Shi
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Bingyu Guo
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Qiang Hui
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Peng Chang
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Kai Tao
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| |
Collapse
|
30
|
Shen H, Li L, Yang S, Wang D, Zhou S, Chen X, Tang J. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Li X, Yang Z, Han W, Lu X, Jin S, Yang W, Li J, He W, Qian Y. Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcoma cells through the inhibition of PI3K and downstream signaling pathways. Int J Mol Med 2017; 40:311-318. [PMID: 28586029 PMCID: PMC5504998 DOI: 10.3892/ijmm.2017.3013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor. Most patients diagnosed with osteosarcoma are less than 20 years of age. Osteosarcoma cells proliferate rapidly and invade other tissues. At present, neoadjuvant chemotherapy is the primary pharmacodynamic strategy to prevent the progression of osteosarcoma. However, adverse effects of this strategy limit its long-term application. Previous research has shown that fangchinoline exerts antitumor effects on several types of tumor cells; however, its effect on osteosarcoma cells remains unknown. The present study evaluated the effects of fangchinoline on the proliferation, apoptosis, migration and invasion of osteosarcoma cells in vitro and on their tumorigenesis in vivo and determined the possible underlying mechanism of action. Fangchinoline-treated MG63 and U20S cells showed significantly decreased proliferation and significantly increased apoptosis. Fangchinoline markedly suppressed the migration and invasion of the MG63 cells. Fangchinoline-treated MG63 cells showed significantly decreased expression of phosphoinositide 3-kinase (PI3K) and Aktp-Thr308. Moreover, fangchinoline-treated MG63 cells showed downregulated expression of cyclin D1 and matrix metalloproteinase 2 and 9, which act downstream of PI3K, and upregulated expression of caspase-3 and caspase-8. Furthermore, fangchinoline suppressed the growth of subcutaneous osteosarcoma tumors in Balb/c mice subcutaneously injected with osteosarcoma cells. These findings suggest that fangchinoline inhibits the progression of osteosarcoma by suppressing the proliferation, migration and invasion and by accelerating the apoptosis of osteosarcoma cells. In addition, our results suggest that the mechanism underlying the antitumor effects of fangchinoline involve the inhibition of PI3K and its downstream signaling pathways.
Collapse
Affiliation(s)
- Xiucheng Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhifan Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Songtao Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jianlei Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Wei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
32
|
Xia R, Chen SX, Qin Q, Chen Y, Zhang WW, Zhu RR, Deng AM. Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling. Asian Pac J Cancer Prev 2017; 17:667-71. [PMID: 26925661 DOI: 10.7314/apjcp.2016.17.2.667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.
Collapse
Affiliation(s)
- Rong Xia
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, P. R. China E-mail :
| | | | | | | | | | | | | |
Collapse
|
33
|
The effect of JAK2 knockout on inhibition of liver tumor growth by inducing apoptosis, autophagy and anti-proliferation via STATs and PI3K/AKT signaling pathways. Biomed Pharmacother 2016; 84:1202-1212. [PMID: 27788478 DOI: 10.1016/j.biopha.2016.09.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is a leading cause of cancer death, making it as the second most common cause for death from cancer globally. Though many studies before have explored a lot for liver cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. Therefore, we were aimed to investigate the underlying mechanisms by which JAK2 performed its role in ameliorating liver cancer. JAK2 knockout liver cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for liver cancer progression. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal liver cells. And apoptosis and autophagy were found in JAK2 knockout liver cancer cells through activating Caspase-3, Cyclin-D1 and mTOR regulated by STAT3/5 and PI3K/AKT signaling pathway. And also, the liver cancer cells proliferation was inhibited. In addition, tumor size and weight were reduced by knockout of JAK2 in vivo experiments. These findings demonstrated that JAK2 and its down-streaming signaling pathways play a direct role in the progression of liver cancer possibly. To our knowledge, it was the first time to evaluate the role of JAK2 knockout in improving liver cancer from apoptosis, autophagy and proliferation, which could be a potential target for future therapeutic approach clinically.
