1
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to decreased or increased flow through the arteries that feed these small vessels. The resultant changes in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
2
|
Hu M, Chen B, Luo Y. Computational fluid dynamics modelling of hemodynamics in aortic aneurysm and dissection: a review. Front Bioeng Biotechnol 2025; 13:1556091. [PMID: 40190707 PMCID: PMC11968685 DOI: 10.3389/fbioe.2025.1556091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Hemodynamic analysis based on computational fluid dynamics (CFD) modelling is expected to improve risk stratification for patients with aortic aneurysms and dissections. However, the parameter settings in CFD simulations involve considerable variability and uncertainty. Additionally, the exact relationship between hemodynamic features and disease progression remains unclear. These challenges limit the clinical application of aortic hemodynamic models. This review presents a detailed overview of the workflow for CFD-based aortic hemodynamic analysis, with a focus on recent advancements in the field. We also conducted a systematic review of 27 studies with large sample sizes (n > 5) that examine the hemodynamic characteristics of aortic aneurysms and dissections. Some studies identified consistent relationships between hemodynamic features and disease progression, reinforcing the potential for clinical application of aortic hemodynamic models. However, limitations such as small sample sizes and oversimplified patient-specific models remain. These findings emphasize the need for larger, more detailed studies to refine CFD modelling strategies, strengthen the connection between hemodynamics and diseases, and ultimately facilitate the clinical use of aortic hemodynamic models in disease management.
Collapse
Affiliation(s)
- Mengqiang Hu
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, China
| | - Bing Chen
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yuanming Luo
- Department of Mechanical Engineering, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Wang Z, Lyu Z, Jiang J. Induction of Controllable Vortical Flow in a Dual-Stenosis Aorta Model: A Replication of Disordered Eddies Flow in Aneurysms. J Cardiovasc Transl Res 2025; 18:91-93. [PMID: 39375271 PMCID: PMC11885045 DOI: 10.1007/s12265-024-10566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
This paper presents a two-stenosis aorta model mimicking vortical flow in vascular aneurysms. More specifically, we propose to virtually induce two adjacent stenoses in the abdominal aorta to develop various vortical flow zones post stenoses. Computational fluid dynamics (CFD) simulations were conducted for the virtual two-stenosis model based on physiological and anatomical data (i.e., diameters, flow rate waveforms) from adult rabbits. The virtual model includes adult rabbits' infra-renal portion of the aorta and iliac arteries. 3D CFD simulations in five different dual-stenosis configurations were performed using a commercial CFD package (FLUENT). In-house software assessed the evolution of flow vortices. Notably, spatial-temporally averaged wall shear stress (STA-WSS) and oscillatory shear index (OSI), the total volume of vortex flow, the number of vortices, and the phase-to-phase overlap of vortex flow within each region were evaluated. In all models, we found consistent patterns of the vortex flow parameters, indicating that the adjacent stenoses induced three different hemodynamic zones, namely, stable vortical flow (after the first stenosis), transient vortical flow (after the second stenosis), and unstable vortical flow (further distal to the second stenosis). Also, different degrees of flow disturbance can be achieved in these three zones. It is significant to note that, although the 'dual-stenosis' geometry is completely hypothetical, it allows us to create various vortical flows in consecutive vessel segments for the first time. As a result, if implemented as a pre-clinical model, the proposed two-stenosis model offers an attractive, tunable environment to investigate the interplays between subject-specific hemodynamics and vascular remodeling. This aspect remains in our future directions.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Biomedical Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Zonghan Lyu
- Department of Biomedical Engineering, Michigan Technological University, 339 H-STEM Complex, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, 339 H-STEM Complex, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
4
|
Lim J, Truong HD, Song TY, Giam WJH, Koh EL, Tan JKS. The interdependent hemodynamic influence between abdominal aortic aneurysm and renal artery stenosis. Sci Rep 2024; 14:31986. [PMID: 39738423 PMCID: PMC11685789 DOI: 10.1038/s41598-024-83622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide with abdominal aortic aneurysm (AAA) and renal artery stenosis (RAS) standing out as significant contributors to the vascular pathology spectrum. While these conditions have traditionally been approached as distinct entities, emerging evidence suggests a compelling interdependent relationship between AAA and RAS, challenging the conventional siloed understanding. The confluence of AAA and RAS represents a complex interplay within the cardiovascular system, one that is often overlooked in clinical practice and research. Here, we reveal a bidirectional consequential impact between these two diseases. The location of the AAA sac was investigated for its specific influence on the risk of RAS development. Although studies have shown a higher coincidence between the suprarenal AAA and RAS, our findings demonstrated that the presence of a suprarenal AAA correlated with the lowest risk of RAS development among the three investigated AAA locations. Notably, we also highlighted that the pre-existence of stenosis in the renal artery poses an elevated risk for the formation of suprarenal AAA, assessed by an increased wall shear stress gradient on the aortic wall. Our findings prompt a paradigm shift in the understanding and treatment of AAA and RAS in clinical practice.
Collapse
Affiliation(s)
- Jiaqi Lim
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Hung Dong Truong
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Tae Yoon Song
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Wilkin Jing Han Giam
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Evelyn Linyi Koh
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore.
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
5
|
Toader C, Radoi MP, Covlea CA, Covache-Busuioc RA, Ilie MM, Glavan LA, Corlatescu AD, Costin HP, Gica MD, Dobrin N. Cerebral Aneurysm: Filling the Gap Between Pathophysiology and Nanocarriers. Int J Mol Sci 2024; 25:11874. [PMID: 39595942 PMCID: PMC11593836 DOI: 10.3390/ijms252211874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Intracranial aneurysms, characterized by abnormal dilations of cerebral arteries, pose significant health risks due to their potential to rupture, leading to subarachnoid hemorrhage with high mortality and morbidity rates. This paper aim is to explore the innovative application of nanoparticles in treating intracranial aneurysms, offering a promising avenue for enhancing current therapeutic strategies. We took into consideration the pathophysiology of cerebral aneurysms, focusing on the role of hemodynamic stress, endothelial dysfunction, and inflammation in their development and progression. By comparing cerebral aneurysms with other types, such as aortic aneurysms, we identify pathophysiological similarities and differences that could guide the adaptation of treatment approaches. The review highlights the potential of nanoparticles to improve drug delivery, targeting, and efficacy while minimizing side effects. We discuss various nanocarriers, including liposomes and polymeric nanoparticles, and their roles in overcoming biological barriers and enhancing therapeutic outcomes. Additionally, we discuss the potential of specific compounds, such as Edaravone and Tanshinone IIA, when used in conjunction with nanocarriers, to provide neuroprotective and anti-inflammatory benefits. By extrapolating insights from studies on aortic aneurysms, new research directions and therapeutic strategies for cerebral aneurysms are proposed. This interdisciplinary approach underscores the potential of nanoparticles to positively influence the management of intracranial aneurysms, paving the way for personalized treatment options that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Christian-Adelin Covlea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Milena Monica Ilie
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Maria-Daria Gica
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | | |
Collapse
|
6
|
Górski G, Kucab K. Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:429-445. [PMID: 39422728 PMCID: PMC11561016 DOI: 10.1007/s00249-024-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Atherosclerosis is one of the important diseases of the circulatory system because atherosclerotic plaques cause significant disruption of blood flow. Therefore, it is very important to properly understand these processes and skillfully simulate blood flow. In our work, we consider blood flow through an abdominal aorta with iliac arteries, assuming that the right iliac artery is narrowed by an atherosclerotic lesion. Blood flow is simulated using the laminar, standard k - ω and standard k - ϵ models. The obtained results show that despite the use of identical initial conditions, the distribution of velocity flow and wall shear stress depends on the choice of flow simulation model. For the k - ϵ model, we obtain higher values of speed and wall shear stress on atherosclerotic plaque than in the other two models. The laminar and k - ω models predict larger areas where reverse blood flow occurs in the area behind the atherosclerotic lesion. This effect is associated with negative wall shear stress. These two models give very similar results. The results obtained by us, and those reported in the literature, indicate that k - ω model is the most suitable for blood flow analysis.
