1
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
2
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
3
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
4
|
Xu Y, Xing Z, Abdalla Ibrahim Suliman R, Liu Z, Tang F. Ferroptosis in liver cancer: a key role of post-translational modifications. Front Immunol 2024; 15:1375589. [PMID: 38650929 PMCID: PMC11033738 DOI: 10.3389/fimmu.2024.1375589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Ferroptosis is an emerging form of regulated cell death in an oxidative stress- and iron-dependent manner, primarily induced by the over-production of reactive oxygen species (ROS). Manipulation of ferroptosis has been considered a promising therapeutic approach to inhibit liver tumor growth. Nevertheless, the development of resistance to ferroptosis in liver cancer poses a significant challenge in cancer treatment. Post-translational modifications (PTMs) are crucial enzymatic catalytic reactions that covalently regulate protein conformation, stability and cellular activities. Additionally, PTMs play pivotal roles in various biological processes and divergent programmed cell death, including ferroptosis. Importantly, key PTMs regulators involved in ferroptosis have been identified as potential targets for cancer therapy. PTMs function of two proteins, SLC7A11, GPX4 involved in ferroptosis resistance have been extensively investigated in recent years. This review will summarize the roles of PTMs in ferroptosis-related proteins in hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Ying Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fengyuan Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Thinking Biomed (Beijing) Co., Ltd, Beijing Economic and Technological Development Zone, Beijing, China
| |
Collapse
|
5
|
Shen Y, Zheng LL, Fang CY, Xu YY, Wang C, Li JT, Lei MZ, Yin M, Lu HJ, Lei QY, Qu J. ABHD7-mediated depalmitoylation of lamin A promotes myoblast differentiation. Cell Rep 2024; 43:113720. [PMID: 38308845 DOI: 10.1016/j.celrep.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/04/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/β hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
Collapse
Affiliation(s)
- Yuan Shen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang-Liang Zheng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yao-Yao Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ming-Zhu Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao-Jie Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; New Cornerstone Science Laboratory, Fudan University, Shanghai 200032, China.
| | - Jia Qu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Ekin Atilla-Gokcumen G. Acylation of MLKL impacts its function in necroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553906. [PMID: 37645912 PMCID: PMC10462141 DOI: 10.1101/2023.08.19.553906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of the S-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J. Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
8
|
Differential CFTR-Interactome Proximity Labeling Procedures Identify Enrichment in Multiple SLC Transporters. Int J Mol Sci 2022; 23:ijms23168937. [PMID: 36012204 PMCID: PMC9408702 DOI: 10.3390/ijms23168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.
Collapse
|
9
|
Gök C, Robertson AD, Fuller W. Insulin-induced palmitoylation regulates the Cardiac Na+/Ca2+ exchanger NCX1. Cell Calcium 2022; 104:102567. [DOI: 10.1016/j.ceca.2022.102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
|
10
|
Guns J, Vanherle S, Hendriks JJA, Bogie JFJ. Protein Lipidation by Palmitate Controls Macrophage Function. Cells 2022; 11:cells11030565. [PMID: 35159374 PMCID: PMC8834383 DOI: 10.3390/cells11030565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions.
Collapse
Affiliation(s)
- Jeroen Guns
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
- Correspondence: ; Tel.: +32-1126-9261
| |
Collapse
|
11
|
Yang M, Li H, Rong M, Zhang H, Hou L, Zhang C. Dysregulated GLUT1 may be involved in the pathogenesis of preeclampsia by impairing decidualization. Mol Cell Endocrinol 2022; 540:111509. [PMID: 34801669 DOI: 10.1016/j.mce.2021.111509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
Preeclampsia (PE), a hypertensive complication in pregnancy, is a major contributor to maternal and fetal morbidity and mortality. PE has long been regarded a heterogeneous disorder with a pathogenesis that involves multiple genes and factors. Glucose transporter 1 (GLUT1) is a central rate-limiting pump that is involved in glucose uptake and subsequent utilization. Our previous RNA-seq results demonstrated GLUT1 was significantly downregulated in deciduas from patients with severe PE. Therefore, in this study, we aimed to explore the role of GLUT1 in the occurrence of PE. Our data showed that mRNA and protein levels of GLUT1 were significantly downregulated in the deciduas from patients with severe PE. Additionally, GLUT1 levels were substantially upregulated in human endometrial stromal cells (HESCs) during in vitro decidualization. Moreover, GLUT1 knockdown significantly reduced the mRNA levels of decidualization markers (IGFBP1 and PRL) and aerobic glycolysis-related genes (LDHA and MCT4), as well as decreased glucose uptake and lactate production. Furthermore, upon GLUT1 knockdown, the levels of apoptotic genes P53, P21, and BAX increased whereas the level of BCL2 decreased. Target prediction results and luciferase analysis showed that GLUT1 is one of the targets of miR-140-5p, which is partly responsible for downregulated GLUT1 levels. Collectively, these results demonstrate that GLUT1 exerts a pivotal role in human decidualization by participating in glycolysis, and that GLUT1 deficiency may trigger aberrant glycolysis, thereby leading to destructive decidualization that may impede blastocyst implantation, trophoblast invasion, and subsequent placental development, which are associated with PE. Taken together, these data suggest that GLUT1 might be a promising target for PE therapy.