Collapse
|
34
|
Cheng X, Zhong F, He K, Sun S, Chen H, Zhou J. EHHM, a novel phenolic natural product from Livistona chinensis, induces autophagy-related apoptosis in hepatocellular carcinoma cells. Oncol Lett 2016; 12:3739-3748. [PMID: 27895725 PMCID: PMC5104158 DOI: 10.3892/ol.2016.5178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the second cause of cancer-associated mortality worldwide. In the present study, the effects and mechanisms of a new phenolic natural product E-[6′-(5′-hydroxypentyl)tricosyl]-4-hydroxy-3-methoxycinnamate (EHHM) isolated from Livistona chinensis on the growth of HCC cells were investigated. It was observed that EHHM treatment significantly suppressed cell proliferation and colony formation, and induced cell apoptosis via a mitochondria-dependent caspase pathway in HepG2 cells in a time- and dose-dependent manner. Meanwhile, EHHM treatment also led to upregulated expression of autophagy protein 5 (Atg5), Beclin 1 and light chain 3 (LC3)-II proteins, and accumulation of green fluorescent protein-LC3 punctate florescent foci in HCC cells, suggesting that EHHM-induced apoptosis is accompanied by autophagy induction. Western blotting revealed that EHHM-induced autophagy is related to the inhibition of the Akt/mechanistic target of rapamycin/p70 ribosomal protein S6 kinase signaling pathway. Furthermore, treatment with Atg5 small interfering RNA or autophagy inhibitors significantly enhanced EHHM-mediated growth inhibition and apoptotic cell death, indicating that autophagy serves as a self-protective mechanism in EHHM-treated HCC cells, and that combined treatment with EHHM and autophagy inhibitors may be an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xinsheng Cheng
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Hepatobiliary Surgery, Nanshan Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Feng Zhong
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kun He
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongbo Chen
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
35
|
Vanitha MK, Baskaran K, Periyasamy K, Selvaraj S, Ilakkia A, Saravanan D, Venkateswari R, Revathi Mani B, Anandakumar P, Sakthisekaran D. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue. J Biochem Mol Toxicol 2016; 30:414-23. [PMID: 27091720 DOI: 10.1002/jbt.21805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/26/2016] [Accepted: 03/05/2016] [Indexed: 01/09/2023]
Abstract
The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer.
Collapse
Affiliation(s)
- Manickam Kalappan Vanitha
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India.
| | - Kuppusamy Baskaran
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Kuppusamy Periyasamy
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Sundaramoorthy Selvaraj
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Aruldoss Ilakkia
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Dhiravidamani Saravanan
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Ramachandran Venkateswari
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Balasundaram Revathi Mani
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Pandi Anandakumar
- Department of Biomedical Sciences, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Dhanapal Sakthisekaran
- Department of Medical Biochemistry, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai, 600 113, India
| |
Collapse
|
36
|
Ko EY, Moon A. Natural Products for Chemoprevention of Breast Cancer. J Cancer Prev 2015; 20:223-31. [PMID: 26734584 PMCID: PMC4699749 DOI: 10.15430/jcp.2015.20.4.223] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is the primary cause of cancer death in women. Although current therapies have shown some promise against breast cancer, there is still no effective cure for the majority of patients in the advanced stages of breast cancer. Development of effective agents to slow, reduce, or reverse the incidence of breast cancer in high-risk women is necessary. Chemoprevention of breast cancer by natural products is advantageous, as these compounds have few side effects and low toxicity compared to synthetic compounds. In the present review, we summarize natural products which exert chemopreventive activities against breast cancer, such as curcumin, sauchinone, lycopene, denbinobin, genipin, capsaicin, and ursolic acid. This review examines the current knowledge about natural compounds and their mechanisms that underlie breast cancer chemopreventive activity both in vitro and in vivo. The present review may provide information on the use of these compounds for the prevention of breast cancer.
Collapse
Affiliation(s)
- Eun-Yi Ko
- College of Pharmacy, Duksung Women’s University, Seoul,
Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women’s University, Seoul,
Korea
| |
Collapse
|
37
|
Li D, Lu Y, Sun P, Feng LX, Liu M, Hu LH, Wu WY, Jiang BH, Yang M, Qu XB, Guo DA, Liu X. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells. PLoS One 2015; 10:e0141681. [PMID: 26512898 PMCID: PMC4626104 DOI: 10.1371/journal.pone.0141681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/11/2015] [Indexed: 11/28/2022] Open
Abstract
Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit.