Collapse
Affiliation(s)
- Grzegorz Górski
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland.
| | - Krzysztof Kucab
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
7
|
Zhang YF, Zhao Q, Shi H. Prediction of hemoptysis in patients with anomalous systemic arterial supply to normal basal segments of the lower lobe using a combination of CT features and clinical materials. J Thorac Dis 2024; 16:5846-5859. [PMID: 39444920 PMCID: PMC11494567 DOI: 10.21037/jtd-24-738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/30/2024] [Indexed: 10/25/2024]
Abstract
Background Anomalous systemic arterial supply to the normal basal segments of the lower lobe (ASALL) is a rare anomaly with a common complication of hemoptysis. To estimate the risk of hemoptysis, this study aims to investigate the value of contrast-enhanced computed tomography (CT) and construct a risk-scoring model based on radiological features and clinical materials of patients with ASALL. Methods Forty-three eligible individuals (17 women and 26 males), who underwent multiphase contrast-enhanced CT, were included in this study. Hemoptysis was predicted by combined systemic arterial features (CD-A) and combined demographic and radiological features (CD-R). Potential hemoptysis predictors were identified using multivariate regression analysis. A receiver operating characteristic (ROC) curve analysis was used to assess the prediction efficiency. The coefficient of regression model was used to build a combined risk scoring (CRS) model for hemoptysis. The decision curve analysis (DCA) was performed to evaluate the clinical usefulness of the risk-scoring model. Results Hemoptysis was present in 17 (39.5%) ASALL patients. The areas under the curve (AUCs) for the predicted performance of CD-A and CD-R were 0.869 and 0.890, respectively. Independent predictors generated a scoring model using the formula CRS = 3 × age + 3 × sex + 4 × [ground glass opacity (GGO)] + 3 × (CD-A >0.522). The prediction performance of this model was displayed with an AUC of 0.939. This scoring model was demonstrated to be significantly preferable to CD-A (P=0.046) and CD-R (P=0.02) by the Hanley and McNeil test. The DCA showed that the CRS model was more beneficial when the threshold probability was between 5% and 92%. Conclusions The scoring model offers a viable method for evaluating the risk of hemoptysis in patients with ASALL by combining radiological and clinical data.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiong Zhao
- Department of Ultrasonography, Wuhan Asia General Hospital, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
8
|
Zhao W, Li B, Hao J, Sun R, He P, Lv H, He M, Shen J, Han Y. Therapeutic potential of natural products and underlying targets for the treatment of aortic aneurysm. Pharmacol Ther 2024; 259:108652. [PMID: 38657777 DOI: 10.1016/j.pharmthera.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Aortic aneurysm is a vascular disease characterized by irreversible vasodilatation that can lead to dissection and rupture of the aortic aneurysm, a life-threatening condition. Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are two main types. The typical treatments for aortic aneurysms are open surgery and endovascular aortic repair, which are only indicated for more severe patients. Most patients with aneurysms have an insidious onset and slow progression, and there are no effective drugs to treat this stage. The inability of current animal models to perfectly simulate all the pathophysiological states of human aneurysms may be the key to this issue. Therefore, elucidating the molecular mechanisms of this disease, finding new therapeutic targets, and developing effective drugs to inhibit the development of aneurysms are the main issues of current research. Natural products have been applied for thousands of years to treat cardiovascular disease (CVD) in China and other Asian countries. In recent years, natural products have combined multi-omics, computational biology, and integrated pharmacology to accurately analyze drug components and targets. Therefore, the multi-component and multi-target complexity of natural products have made them a potentially ideal treatment for multifactorial diseases such as aortic aneurysms. Natural products have regained popularity worldwide. This review provides an overview of the known natural products for the treatment of TAA and AAA and searches for potential cardiovascular-targeted natural products that may treat TAA and AAA based on various cellular molecular mechanisms associated with aneurysm development.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Bufan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jinjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ruochen Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Peng He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyu Lv
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Mou He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Shen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yantao Han
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Bailey DM, Davies RG, Rose GA, Lewis MH, Aldayem AA, Twine CP, Awad W, Jubouri M, Mohammed I, Mestres CA, Chen EP, Coselli JS, Williams IM, Bashir M. Myths and methodologies: Cardiopulmonary exercise testing for surgical risk stratification in patients with an abdominal aortic aneurysm; balancing risk over benefit. Exp Physiol 2023; 108:1118-1131. [PMID: 37232485 PMCID: PMC10988440 DOI: 10.1113/ep090816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The extent to which patients with an abdominal aortic aneurysm (AAA) should exercise remains unclear, given theoretical concerns over the perceived risk of blood pressure-induced rupture, which is often catastrophic. This is especially pertinent during cardiopulmonary exercise testing, when patients are required to perform incremental exercise to symptom-limited exhaustion for the determination of cardiorespiratory fitness. This multimodal metric is being used increasingly as a complementary diagnostic tool to inform risk stratification and subsequent management of patients undergoing AAA surgery. In this review, we bring together a multidisciplinary group of physiologists, exercise scientists, anaesthetists, radiologists and surgeons to challenge the enduring 'myth' that AAA patients should be fearful of and avoid rigorous exercise. On the contrary, by appraising fundamental vascular mechanobiological forces associated with exercise, in conjunction with 'methodological' recommendations for risk mitigation specific to this patient population, we highlight that the benefits conferred by cardiopulmonary exercise testing and exercise training across the continuum of intensity far outweigh the short-term risks posed by potential AAA rupture.
Collapse
Affiliation(s)
- Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | - Richard G. Davies
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of AnaestheticsUniversity Hospital of WalesCardiffUK
| | - George A. Rose
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | - Michael H. Lewis
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | | | | | - Wael Awad
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of Cardiothoracic SurgeryBart's Heart Centre, St Bartholomew's Hospital, Bart's Health NHS TrustLondonUK
| | | | - Idhrees Mohammed
- Institute of Cardiac and Aortic DisordersSRM Institutes for Medical Science (SIMS Hospital)ChennaiTamil NaduIndia
| | - Carlos A. Mestres
- Department of Cardiac SurgeryUniversity Hospital ZürichZürichSwitzerland
| | - Edward P. Chen
- Division of Cardiovascular and Thoracic SurgeryDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
- The Texas Heart InstituteHoustonTexasUSA
- St Luke's‐Baylor St. Luke's Medical CenterHoustonTexasUSA
| | - Ian M. Williams
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of Vascular SurgeryUniversity Hospital of WalesCardiffUK
| | - Mohamad Bashir
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Vascular and Endovascular SurgeryHealth & Education Improvement WalesCardiffUK
| | | |
Collapse
|
10
|
Peng C, He W, Huang X, Ma J, Yuan T, Shi Y, Wang S. The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data. Front Bioeng Biotechnol 2023; 11:1103905. [PMID: 37064230 PMCID: PMC10098133 DOI: 10.3389/fbioe.2023.1103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose: To analyze the effect of the physiological deformation of the vessel wall on the hemodynamics in the abdominal aortic aneurysm (AAA), this paper compared the hemodynamics in AAA based on the moving boundary (MB) simulation and the rigid wall (RW) simulation. Method: Patient-specific models were reconstructed to generate mesh based on four-dimensional computed tomography angiography (4D CT) data. The dynamic mesh technique was used to achieve deformation of the vessel wall, surface mesh and volume mesh of the fluid domain were successively remeshed at each time step. Besides, another rigid wall simulation was performed. Hemodynamics obtained from these two simulations were compared. Results: Flow field and wall shear stress (WSS) distribution are similar. When using the moving boundary method (MBM), mean time-averaged wall shear stress (TAWSS) is lower, mean oscillatory shear index (OSI) and mean relative residence time (RRT) are higher. When using the 10th and 20th percentile values for TAWSS and 80th and 90th percentile values for RRT, the ratios of areas with low TAWSS, high OSI and high RRT to the entire vessel wall are higher than those assuming the vessel as rigid. In addition, one overlapping region of low TAWSS, high OSI and high RRT by using the MBM is consistent with the location of thrombus obtained from the follow-up imaging data. Conclusion: The hemodynamics results by using the MBM reflect a higher blood retention effect. This paper presents a potential tool to assess the risk of intraluminal thrombus (ILT) formation based on the MBM.
Collapse
Affiliation(s)
- Chen Peng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingsheng Huang
- Shenzhen Raysight Intelligent Medical Technology Corporation, Shenzhen, Guangdong, China
| | - Jun Ma
- Shenzhen Raysight Intelligent Medical Technology Corporation, Shenzhen, Guangdong, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Vascular Surgery, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
11
|
Mutlu O, Salman HE, Al-Thani H, El-Menyar A, Qidwai UA, Yalcin HC. How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time. Comput Biol Med 2023; 154:106609. [PMID: 36724610 DOI: 10.1016/j.compbiomed.2023.106609] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a critical health condition with a risk of rupture, where the diameter of the aorta enlarges more than 50% of its normal diameter. The incidence rate of AAA has increased worldwide. Currently, about three out of every 100,000 people have aortic diseases. The diameter and geometry of AAAs influence the hemodynamic forces exerted on the arterial wall. Therefore, a reliable assessment of hemodynamics is crucial for predicting the rupture risk. Wall shear stress (WSS) is an important metric to define the level of the frictional force on the AAA wall. Excessive levels of WSS deteriorate the remodeling mechanism of the arteries and lead to abnormal conditions. At this point, WSS-related hemodynamic parameters, such as time-averaged WSS (TAWSS), oscillatory shear index (OSI), endothelial cell activation potential (ECAP), and relative residence time (RRT) provide important information to evaluate the shear environment on the AAA wall in detail. Calculation of these parameters is not straightforward and requires a physical understanding of what they represent. In addition, computational fluid dynamics (CFD) solvers do not readily calculate these parameters when hemodynamics is simulated. This review aims to explain the WSS-derived parameters focusing on how these represent different characteristics of disturbed hemodynamics. A representative case is presented for spatial and temporal formulation that would be useful for interested researchers for practical calculations. Finally, recent hemodynamics investigations relating WSS-related parameters with AAA rupture risk assessment are presented. This review will be useful to understand the physical representation of WSS-related parameters in cardiovascular flows and how they can be calculated practically for AAA investigations.