Collapse
Affiliation(s)
- Man Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Hua Li
- Department of Gynecology and Obstetrics, Ji'nan Maternity and Child Care Hospital, Ji'nan, 250001, Shandong, China
| | - Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Linlin Hou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Ji'nan, 250001, Shandong, China.
| |
Collapse
|
12
|
Main A, Boguslavskyi A, Howie J, Kuo CW, Rankin A, Burton FL, Smith GL, Hajjar R, Baillie GS, Campbell KS, Shattock MJ, Fuller W. Dynamic but discordant alterations in zDHHC5 expression and palmitoylation of its substrates in cardiac pathologies. Front Physiol 2022; 13:1023237. [PMID: 36277202 PMCID: PMC9581287 DOI: 10.3389/fphys.2022.1023237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
S-palmitoylation is an essential lipid modification catalysed by zDHHC-palmitoyl acyltransferases that regulates the localisation and activity of substrates in every class of protein and tissue investigated to date. In the heart, S-palmitoylation regulates sodium-calcium exchanger (NCX1) inactivation, phospholemman (PLM) inhibition of the Na+/K+ ATPase, Nav1.5 influence on membrane excitability and membrane localisation of heterotrimeric G-proteins. The cell surface localised enzyme zDHHC5 palmitoylates NCX1 and PLM and is implicated in injury during anoxia/reperfusion. Little is known about how palmitoylation remodels in cardiac diseases. We investigated expression of zDHHC5 in animal models of left ventricular hypertrophy (LVH) and heart failure (HF), along with HF tissue from humans. zDHHC5 expression increased rapidly during onset of LVH, whilst HF was associated with decreased zDHHC5 expression. Paradoxically, palmitoylation of the zDHHC5 substrate NCX1 was significantly reduced in LVH but increased in human HF, while palmitoylation of the zDHHC5 substrate PLM was unchanged in all settings. Overexpression of zDHHC5 in rabbit ventricular cardiomyocytes did not alter palmitoylation of its substrates or overall cardiomyocyte contractility, suggesting changes in zDHHC5 expression in disease may not be a primary driver of pathology. zDHHC5 itself is regulated by post-translational modifications, including palmitoylation in its C-terminal tail. We found that in HF palmitoylation of zDHHC5 changed in the same manner as palmitoylation of NCX1, suggesting additional regulatory mechanisms may be involved. This study provides novel evidence that palmitoylation of cardiac substrates is altered in the setting of HF, and that expression of zDHHC5 is dysregulated in both hypertrophy and HF.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andri Boguslavskyi
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aileen Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roger Hajjar
- Flagship Pioneering, Cambridge, MA, United States
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael J Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Spier A, Connor MG, Steiner T, Carvalho F, Cossart P, Eisenreich W, Wai T, Stavru F. Mitochondrial respiration restricts Listeria monocytogenes infection by slowing down host cell receptor recycling. Cell Rep 2021; 37:109989. [PMID: 34758302 PMCID: PMC8595641 DOI: 10.1016/j.celrep.2021.109989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Mutations in mitochondrial genes impairing energy production cause mitochondrial diseases (MDs), and clinical studies have shown that MD patients are prone to bacterial infections. However, the relationship between mitochondrial (dys)function and infection remains largely unexplored, especially in epithelial cells, the first barrier to many pathogens. Here, we generate an epithelial cell model for one of the most common mitochondrial diseases, Leigh syndrome, by deleting surfeit locus protein 1 (SURF1), an assembly factor for respiratory chain complex IV. We use this genetic model and a complementary, nutrient-based approach to modulate mitochondrial respiration rates and show that impaired mitochondrial respiration favors entry of the human pathogen Listeria monocytogenes, a well-established bacterial infection model. Reversely, enhanced mitochondrial energy metabolism decreases infection efficiency. We further demonstrate that endocytic recycling is reduced in mitochondrial respiration-dependent cells, dampening L. monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection. Enhanced mitochondrial respiration decreases L. monocytogenes infection Bacterial entry is affected by the host cell metabolism Mitochondrial respiration restricts host cell receptor recycling and thus infection
Collapse
Affiliation(s)
- Anna Spier
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| | - Michael G Connor
- Université de Paris, Paris, France; Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Filipe Carvalho
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France
| | - Pascale Cossart
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Timothy Wai
- Université de Paris, Paris, France; Mitochondrial Biology Unit, Institut Pasteur, Paris, France.