Collapse
Affiliation(s)
- Dong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Yu Lu
- Nanjing Tianyi Bioscience Co. Ltd, Nanjing 210061, P.R. China
| | - Peng Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Xing Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Miao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Hong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wan-Ying Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Bao-Hong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Min Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xiao-Bo Qu
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (DG); (XL)
| | - Xuan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (DG); (XL)
| |
Collapse
|
38
|
Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades. Tumour Biol 2015; 37:2709-19. [PMID: 26408176 DOI: 10.1007/s13277-015-3990-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most palindromic and malignant central nervous system neoplasms, and the current treatment is not effectual for GBM. Research of specific medicine for GBM is significant. Fangchinoline possesses a wide range of pharmacological activities and attracts more attentions due to its anti-tumor effects. In this study, two WHO grade IV human GBM cell lines (U87 MG and U118 MG) were exposed to fangchinoline, and we found that fangchinoline specifically inhibits the kinase activity of Akt and markedly suppresses the phosphorylation of Thr308 and Ser473 of Akt in human GBM cells. We also observed that fangchinoline inhibits tumor cell proliferation and invasiveness and induces apoptosis through suppressing the Akt-mediated signaling cascades, including Akt/p21, Akt/Bad, and Akt/matrix metalloproteinases (MMPs). These data demonstrated that fangchinoline exerts its anti-tumor effects in human glioblastoma cells, at least partly by inhibiting the kinase activity of Akt and suppressing Akt-mediated signaling cascades.
Collapse
|
39
|
Tian F, Ding D, Li D. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells. Int J Oncol 2015; 46:2355-63. [PMID: 25872479 PMCID: PMC4441295 DOI: 10.3892/ijo.2015.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/12/2015] [Indexed: 01/17/2023] Open
Abstract
Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells.
Collapse
Affiliation(s)
- Feng Tian
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ding Ding
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dandan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
40
|
Guo B, Su J, Zhang T, Wang K, Li X. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway in A549. J Drug Target 2014; 23:266-74. [PMID: 25539072 DOI: 10.3109/1061186x.2014.992898] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Fangchinoline as a novel anti-tumor agent has been paid attention in several types of cancers cells except lung cancer. Here we have investigated the effect of fangchinoline on A549 cells and its underlying mechanism. PURPOSE The purpose of this work was to study the effect of fangchinoline on A549 cells. METHODS Four lung cancer cell lines (A549, NCI-H292, NCI-H446, and NCI-H460) were exposed to varying concentrations (10-40 μmol/l) of fangchinoline to observe the effect of fangchinoline on the four lung cancer cell lines and to observe the changes of the lung cancer cell on proliferation, apoptosis, and invasion. RESULTS Fangchinoline effectively suppressed proliferation and invasion of A549 cell line but not NCI-H292, NCI-H446, and NCI-H460 cell lines by inhibiting the phosphorylation of FAK (Tyr397) and its downstream pathways, due to the significant differences of Fak expression between A549 and the other three cell lines. And all FAK-paxillin/MMP2/MMP9 pathway, FAK-Akt pathway, and FAK-MEK-ERK1/2 pathway could be inhibited by fangchinoline. DISCUSSION Fangchinoline effectively suppressed proliferation and invasion of A549 cell line by inhibiting the phosphorylation of FAK (Tyr397) and its downstream pathways. CONCLUSION Fangchinoline could inhibit the phosphorylation of FAK(p-Tyr397), at least partially. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway and inhibits the growth and the invasion in tumor cells which highly expressed FAK such as A549 cell line.
Collapse
Affiliation(s)
- Bingyu Guo
- Institute of Neurology, General Hospital of Shenyang Military Command , Shenyang, Liaoning , China
| | | | | | | | | |
Collapse
|
41
|
Al-Astani Tengku Din TAD, Shamsuddin SH, Idris FM, Wan Mansor WNA, Abdul Jalal MI, Jaafar H. Rapamycin and PF4 Induce Apoptosis by Upregulating Bax and Down-Regulating Survivin in MNU-Induced Breast Cancer. Asian Pac J Cancer Prev 2014; 15:3939-44. [DOI: 10.7314/apjcp.2014.15.9.3939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|