Collapse
Affiliation(s)
- Onur Mutlu
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Hassan Al-Thani
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar; Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Uvais Ahmed Qidwai
- Department of Computer Science Engineering, Qatar University, Doha, Qatar
| | | |
Collapse
|
12
|
Wen J, Liu X, Lei J, Wang J, Chen X, Zheng T, Yuan D. Hemodynamics in renal arteries with partial coverage after endovascular aneurysm repair affected by renal orientations. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
13
|
Wen J, Wang J, Peng L, Yuan D, Zheng T. Hemodynamic analysis of hybrid treatment for thoracoabdominal aortic aneurysm based on Newtonian and non-Newtonian models in a patient-specific model. Comput Methods Biomech Biomed Engin 2023; 26:209-221. [PMID: 35414317 DOI: 10.1080/10255842.2022.2053683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The accuracy of the Newtonian model used in retrograde visceral revascularization (RVR) of hybrid surgery for thoracoabdominal aortic aneurysm (TAAA) hemodynamic simulation remains unclear. Noting that an appropriate blood viscosity model is a significant factor to capture hemodynamic changes in numerical studies. Therefore, both Newtonian and non-Newtonian blood viscosity models were adopted in this study to investigate the importance of hemodynamics when non-Newtonian blood property was accounted for in a patient-specific RVR simulation. The results revealed that disturbed flow and unfavorable WSS distribution can be observed in the anastomosis region under both blood viscosity models due to the retrograde flow pattern in the RVR model. However, although the non-Newtonian blood model has negligible effect on flow pattern and pressure drop, there were of significance quantitative and qualitative difference of local normalized helicity and wall shear stress distribution under pulsatile flow condition. In particular, the unfavorable WSS indicators distribution was better matched with a patient-specific follow-up report when non-Newtonian blood viscosity was accounted for. To conclude, the use of a Newtonian blood model is a reasonable approximation to obtain the general features of the flow field under steady flow condition. However, to study the hemodynamic parameters within retrograde flow under pulsatile flow condition, a non-Newtonian model may be more appropriate.
Collapse
Affiliation(s)
- Jun Wen
- Institute of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, China
| | - Jiarong Wang
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Shen Y, van der Harst JJ, Wei Y, Bokkers RPH, van Dijk JMC, Uyttenboogaart M. Validation of a cerebral hemodynamic model with personalized calibration in patients with aneurysmal subarachnoid hemorrhage. Front Bioeng Biotechnol 2022; 10:1031600. [PMID: 36507259 PMCID: PMC9732662 DOI: 10.3389/fbioe.2022.1031600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
This study aims to validate a numerical model developed for assessing personalized circle of Willis (CoW) hemodynamics under pathological conditions. Based on 66 computed tomography angiography images, investigations were obtained from 43 acute aneurysmal subarachnoid hemorrhage (aSAH) patients from a local neurovascular center. The mean flow velocity of each artery in the CoW measured using transcranial Doppler (TCD) and simulated by the numerical model was obtained for comparison. The intraclass correlation coefficient (ICC) over all cerebral arteries for TCD and the numerical model was 0.88 (N = 561; 95% CI 0.84-0.90). In a subgroup of patients who had developed delayed cerebral ischemia (DCI), the ICC had decreased to 0.72 but remained constant with respect to changes in blood pressure, Fisher grade, and location of ruptured aneurysm. Our numerical model showed good agreement with TCD in assessing the flow velocity in the CoW of patients with aSAH. In conclusion, the proposed model can satisfactorily reproduce the cerebral hemodynamics under aSAH conditions by personalizing the numerical model with TCD measurements. Clinical trial registration: [http://www.trialregister.nl/], identifier [NL8114].
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. Joep van der Harst
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yanji Wei
- Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo, China
| | - Reinoud P. H. Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maarten Uyttenboogaart
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: Maarten Uyttenboogaart,
| |
Collapse
|
15
|
Zhou X, Liu G, Lai H, Wang C, Li J, Zhu K. Using Molecular Targets to Predict and Treat Aortic Aneurysms. Rev Cardiovasc Med 2022; 23:307. [PMID: 39077712 PMCID: PMC11262374 DOI: 10.31083/j.rcm2309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysms are life-threatening vascular diseases associated with high morbidity, and usually require prophylactic surgical intervention. Current preventative management of aortic aneurysms relies on the diameter and other anatomic parameters of the aorta, but these have been demonstrated to be insufficient predictive factors of disease progression and potential complications. Studies on pathophysiology of aortic aneurysms could fill this need, which already indicated the significance of specific molecules in aortic aneurysms. These molecules provide more accurate prediction, and they also serve as therapeutic targets, some of which are in preclinical stage. In this review, we summarized the inadequacies and achievements of current clinical prediction standards, discussed the molecular targets in prediction and treatment, and especially emphasized the molecules that have shown potentials in early diagnosis, accurate risk assessment and target treatment of aortic aneurysm at early stage.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| |
Collapse
|
16
|
岳 键, 赵 一, 王 家, 樊 瑜, 郑 庭. [Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:645-650. [PMID: 36008327 PMCID: PMC10957364 DOI: 10.7507/1001-5515.202107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate whether displacement force on stents can accurately represents the displacement of the stent after endovascular aneurysm repair (EVAR) by comparing the measured stent displacement with the displacement forces calculated by computational fluid dynamics (CFD). And the effect of cross-limb and parallel-limb EVAR on stent displacements is further studied. Based on our objective, in this study, ten cross-limb EVAR patients and ten parallel-limb EVAR patients in West China Hospital of Sichuan University were enrolled. Patient-specific models were first reconstructed based on the computed tomography angiography images, then the stent displacements were measured, and the displacement forces acting on the stents were calculated by CFD. Finally, the c o s α value of the angle between the displacement force and the displacement vector was used to analyze the matching degree between the displacement and the displacement force. The results showed that the displacement forces on cross-limb stents and parallel-limb stents were (2.67 ± 2.14) N and (1.36 ± 0.48) N, respectively. Displacements of stent gravity center, stent displacements relative to vessel, and vessel displacements of cross-limb and parallel-limb stents were (4.43 ± 2.81) mm and (6.39 ± 2.62) mm, (0.88 ± 0.67) mm and (1.11 ± 0.71) mm, (3.55 ± 2.88) mm and (5.28 ± 2.52) mm, respectively. The mean c o s α for cross-limb and parallel-limb stents were 0.02 ± 0.66 and - 0.10 ± 0.73, respectively. This study indicates that the displacement force on the stent can't accurately represent the displacement of the stent after EVAR. In addition, the cross-limb EVAR is probably safer and more stable than the parallel-limb EVAR.
Collapse
Affiliation(s)
- 键金 岳
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 一鸣 赵
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 家嵘 王
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 瑜波 樊
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 庭辉 郑
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
17
|
Endothelial Dysfunction in the Pathogenesis of Abdominal Aortic Aneurysm. Biomolecules 2022; 12:biom12040509. [PMID: 35454098 PMCID: PMC9030795 DOI: 10.3390/biom12040509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), defined as a focal dilation of the abdominal aorta beyond 50% of its normal diameter, is a common and potentially life-threatening vascular disease. The molecular and cellular mechanisms underlying AAA pathogenesis remain unclear. Healthy endothelial cells (ECs) play a critical role in maintaining vascular homeostasis by regulating vascular tone and maintaining an anti-inflammatory, anti-thrombotic local environment. Increasing evidence indicates that endothelial dysfunction is an early pathologic event in AAA formation, contributing to both oxidative stress and inflammation in the degenerating arterial wall. Recent studies utilizing single-cell RNA sequencing revealed heterogeneous EC sub-populations, as determined by their transcriptional profiles, in aortic aneurysm tissue. This review summarizes recent findings, including clinical evidence of endothelial dysfunction in AAA, the impact of biomechanical stress on EC in AAA, the role of endothelial nitric oxide synthase (eNOS) uncoupling in AAA, and EC heterogeneity in AAA. These studies help to improve our understanding of AAA pathogenesis and ultimately may lead to the generation of EC-targeted therapeutics to treat or prevent this deadly disease.
Collapse
|
18
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
19
|
Wen J, Wu W, Peng L. 'Heart-like' cross-sectional shape can better improve the hemodynamics in spiral laminar flow graft for small-caliber bypass application: a numerical study. Comput Methods Biomech Biomed Engin 2021; 25:1487-1498. [PMID: 34937461 DOI: 10.1080/10255842.2021.2017905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small-caliber grafts remain disappointed in the long-term bypass surgeries of coronary and peripheral arterial diseases. In order to improve the hemodynamics in small-caliber artery bypass grafts (ABGs), an improved spiral laminar flow (improved-SLF) graft with a 'heart-like' cross-sectional shape was proposed and verified by computational fluid dynamics simulation in this study. The results show that such graft can indeed induce a spiral flow and enhance the WSS distribution on the graft section. Furthermore, the helically distributed ribbon of unfavorable WSS observed in the original SLF graft was eliminated in the improved-SLF graft due to its smoothed and gentle helical ridge. On the other hand, improved-SLF ABG improved the WSS distribution in the distal anastomosis as well, because it maintained the strength of spiral flow when entering the anastomosis region. Finally, the improved-SLF ABG slightly increased the pressure drop along the bypass due to its small change of the general graft structure. As a proof-of-concept study, it can be concluded that improved-SLF graft can not only evenly enhance the WSS distribution in the graft section, but also improve the hemodynamic environment in the distal anastomosis without significantly increasing the pressure drop along the bypass, indicating such new helical-type graft may be more suitable to be used in the small-caliber graft bypass surgeries.
Collapse
Affiliation(s)
- Jun Wen
- Department of Mechanics, Institute of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, China
| | - Wenqing Wu
- Department of Mathematics, School of Science, Southwest University of Science and Technology, Mianyang, China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Effect of Anastomosis Angles on Retrograde Perfusion and Hemodynamics of Hybrid Treatment for Thoracoabdominal Aortic Aneurysm. Ann Vasc Surg 2021; 79:298-309. [PMID: 34648850 DOI: 10.1016/j.avsg.2021.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemodynamic effects on the retrograde visceral reconstruction (RVR) for thoracoabdominal aortic aneurysms treatment by anastomotic angle remains unclear. This study aims to qualitatively and quantitatively investigate the effects of different anastomotic angles on hemodynamics and patency. METHODS Three RVR models with 45°, 60° and 90° anastomotic angles were reconstructed respectively by manipulating apostoperative patient-specific model. The manipulated models of the RVRs were numerically simulated and analyzed in terms of hemodynamics including theinstant and cumulative patency, flow pattern and indicators based on wall shear stress (WSS). RESULTS Although a smaller anastomotic angle may decrease the patency rate of common iliac arteries, it can improve the visceral perfusion during a cardiac cycle. More importantly, RVR with the smallest anastomotic angle experienced a minimal low time-averaged wall shear stress, high oscillatory shear index and relative residence time in the anastomosis region, whereas the largest anastomotic angle can introduce more unfavorable WSS in the graft trunk. Furthermore, a spiral flow pattern was observed in the proximal graft trunk of all three models, where no high-risk shear distribution was detected in this region. CONCLUSION A smaller anastomotic angle may have more benefits of hemodynamic environment in RVR, especially the WSS distribution and flow pattern in the graft trunk. We may also suggest that additional stents or an extended cuff for the graft can be used to induce spiral flow intentionally, which can further improve local hemodynamic environment and long-term prognosis.
Collapse
|
21
|
Kancheva AK, Velthuis BK, Ruigrok YM. Imaging markers of intracranial aneurysm development: A systematic review. J Neuroradiol 2021; 49:219-224. [PMID: 34634299 DOI: 10.1016/j.neurad.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Imaging markers of intracranial aneurysm (IA) development are not well established. PURPOSE To provide an overview of imaging markers of IA development. METHODS A systematic search of PubMed and Embase up to December 1st 2020 using predefined criteria. Thirty-six studies met our inclusion criteria. We performed a quantitative summary of the included studies. RESULTS We found converging evidence for A1 segment asymmetry as an anatomical marker of anterior communicating artery (Acom) aneurysm development, and moderate evidence for several other markers. No hemodynamic markers yielded converging or moderate evidence. There was large heterogeneity across studies, especially in the definitions of imaging markers and study outcomes used. Due to the poor methodological quality of many studies and unavailability of effect sizes or crude data to calculate effect sizes, a formal meta-analysis was not possible. Many studies had poor methodological quality and varied inmarkerdefinitions and outcome measuresused, which prevented us from performing a formal meta-analysis. CONCLUSIONS We only identified A1 segment asymmetry as an imaging marker of Acom aneurysm development with converging evidence. A meta-analysis was not possible due to the heterogeneity of marker definitions and outcomes used, and poor methodological quality of many studies. Future studies should use robust study designs and uniformly defined imaging markers and outcome measures.
Collapse
Affiliation(s)
- Angelina K Kancheva
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ynte M Ruigrok
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
22
|
Fonken JHC, Maas EJ, Nievergeld AHM, van Sambeek MRHM, van de Vosse FN, Lopata RGP. Ultrasound-Based Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms Incorporating Pre-stress. Front Physiol 2021; 12:717593. [PMID: 34483971 PMCID: PMC8414835 DOI: 10.3389/fphys.2021.717593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022] Open
Abstract
Currently, the prediction of rupture risk in abdominal aortic aneurysms (AAAs) solely relies on maximum diameter. However, wall mechanics and hemodynamics have shown to provide better risk indicators. Patient-specific fluid-structure interaction (FSI) simulations based on a non-invasive image modality are required to establish a patient-specific risk indicator. In this study, a robust framework to execute FSI simulations based on time-resolved three-dimensional ultrasound (3D+t US) data was obtained and employed on a data set of 30 AAA patients. Furthermore, the effect of including a pre-stress estimation (PSE) to obtain the stresses present in the measured geometry was evaluated. The established workflow uses the patient-specific 3D+t US-based segmentation and brachial blood pressure as input to generate meshes and boundary conditions for the FSI simulations. The 3D+t US-based FSI framework was successfully employed on an extensive set of AAA patient data. Omitting the pre-stress results in increased displacements, decreased wall stresses, and deviating time-averaged wall shear stress and oscillatory shear index patterns. These results underline the importance of incorporating pre-stress in FSI simulations. After validation, the presented framework provides an important tool for personalized modeling and longitudinal studies on AAA growth and rupture risk.
Collapse
Affiliation(s)
- Judith H. C. Fonken
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Esther J. Maas
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Arjet H. M. Nievergeld
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Marc R. H. M. van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics, Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Richard G. P. Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
23
|
Gusev AA, Uspenskiĭ VE, Gordeev ML. [Visceral debranching in hybrid surgery of thoracoabdominal aortic aneurysms]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2021; 27:176-184. [PMID: 34166359 DOI: 10.33529/angio2021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Presented herein is a review of the literature dedicated to the method of visceral debranching, i. e., switching of the visceral and renal branches of the abdominal aorta to its intact portion, using synthetic vascular prostheses as the first stage of hybrid surgical treatment of thoracoabdominal aortic aneurysms prior to endovascular aortic aneurysm repair. This is accompanied and followed by describing the history of the problem, operative technique, results of studies, as well as the data from registries and meta-analyses. Also discussed are the main complications of the method and measures of their prevention. We conclude that hybrid surgery of the thoracoabdominal portion of the aorta is a promising method in a particular cohort of patients, especially those at high surgical risk of 'open' aortic surgery.
Collapse
Affiliation(s)
- A A Gusev
- Scientific Research Division of Cardiothoracic Surgery, V.A. Almazov National Medical Research Centre of the RF Ministry of Public Health, Saint Petersburg, Russia
| | - V E Uspenskiĭ
- Scientific Research Division of Cardiothoracic Surgery, V.A. Almazov National Medical Research Centre of the RF Ministry of Public Health, Saint Petersburg, Russia
| | - M L Gordeev
- Scientific Research Division of Cardiothoracic Surgery, V.A. Almazov National Medical Research Centre of the RF Ministry of Public Health, Saint Petersburg, Russia
| |
Collapse
|
24
|
İdil Soylu A, Uzunkaya F, Akan H. Anterior communicating artery aneurysms: Nonmodifiable morphological parameters associated with rupture risk. J Neuroimaging 2021; 31:940-946. [PMID: 34143925 DOI: 10.1111/jon.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the relationship between arterial morphological parameters and the rupture risk of anterior communicating artery (AComA) aneurysms. METHODS A hospital database was retrospectively reviewed to identify patients with AComA aneurysms. Morphologic parameters were evaluated on the 3-dimensional computed tomography angiograms. The patients were divided into two groups as ruptured and unruptured. Patient age, sex, morphological parameters such as aneurysm height and weight, neck diameter, aspect ratio (AR), size ratio (SR), bifurcation angle, aneurysm shape, and diameters of the artery were statistically compared between two groups. RESULTS Ninety-five AComA aneurysms were analyzed in this study (60 ruptured and 35 unruptured). The aneurysm neck size (p = .005) and the diameter of the A1 segment of the ipsilateral anterior cerebral artery (i-A1) were smaller in the ruptured group than in the unruptured group (p = .001), but AR (p = .001) was higher. The number of patients with irregular shape aneurysm were higher in the ruptured group (p = .006). There was no significant difference between the two groups in terms of age, sex, aneurysm height and weight, bifurcation angle, and SR. Univariate logistic regression analysis showed that i-A1 segment diameter (odds ratio [OR]: -2.070, confidence interval [CI]: 0.030-0.531, p = .005), aneurysm neck diameter (OR: -0.409, CI: 0.491-0.899, p = .008), irregular shape (OR: 1.197, CI: 1.382-7.929, p = .007), and AR (OR: 0.880, CI: 1.315-4.417, p = .004) were significantly correlated with ruptured status. Multivariate regression analysis demonstrated that aneurysm neck diameter (OR: -0.457, CI: 0.410-0.977, p = .039) was the only independent variable for rupture. CONCLUSION AComA aneurysm rupture is more likely to occur in aneurysms with smaller i-A1 segment diameter, smaller aneurysm neck diameter, irregular aneurysm shape, and higher AR. Aneurysm neck diameter may be a more important determinant for rupture prediction.
Collapse
Affiliation(s)
- Ayşegül İdil Soylu
- Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fatih Uzunkaya
- Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Hüseyin Akan
- Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
25
|
Bilen A, Mercantepe F, Tümkaya L, Yilmaz A, Batcik Ş. The hepatoprotective potential of resveratrol in an experimental model of ruptured abdominal aortic aneurysm via oxidative stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22836. [PMID: 34075649 DOI: 10.1002/jbt.22836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
The mortality rate in ruptured abdominal aortic aneurysms can today be reduced through cardiovascular surgery. However, ischemia and reperfusion-induced tissue damage develop due to aortic cross-clamping applied during surgery. The present study aimed to reduce oxidative stress-induced hepatic damage resulting from ischemia and reperfusion due to aortic cross-clamping during surgery by means of resveratrol administration. Forty male Sprague-Dawley rats were randomly assigned into four groups: control (healthy), glycerol+ischemia/reperfusion (I/R) (sham), I/R, and I/R + Resveratrol. In all groups scheduled for I/R, 60 min of shock was followed by 60 min of ischemia. In the I/R + Resveratrol group, 10 mg/kg of resveratrol was administered 15 min before ischemia and immediately before reperfusion via the intraperitoneal route. In addition, 120 min of reperfusion was applied under anesthesia after ischemia in all groups. Intralobar and interlobar necrosis, vascular congestion, and edematous fields resulting from aortic occlusion were present. Liver tissue malondialdehyde (MDA) levels and cleaved caspase-3 positivity increased, while glutathione (GSH) levels decreased. However, resveratrol administration reduced intralobular and interlobar necrosis, vascular congestion and edematous fields, cleaved caspase-3 positivity, and MDA levels, and increased GSH levels. Our findings suggest that resveratrol is effective against aortic occlusion-induced liver injury by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Arzu Bilen
- Department of Endocrinology and metabolism diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and metabolism diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Şule Batcik
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
26
|
Heinsberg LW, Arockiaraj AI, Crago EA, Ren D, Shaffer JR, Sherwood PR, Sereika SM, Weeks DE, Conley YP. Genetic Variability and Trajectories of DNA Methylation May Support a Role for HAMP in Patient Outcomes After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 32:550-563. [PMID: 31346934 DOI: 10.1007/s12028-019-00787-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVE Preclinical evidence suggests that iron homeostasis is an important biological mechanism following aneurysmal subarachnoid hemorrhage (aSAH); however, this concept is underexplored in humans. This study examined the relationship between patient outcomes following aSAH and genetic variants and DNA methylation in the hepcidin gene (HAMP), a key regulator of iron homeostasis. METHODS In this exploratory, longitudinal observational study, participants with verified aSAH were monitored for acute outcomes including cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) and evaluated post-discharge at 3 and 12 months for long-term outcomes of death and functional status using the Modified Rankin Scale (mRS; poor = 3-6) and Glasgow Outcome Scale (GOS; poor = 1-3). Participants were genotyped for two genetic variants, and DNA methylation data were collected from serial cerebrospinal fluid over 14 days post-aSAH at eight methylation sites within HAMP. Participants were grouped based on their site-specific DNA methylation trajectory, with and without correcting for cell-type heterogeneity (CTH), and the associations between genetic variants and inferred DNA methylation trajectory groups and patient outcomes were tested. To correct for multiple testing, an empirical significance threshold was computed using permutation testing. RESULTS Genotype data for rs10421768 and rs7251432 were available for 241 and 371 participants, respectively, and serial DNA methylation data were available for 260 participants. Acute outcome prevalence included CV in 45% and DCI in 37.1% of the overall sample. Long-term outcome prevalence at 3 and 12 months included poor GOS in 23% and 21%, poor mRS in 31.6% and 27.3%, and mortality in 15.1% and 18.2%, respectively, in the overall sample. Being homozygous for the rs7251432 variant allele was significantly associated with death at 3 months (p = 0.003) and was the only association identified that passed adjustment for multiple testing mentioned above. Suggestive associations (defined as trending toward significance, p value < 0.05, but not meeting empirical significance thresholds) were identified between the homozygous variant allele for rs7251432 and poor GOS and mRS at 3 months (both p = 0.04) and death at 12 months (p = 0.02). For methylation trajectory groups, no associations remained significant after correction for multiple testing. However, for methylation trajectory groups not adjusted for CTH, suggestive associations were identified between cg18149657 and poor GOS and mRS at 3 months (p = 0.003 and p = 0.04, respectively) and death at 3 months (p = 0.04), and between cg26283059 and DCI (p = 0.01). For methylation trajectory groups adjusted for CTH, suggestive associations were identified between cg02131995 and good mRS at 12 months (p = 0.02), and between cg26283059 and DCI (p = 0.01). CONCLUSIONS This exploratory pilot study offers preliminary evidence that HAMP may play a role in patient outcomes after aSAH. Replication of this study and mechanistic investigation of the role of HAMP in patient outcomes after aSAH are needed.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA.
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianxu Ren
- Department of Health and Community Systems, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paula R Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan M Sereika
- Department of Health and Community Systems, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Riedel C, Lenz A, Fischer L, Li J, Piecha F, Kluwe J, Adam G, Bannas P. Abdominal Applications of 4D Flow MRI. ROFO-FORTSCHR RONTG 2020; 193:388-398. [PMID: 33264806 DOI: 10.1055/a-1271-7405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides volumetric and time-resolved visualization and quantification of blood flow. This review presents an overview of possible applications of 4D flow MRI for non-invasive assessment of abdominal hemodynamics. METHOD This review is based on the authors' experience and the current literature. A PubMed database literature research was performed in December 2019 focusing on abdominal applications of 4D flow MRI. We illustrated the review with exemplary figures and movies of clinical cases from our institution. RESULTS AND CONCLUSION 4D flow MRI offers the possibility of comprehensive assessment of abdominal blood flows in different vascular territories and organ systems. Results of recent studies indicate that 4D flow MRI improves understanding of altered hemodynamics in patients with abdominal disease and may be useful for monitoring therapeutic response. Future studies with larger cohorts aiming to integrate 4D flow MRI in the clinical routine setting are needed. KEY POINTS · 4D flow MRI enables comprehensive visualization of the complex abdominal vasculature. · 4D flow MRI enables quantification of abdominal blood flow velocities and flow rates. · 4D flow MRI may enable deeper understanding of altered hemodynamics in abdominal disease. · Further validation studies are needed prior to broad distribution of abdominal 4D flow MRI. CITATION FORMAT · Riedel C, Lenz A, Fischer L et al. Abdominal Applications of 4D Flow MRI. Fortschr Röntgenstr 2021; 193: 388 - 398.
Collapse
Affiliation(s)
- Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feilix Piecha
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kluwe
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Advancement in the haemodynamic study of intracranial aneurysms by computational fluid dynamics. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Therapeutic Potential of Heme Oxygenase-1 in Aneurysmal Diseases. Antioxidants (Basel) 2020; 9:antiox9111150. [PMID: 33228202 PMCID: PMC7699558 DOI: 10.3390/antiox9111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) and intracranial aneurysm (IA) are serious arterial diseases in the aorta and brain, respectively. AAA and IA are associated with old age in males and females, respectively, and if rupture occurs, they carry high morbidity and mortality. Aneurysmal subarachnoid hemorrhage (SAH) due to IA rupture has a high rate of complication and fatality. Despite these severe clinical outcomes, preventing or treating these devastating diseases remains an unmet medical need. Inflammation and oxidative stress are shared pathologies of these vascular diseases. Therefore, therapeutic strategies have focused on reducing inflammation and reactive oxygen species levels. Interestingly, in response to cellular stress, the inducible heme oxygenase-1 (HO-1) is highly upregulated and protects against tissue injury. HO-1 degrades the prooxidant heme and generates molecules with antioxidative and anti-inflammatory properties, resulting in decreased oxidative stress and inflammation. Therefore, increasing HO-1 activity is an attractive option for therapy. Several HO-1 inducers have been identified and tested in animal models for preventing or alleviating AAA, IA, and SAH. However, clinical trials have shown conflicting results. Further research and the development of highly selective HO-1 regulators may be needed to prevent the initiation and progression of AAA, IA, or SAH.
Collapse
|
30
|
Frösen J, Cebral J, Robertson AM, Aoki T. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 2020; 47:E21. [PMID: 31261126 DOI: 10.3171/2019.5.focus19234] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Unruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both. METHODS This review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models. RESULTS Blood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process. CONCLUSIONS Flow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.
Collapse
Affiliation(s)
- Juhana Frösen
- 1Department of Neurosurgery, and.,2Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital, Kuopio, Finland
| | - Juan Cebral
- 3Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, Virginia
| | - Anne M Robertson
- 4Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Tomohiro Aoki
- 5Department of Molecular Pharmacology, Research Institute, and.,6Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
31
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
32
|
Shen Y, Wei Y, Bokkers RPH, Uyttenboogaart M, van Dijk JMC. Study protocol of validating a numerical model to assess the blood flow in the circle of Willis. BMJ Open 2020; 10:e036404. [PMID: 32503872 PMCID: PMC7279649 DOI: 10.1136/bmjopen-2019-036404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We developed a zero-dimensional (0D) model to assess the patient-specific haemodynamics in the circle of Willis (CoW). Similar numerical models for simulating the cerebral blood flow (CBF) had only been validated qualitatively in healthy volunteers by magnetic resonance (MR) angiography and transcranial Doppler (TCD). This study aims to validate whether a numerical model can simulate patient-specific blood flow in the CoW under pathological conditions. METHODS AND ANALYSIS This study is a diagnostic accuracy study. We aim to collect data from a previously performed prospective study that involved patients with aneurysmal subarachnoid haemorrhage (aSAH) receiving both TCD and brain Computerd Tomography angiography (CTA) at the same day. The cerebral flow velocities are calculated by the 0D model, based on the vessel diameters measured on the CTA of each patient. In this study, TCD is considered the gold standard for measuring flow velocity in the CoW. The agreement will be analysed using Pearson correlation coefficients. ETHICS AND DISSEMINATION This study protocol has been approved by the Medical Ethics Review Board of the University Medical Center Groningen: METc2019/103. The results will be submitted to an international scientific journal for peer-reviewed publication. TRIAL REGISTRATION NUMBER NL8114.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanji Wei
- Engineering and Technology Institute Groningen, Faculty of Science & Engineering, University of Groningen, Groningen, The Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten Uyttenboogaart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Cordina SM, Afarian S, Gerthoffer WT, Martino A, Wilson R, Naritoku DK. Novel in vivo Assessment of Unruptured Intracranial Aneurysm Inflammatory Factors. Front Neurol 2020; 11:439. [PMID: 32582003 PMCID: PMC7283897 DOI: 10.3389/fneur.2020.00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background and Purpose: The growth and eventual rupture of intracranial aneurysms may be due to an underlying inflammatory process as evidenced by pathological examination of aneurysm walls. We hypothesize that unruptured aneurysms have an increased inflammatory milieu within their lumen in comparison to the rest of the cerebral arterial vascular system. Methods: Blood was sampled from unruptured aneurysms in patients presenting for aneurysm coil embolization and C3 and C4 complement values from this serum were compared with complement values in the parent artery. Results: Ten patients were enrolled over 32 months with a mean aneurysm size of 9.1 mm. Compared to control samples drawn from peripheral circulation, there were significant decreases of both C3 (p = 0.0003) and C4 (p = 0.0063) levels in aneurysmal blood samples. Conclusions: A state of decreased complement indicative of classic pathway activation was found in all tested aneurysms, thus providing evidence of an ongoing process of complement activation in the blood of live, unruptured aneurysm sacs.
Collapse
Affiliation(s)
- Steve M. Cordina
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Neurosurgery, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Radiology, University of South Alabama College of Medicine, Mobile, AL, United States
- *Correspondence: Steve M. Cordina
| | - Shant Afarian
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - William T. Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, United States
| | - Anthony Martino
- Department of Neurosurgery, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Russell Wilson
- Department of Radiology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Dean K. Naritoku
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
34
|
Bouhrira N, DeOre BJ, Sazer DW, Chiaradia Z, Miller JS, Galie PA. Disturbed flow disrupts the blood-brain barrier in a 3D bifurcation model. Biofabrication 2020; 12:025020. [DOI: 10.1088/1758-5090/ab5898] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
İdil Soylu A, Ozturk M, Akan H. Can vessel diameters, diameter ratios, and vessel angles predict the development of anterior communicating artery aneurysms: A morphological analysis. J Clin Neurosci 2019; 68:250-255. [PMID: 31358430 DOI: 10.1016/j.jocn.2019.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
The anterior communicating artery (AcomA) junction is the most common location for cerebral aneurysms. This might because of increased vascular wall stress due to the complex structure of the junction. The aim of this study investigate the effect of morphological parameters in the development of AcomA aneurysms. This retrospective study was approved by the institutional ethics committee. A retrospective analysis of our hospital database was performed to identify patients with AcomA aneurysms. Patients with normal computed tomography angiography (CTA) examinations were enrolled in the study as the control group. The control group was similar to the patient group in gender and age. Morphological parameters (vessel diameters, vessel diameter ratios, and vessel angles) on the same side (ipsilateral) and on the opposite side (contralateral) of the patients with aneurysm, and morphological parameters of the control group were compared. A total of 171 subjects were involved in the study (86 patients with aneurysms and 85 patients in the control group). Multivariate regression analysis revealed that the ipsilateral A1-A2 angle (OR: 0.932; 95% CI: 0.903-0.961; p < 0.001), the ipsilateral A1/A2 vessel diameter ratio (OR: 27.725; 95% CI: 1.715-448.139; p = 0.019), and the contralateral internal carotid artery (ICA)/A1 ratio (OR: 11.817; 95% CI: 2.617-53.355; p = 0.001) were significant morphological predictors for developing an aneurysm. An increased contralateral ICA/A1 ratio, an increased ipsilateral A1/A2 vessel diameter ratio, and a narrow bifurcation angle are significant predictors for developing an aneurysm. Therefore, in patients with clinical risk factors these parameters may be interpreted as additional morphological risk factors for developing an aneurysm.
Collapse
Affiliation(s)
- Ayşegül İdil Soylu
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey.
| | - Mesut Ozturk
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Hüseyin Akan
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
36
|
Mesenchymal Stem Cells Exhibit Both a Proinflammatory and Anti-Inflammatory Effect on Saccular Aneurysm Formation in a Rabbit Model. Stem Cells Int 2019; 2019:3618217. [PMID: 31428158 PMCID: PMC6679866 DOI: 10.1155/2019/3618217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated a potential interaction between mesenchymal stem cells (MSCs) and saccular aneurysms. In this study, we sought to determine whether allogenic bone marrow-derived MSCs had the ability to prevent aneurysm formation in a known rabbit elastase aneurysm model. MSCs were injected intravenously in experimental rabbits at the time of surgical creation and two weeks postcreation and compared with control rabbits receiving vehicle injection. Angiography was used to compare aneurysm measurements four weeks postcreation, and aneurysms were harvested for histological properties. Serum was collected longitudinally to evaluate cytokine alterations. Serum from control animals was also utilized to perform in vitro tests with MSCs to compare the effect of the serologic environment in animals with and without aneurysms on MSC proliferation and cytokine production. While aneurysm morphometric comparisons revealed no differences, significant cytokine alterations were observed in vitro and in vivo, suggesting both anti-inflammatory and proinflammatory processes were occurring in the presence of MSCs. Histological analyses suggested that tunica intima hyperplasia was inhibited in the presence of MSCs.
Collapse
|
37
|
Bollache E, Knott KD, Jarvis K, Boubertakh R, Dolan RS, Camaioni C, Collins L, Scully P, Rabin S, Treibel T, Carr JC, van Ooij P, Collins JD, Geiger J, Moon JC, Barker AJ, Petersen SE, Markl M. Two-Minute k-Space and Time-accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification. Radiol Cardiothorac Imaging 2019; 1:e180008. [PMID: 32076666 DOI: 10.1148/ryct.2019180008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 01/12/2023]
Abstract
Purpose To investigate the two-center feasibility of highly k-space and time (k-t)-accelerated 2-minute aortic four-dimensional (4D) flow MRI and to evaluate its performance for the quantification of velocities and wall shear stress (WSS). Materials and Methods This cross-sectional study prospectively included 68 participants (center 1, 11 healthy volunteers [mean age ± standard deviation, 61 years ± 15] and 16 patients with aortic disease [mean age, 60 years ± 10]; center 2, 14 healthy volunteers [mean age, 38 years ± 13] and 27 patients with aortic or cardiac disease [mean age, 78 years ± 18]). Each participant underwent highly accelerated 4D flow MRI (k-t acceleration, acceleration factor of 5) of the thoracic aorta. For comparison, conventional 4D flow MRI (acceleration factor of 2) was acquired in the participants at center 1 (n = 27). Regional aortic peak systolic velocities and three-dimensional WSS were quantified. Results k-t-accelerated scan times (center 1, 2:03 minutes ± 0:29; center 2, 2:06 minutes ± 0:20) were significantly reduced compared with conventional 4D flow MRI (center 1, 12:38 minutes ± 2:25; P < .0001). Overall good agreement was found between the two techniques (absolute differences ≤15%), but proximal aortic WSS was significantly underestimated in patients by using k-t-accelerated 4D flow when compared with conventional 4D flow (P ≤ .03). k-t-accelerated 4D flow MRI was reproducible (intra- and interobserver intraclass correlation coefficient ≥0.98) and identified significantly increased peak velocities and WSS in patients with stenotic (P ≤ .003) or bicuspid (P ≤ .04) aortic valves compared with healthy volunteers. In addition, k-t-accelerated 4D flow MRI-derived velocities and WSS were inversely related to age (r ≥-0.53; P ≤ .03) over all healthy volunteers. Conclusion k-t-accelerated aortic 4D flow MRI providing 2-minute scan times was feasible and reproducible at two centers. Although consistent healthy aging- and disease-related changes in aortic hemodynamics were observed, care should be taken when considering WSS, which can be underestimated in patients.© RSNA, 2019See also the commentary by François in this issue.
Collapse
Affiliation(s)
- Emilie Bollache
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Kristopher D Knott
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Kelly Jarvis
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Redha Boubertakh
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Ryan Scott Dolan
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Claudia Camaioni
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Louise Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Paul Scully
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Sydney Rabin
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Thomas Treibel
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Pim van Ooij
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Jeremy D Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Julia Geiger
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - James C Moon
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Alex J Barker
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Steffen E Petersen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| |
Collapse
|
38
|
Salman HE, Ramazanli B, Yavuz MM, Yalcin HC. Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques. Front Bioeng Biotechnol 2019; 7:111. [PMID: 31214581 PMCID: PMC6555197 DOI: 10.3389/fbioe.2019.00111] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is the dilatation of the aorta beyond 50% of the normal vessel diameter. It is reported that 4-8% of men and 0.5-1% of women above 50 years of age bear an AAA and it accounts for ~15,000 deaths per year in the United States alone. If left untreated, AAA might gradually expand until rupture; the most catastrophic complication of the aneurysmal disease that is accompanied by a striking overall mortality of 80%. The precise mechanisms leading to AAA rupture remains unclear. Therefore, characterization of disturbed hemodynamics within AAAs will help to understand the mechanobiological development of the condition which will contribute to novel therapies for the condition. Due to geometrical complexities, it is challenging to directly quantify disturbed flows for AAAs clinically. Two other approaches for this investigation are computational modeling and experimental flow measurement. In computational modeling, the problem is first defined mathematically, and the solution is approximated with numerical techniques to get characteristics of flow. In experimental flow measurement, once the setup providing physiological flow pattern in a phantom geometry is constructed, velocity measurement system such as particle image velocimetry (PIV) enables characterization of the flow. We witness increasing number of applications of these complimentary approaches for AAA investigations in recent years. In this paper, we outline the details of computational modeling procedures and experimental settings and summarize important findings from recent studies, which will help researchers for AAA investigations and rupture mechanics.
Collapse
Affiliation(s)
| | - Burcu Ramazanli
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Mehmet Metin Yavuz
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
39
|
Li D, Ma J, Wei C, Zhao J, Yuan D, Zheng T. Hemodynamic Analysis to Assist Treatment Strategies in Complex Visceral Arterial Pathologies: Case Reports and discussion from Pancreaticoduodenal Artery Aneurysm with Superior Mesenteric Artery Occlusion. Ann Vasc Surg 2019; 59:308.e1-308.e8. [PMID: 31075464 DOI: 10.1016/j.avsg.2019.02.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreaticoduodenal artery aneurysms (PDAAs) with occlusion of the superior mesenteric artery (SMA) are extremely rare. In the present study, we used computational fluid dynamics (CFD) to analyze the hemodynamics of a patient-specific PDAA with occlusion of the SMA preoperatively and then decide the treatment strategy in terms of the potential postoperative hemodynamics. METHODS A 3D model of a 69-old-year female with PDAA was reconstructed based on CT images. The virtual postoperative models of the aneurysmectomy with or without revascularization were numerically simulated in terms of hemodynamics including the flow field and wall shear stress (WSS). RESULTS Aneurysmectomy with revascularization would result in the original aneurysm site experiencing abnormally high WSS and pressure, which may possibly lead to the recurrence of PDAA. However, aneurysmectomy without revascularization would lead to stagnant flow in the blocked posterior-inferior pancreaticoduodenal artery (PIPDA). As a result, the PIPDA may soon be completely occluded after surgery and the SMA perfusion would be guaranteed. Finally, aneurysmectomy without revascularization was performed in this patient. The postoperative six-month computed tomography angiography result finely matched to the preoperative CFD simulation result. CONCLUSIONS This study gained insights into hemodynamics of PDAA. In addition, it demonstrated that utilization of CFD analysis also possibly helps assist the operation strategies for vascular diseases.
Collapse
Affiliation(s)
- Da Li
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| | - Jinman Ma
- Department of Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Chijun Wei
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Department of Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Department of Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China.
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Levitt MR, Mandrycky C, Abel A, Kelly CM, Levy S, Chivukula VK, Zheng Y, Aliseda A, Kim LJ. Genetic correlates of wall shear stress in a patient-specific 3D-printed cerebral aneurysm model. J Neurointerv Surg 2019; 11:999-1003. [PMID: 30979845 DOI: 10.1136/neurintsurg-2018-014669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm. MATERIALS AND METHODS A 3D-printed model of a cerebral aneurysm was created from a patient's angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations. RESULTS The model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations. CONCLUSIONS Creating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.
Collapse
Affiliation(s)
- Michael R Levitt
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA.,Mechanical Engineering, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | | | - Ashley Abel
- Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Cory M Kelly
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Samuel Levy
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | | | - Ying Zheng
- Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA.,Bioengineering, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Mechanical Engineering, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Louis J Kim
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Yuan D, Wen J, Peng L, Zhao J, Zheng T. Precise plan of hybrid treatment for thoracoabdominal aortic aneurysm: Hemodynamics of retrograde reconstruction visceral arteries from the iliac artery. PLoS One 2018; 13:e0205679. [PMID: 30321207 PMCID: PMC6188790 DOI: 10.1371/journal.pone.0205679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/29/2018] [Indexed: 02/05/2023] Open
Abstract
Hybrid visceral-renal debranching procedures with endovascular repair have been proposed as a less invasive alternative to conventional thoracoabdominal aortic aneurysm or dissection (TAAA or TAAD) surgery. Up to now, there has been no information about the hemodynamic effects of retrograde visceral reconstruction (RVR) for Crawford type II/III/IV TAAA patients undergoing hybrid treatment. The aim is to provide insights in the abnormal hemodynamics of RVR from unilateral or bilateral common iliac arteries (CIAs). Idealized three-dimensional AAs with RVR from unilateral CIA or bilateral CIAs were generated and computationally simulated. The results show that RVRs from CIA lead to a dramatic decrease in flow to the visceral organs compared with a healthy AA and that the anastomosis region is most dangerous to graft occlusion and the initiation of an aneurysm. In addition, compared with a quar-furcated graft, the employment of bilateral bi-furcated grafts have better performance in terms of the wall shear stress (WSS) and flow filed but result in less flow to the celiac and mesenteric arteries. This study has revealed the potential risks after an RVR operation, and points out the advantages and disadvantages of different approaches for the visceral reconstruction, which the vascular surgeons are not fully aware of. According to our results, bilateral bi-furcated grafts are recommended to the TAAA patients when the CIAs are unique inflow sites for visceral reconstruction. A precise plan with patient specific for TAAA or TAAD will be designed for better long-term outcome.
Collapse
Affiliation(s)
- Ding Yuan
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wen
- School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, Sichuan,China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
42
|
Feng X, Peng F, Zhang B, Wang L, Guo E, Li Y, Jiang C, Wu Z, Liu A. Lower miR-143/145 and higher matrix metalloproteinase-9 levels in circulation may be associated with intracranial aneurysm formation and rupture: A pilot study. Clin Neurol Neurosurg 2018; 173:124-129. [PMID: 30121455 DOI: 10.1016/j.clineuro.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We analyzed the relationship between plasma miR-143/145 and serum MMP-9 in patients with unruptured or ruptured intracranial aneurysms (IAs) to identify new biomarkers for predicting rupture in IAs. PATIENTS AND METHODS We prospectively enrolled 24 consecutive patients, including seven patients without IAs as a control group, nine patients with unruptured IAs, and eight patients with ruptured IAs (enrolled within 3 days after rupture). Plasma miR-143/145 and MMP-9 were measured in blood samples collected from the femoral artery. Spearman ρ values were used for correlation analyses. RESULTS The level of plasma miR-143/145 in patients with ruptured IAs was significantly lower than that of the control group. Moreover, patients with ruptured IAs had a significantly higher level of serum MMP-9 compared with that in patients with unruptured IAs and in control patients. A lower level of plasma miR-143 was significantly correlated with a lower level of plasma miR-145 (Spearman ρ = 0.771; P < 0.0001). CONCLUSION These findings showed that a lower of plasma miR-143/145 is potentially associated with IA formation, while higher serum MMP-9 levels may be associated with IA rupture and could serve as a useful biomarker for the evaluation of IA rupture.
Collapse
Affiliation(s)
- Xin Feng
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Baorui Zhang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Luyao Wang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Erkang Guo
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Chuhan Jiang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Zhongxue Wu
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, 100050, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China.
| |
Collapse
|
43
|
Busch A, Chernogubova E, Jin H, Meurer F, Eckstein HH, Kim M, Maegdefessel L. Four Surgical Modifications to the Classic Elastase Perfusion Aneurysm Model Enable Haemodynamic Alterations and Extended Elastase Perfusion. Eur J Vasc Endovasc Surg 2018; 56:102-109. [DOI: 10.1016/j.ejvs.2018.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
|
44
|
Arnaz A, Pişkin Ş, Oğuz GN, Yalçınbaş Y, Pekkan K, Sarıoğlu T. Effect of modified Blalock-Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow. Anatol J Cardiol 2018; 20:2-8. [PMID: 29952372 PMCID: PMC6237788 DOI: 10.14744/anatoljcardiol.2018.54810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE This study aimed to identify the best graft-to-pulmonary artery (PA) anastomosis angle measuring pulmonary blood flow, wall shear stress (WSS), and shunt flow. METHODS A tetralogy of Fallot with pulmonary atresia computer model was used to study three different modified Blalock-Taussig shunt (mBTS) anastomosis angle configurations with three different PA diameter configurations. Velocity and WSS were analyzed, and the flow rates at the right PA (RPA) and left PA (LPA) were calculated. RESULTS A 4-mm and 8-mm diameter of RPA and LPA, respectively with vertical shunt angle produces the highest total flow. In the RPA larger diameter than the LPA configutations, the left-leaning shunt produces the lowest total PA flow whereas in the LPA larger diameter than the RPA configuratios, the right-leaning shunt produces the lowest total PA flow. Therefore, the shunt anastomosis should not be leaned through the narrow side of PA to reach best flow. As the flow inside the shunt increased, WSS also increased due to enhanced velocity gradients. CONCLUSION The anastomosis angle between the conduit and PA affects the flow to PA. Vertical anastomosis configurations increase the total PA flow; thus, these configurations are preferable than the leaned configurations.
Collapse
Affiliation(s)
- Ahmet Arnaz
- Department of Cardiovascular Surgery, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University; İstanbul-Turkey.
| | | | | | | | | | | |
Collapse
|
45
|
Bollache E, Guzzardi DG, Sattari S, Olsen KE, Di Martino ES, Malaisrie SC, van Ooij P, Collins J, Carr J, McCarthy PM, Markl M, Barker AJ, Fedak PWM. Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. J Thorac Cardiovasc Surg 2018; 156:2112-2120.e2. [PMID: 30060930 DOI: 10.1016/j.jtcvs.2018.05.095] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The objectives of this study were to investigate an association between the magnitude of flow-mediated aortic wall shear stress (WSS) and medial wall histopathology in patients with bicuspid aortic valve (BAV) with aortopathy. METHODS Patients with BAV (n = 27; 52 ± 15 years; 3 women; proximal thoracic aorta diameter = 4.4 ± 0.7 and 4.6 ± 0.5 cm) who underwent prophylactic aortic resection received preoperative 3-dimensional time-resolved phase-contrast magnetic resonance imaging with 3-dimensional velocity encoding to quantify WSS relative to a population of healthy age- and sex-matched tricuspid aortic valve control participants (n = 20). Quantitative histopathology was conducted on BAV aorta tissue samples resected at surgery (n = 93), and correlation was performed between elastic fiber thickness and in vivo aortic WSS as continuous variables. Validation of elastic fiber thickness was achieved by correlation relative to tissue stiffness determined using biaxial biomechanical testing (n = 22 samples). RESULTS Elastic fibers were thinner and WSS was higher along the greater curvature compared with other circumferential regions (vs anterior wall: P = .003 and P = .0001, respectively; lesser curvature: both P = .001). Increased regional WSS was associated with decreased elastic fiber thickness (r = -0.25; P = .02). Patient stratification with subanalysis showed an increase in the correlation between WSS and histopathology with aortic valve stenosis (r = -0.36; P = .002) and smaller aortic diameters (<4.5 cm: r = -0.39; P = .03). Elastic fiber thinning was associated with circumferential stiffness (r = -0.41; P = .06). CONCLUSIONS For patients with BAV, increased aortic valve-mediated WSS is significantly associated with elastic fiber thinning, particularly with aortic valve stenosis and in earlier stages of aortopathy. Elastic fiber thinning correlates with impaired tissue biomechanics. These novel findings further implicate valve-mediated hemodynamics in the progression of BAV aortopathy.
Collapse
Affiliation(s)
- Emilie Bollache
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - David G Guzzardi
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samaneh Sattari
- Graduate Program in Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Katherine E Olsen
- Graduate Program in Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Elena S Di Martino
- Department of Civil Engineering, Schulich School of Engineering, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - S Chris Malaisrie
- Division of Surgery-Cardiac Surgery, Northwestern University, Bluhm Cardiovascular Institute, Chicago, Ill
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jeremy Collins
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Patrick M McCarthy
- Division of Surgery-Cardiac Surgery, Northwestern University, Bluhm Cardiovascular Institute, Chicago, Ill
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Division of Surgery-Cardiac Surgery, Northwestern University, Bluhm Cardiovascular Institute, Chicago, Ill.
| |
Collapse
|
46
|
Bollache E, Fedak PWM, van Ooij P, Rahman O, Malaisrie SC, McCarthy PM, Carr JC, Powell A, Collins JD, Markl M, Barker AJ. Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. J Thorac Cardiovasc Surg 2017; 155:2277-2286.e2. [PMID: 29248286 DOI: 10.1016/j.jtcvs.2017.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To assess in patients with aortopathy perioperative changes in thoracic aortic wall shear stress (WSS), which is known to affect arterial remodeling, and the effects of specific surgical interventions. METHODS Presurgical and postsurgical aortic 4D flow MRI were performed in 33 patients with aortopathy (54 ± 14 years; 5 women; sinus of Valsalva (d_SOV)/midascending aortic (d_MAA) diameters = 44 ± 5/45 ± 6 mm) scheduled for aortic valve (AVR) and/or root (ARR) replacement. Control patients with aortopathy who did not have surgery were matched for age, sex, body size, and d_MAA (n = 20: 52 ± 14 years; 3 women; d_SOV/d_MAA = 42 ± 4/42 ± 4 mm). Regional aortic 3D systolic peak WSS was calculated. An atlas of WSS normal values was used to quantify the percentage of at-risk tissue area with abnormally high WSS, excluding the area to be resected/graft. RESULTS Peak WSS and at-risk area showed low interobserver variability (≤0.09 [-0.3; 0.5] Pa and 1.1% [-7%; 9%], respectively). In control patients, WSS was stable over time (follow-up-baseline differences ≤0.02 Pa and 0.0%, respectively). Proximal aortic WSS decreased after AVR (n = 5; peak WSS difference ≤-0.41 Pa and at-risk area ≤-10%, P < .05 vs controls). WSS was increased after ARR in regions distal to the graft (peak WSS difference ≥0.16 Pa and at-risk area ≥4%, P < .05 vs AVR). Follow-up duration had no significant effects on these WSS changes, except when comparing ascending aortic peak WSS between ARR and AVR (P = .006). CONCLUSIONS Serial perioperative 4D flow MRI investigations showed distinct patterns of postsurgical changes in aortic WSS, which included both reductions and translocations. Larger longitudinal studies are warranted to validate these findings with clinical outcomes and prediction of risk of future aortic events.
Collapse
Affiliation(s)
- Emilie Bollache
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Surgery-Cardiac Surgery, Northwestern University, Chicago, Ill
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ozair Rahman
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - S Chris Malaisrie
- Division of Surgery-Cardiac Surgery, Northwestern University, Chicago, Ill
| | - Patrick M McCarthy
- Division of Surgery-Cardiac Surgery, Northwestern University, Chicago, Ill
| | - James C Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Alex Powell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Jeremy D Collins
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
47
|
Geiger J, Hirtler D, Gottfried K, Rahman O, Bollache E, Barker AJ, Markl M, Stiller B. Longitudinal Evaluation of Aortic Hemodynamics in Marfan Syndrome: New Insights from a 4D Flow Cardiovascular Magnetic Resonance Multi-Year Follow-Up Study. J Cardiovasc Magn Reson 2017; 19:33. [PMID: 28327193 PMCID: PMC5361800 DOI: 10.1186/s12968-017-0347-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this 4D flow cardiovascular magnetic resonance (CMR) follow-up study was to investigate longitudinal changes in aortic hemodynamics in adolescent patients with Marfan syndrome (MFS). METHODS 4D flow CMR for the assessment of in-vivo 3D blood flow with full coverage of the thoracic aorta was performed twice (baseline scan t1/follow-up scan t2) in 19 adolescent MFS patients (age at t1: 12.7 ± 3.6 years, t2: 16.2 ± 4.3 years) with a mean follow-up duration of 3.5 ± 1.2 years. Ten healthy volunteers (24 ± 3.8 years) served as a control group. Data analysis included aortic blood flow visualization by color-coded 3D pathlines, and grading of flow patterns (helices/vortices) on a 3-point scale (none, moderate, severe; blinded reading, 2 observers). Regional aortic peak systolic velocities and systolic 3D wall shear stress (WSS) along the entire aortic wall were quantified. Z-Scores of the aortic root and proximal descending aorta (DAo) were assessed. RESULTS Regional systolic WSS was stable over the follow-up duration, except for a significant decrease in the proximal inner DAo segment (p = 0.02) between t1 and t2. MFS patients revealed significant lower mean systolic WSS in the proximal inner DAo compared with volunteers (0.78 ± 0.15 N/m2) at baseline t1 (0.60 ± 0.18 N/m2; p = 0.01) and follow-up t2 (0.55 ± 0.16 N/m2; p = 0.001). There were significant relationships (p < 0.01) between the segmental WSS in the proximal inner DAo, DAo Z-scores (r = -0.64) and helix/vortex pattern grading (r = -0.55) at both t1 and t2. The interobserver agreement for secondary flow patterns assessment was excellent (Cohen's k = 0.71). CONCLUSIONS MFS patients have lower segmental WSS in the inner proximal DAo segment which correlates with increased localized aberrant vortex/helix flow patterns and an enlarged diameter at one of the most critical sites for aortic dissection. General aortic hemodynamics are stable but these subtle localized DAo changes are already present at young age and tend to be more pronounced in the course of time.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Hirtler
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg, Freiburg, Germany
| | - Kristina Gottfried
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg, Freiburg, Germany
- Department of Anesthesiology, University Hospital Mainz, Mainz, Germany
| | - Ozair Rahman
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
| | - Emilie Bollache
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
| | - Alex J. Barker
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Brigitte Stiller
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Ferracci FX, Gilard V, Cebula H, Magne N, Lejeune JP, Langlois O, Proust F. Growth of giant intracranial aneurysms: An aneurysmal wall disorder? Neurochirurgie 2017; 63:6-12. [DOI: 10.1016/j.neuchi.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
|
50
|
Nalcaci S, Oztas Z, Eraslan C, Akkin C. Are Multiple Retinal Arterial Macroaneurysms Considered a Sign of Cerebral Aneurysms? Ophthalmic Surg Lasers Imaging Retina 2017; 48:79-82. [PMID: 28060399 DOI: 10.3928/23258160-20161219-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
The aim of this study is to report the coexistence of retinal arterial macroaneurysms (RAMs) and cerebral aneurysms (CAs) in a 58-year-old woman with hypertension. She was noted as having a 1-week history of vision loss in her left eye, along with a 2-month history of a nonspecific headache. Visual acuity was 20/32 in her left eye and 20/20 in her right eye. A fundus examination revealed multiple areas of retinal hemorrhages that were surrounded by circinate exudation in her left eye, as well as the generalized attenuation of the retinal arteries in both of her eyes. Angiographically, hyperfluorescent round leakage points confirmed the presence of five saccular RAMs. Surprisingly, computed tomography angiography completed based on the recommendation of neurology department identified three saccular CAs. Aging, hypertension, and female preponderance are the common risk factors for both RAMs and CAs. Accordingly, RAMs and CAs may exist simultaneously in hypertensive patients. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:79-82.].
Collapse
|