| | - Fabrizia Stavru
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| |
Collapse
|
14
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
16
|
Meyer DJ, Bijlani S, de Sautu M, Spontarelli K, Young VC, Gatto C, Artigas P. FXYD protein isoforms differentially modulate human Na/K pump function. J Gen Physiol 2021; 152:211559. [PMID: 33231612 PMCID: PMC7690937 DOI: 10.1085/jgp.202012660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
Tight regulation of the Na/K pump is essential for cellular function because this heteromeric protein builds and maintains the electrochemical gradients for Na+ and K+ that energize electrical signaling and secondary active transport. We studied the regulation of the ubiquitous human α1β1 pump isoform by five human FXYD proteins normally located in muscle, kidney, and neurons. The function of Na/K pump α1β1 expressed in Xenopus oocytes with or without FXYD isoforms was evaluated using two-electrode voltage clamp and patch clamp. Through evaluation of the partial reactions in the absence of K+ but presence of Na+ in the external milieu, we demonstrate that each FXYD subunit alters the equilibrium between E1P(3Na) and E2P, the phosphorylated conformations with Na+ occluded and free from Na+, respectively, thereby altering the apparent affinity for Na+. This modification of Na+ interaction shapes the small effects of FXYD proteins on the apparent affinity for external K+ at physiological Na+. FXYD6 distinctively accelerated both the Na+-deocclusion and the pump-turnover rates. All FXYD isoforms altered the apparent affinity for intracellular Na+ in patches, an effect that was observed only in the presence of intracellular K+. Therefore, FXYD proteins alter the selectivity of the pump for intracellular ions, an effect that could be due to the altered equilibrium between E1 and E2, the two major pump conformations, and/or to small changes in ion affinities that are exacerbated when both ions are present. Lastly, we observed a drastic reduction of Na/K pump surface expression when it was coexpressed with FXYD1 or FXYD6, with the former being relieved by injection of PKA's catalytic subunit into the oocyte. Our results indicate that a prominent effect of FXYD1 and FXYD6, and plausibly other FXYDs, is the regulation of Na/K pump trafficking.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| | - Sharan Bijlani
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| | - Marilina de Sautu
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| | - Victoria C Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| | - Craig Gatto
- School of Biological Sciences, Illinois State University. Normal, IL
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock TX
| |
Collapse
|
17
|
Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ, Fuller W. Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Rep 2021; 31:107697. [PMID: 32521252 PMCID: PMC7296346 DOI: 10.1016/j.celrep.2020.107697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facilitating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1 modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to Ca overload via NCX1. NCX1 is dynamically palmitoylated at the cell surface by zDHHC5 and APT1 Palmitoylation modifies the NCX1 dimer’s structure and affinity for lipid rafts We identify the binding site of the endogenous XIP domain in NCX1’s regulatory loop Palmitoylation modifies NCX1 XIP affinity and hence regulates intracellular Ca
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jacqueline Howie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
18
|
Renard HF, Boucrot E. Unconventional endocytic mechanisms. Curr Opin Cell Biol 2021; 71:120-129. [PMID: 33862329 DOI: 10.1016/j.ceb.2021.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rβ endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.
Collapse
Affiliation(s)
- Henri-François Renard
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Science (NARILIS), University of Namur, Rue de Bruxelles 61, B-50000, Namur, Belgium.
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
19
|
Pradhan AJ, Lu D, Parisi LR, Shen S, Berhane IA, Galster SL, Bynum K, Monje-Galvan V, Gokcumen O, Chemler SR, Qu J, Kay JG, Atilla-Gokcumen GE. Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chem Biol 2021; 28:1298-1309.e7. [PMID: 33848465 DOI: 10.1016/j.chembiol.2021.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023]
Abstract
Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Daniel Lu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Laura R Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Ilyas A Berhane
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Samuel L Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kiana Bynum
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Jason G Kay
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
20
|
Matamala E, Castillo C, Vivar JP, Rojas PA, Brauchi SE. Imaging the electrical activity of organelles in living cells. Commun Biol 2021; 4:389. [PMID: 33758369 PMCID: PMC7988155 DOI: 10.1038/s42003-021-01916-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells are complex systems compartmentalized in membrane-bound organelles. Visualization of organellar electrical activity in living cells requires both a suitable reporter and non-invasive imaging at high spatiotemporal resolution. Here we present hVoSorg, an optical method to monitor changes in the membrane potential of subcellular membranes. This method takes advantage of a FRET pair consisting of a membrane-bound voltage-insensitive fluorescent donor and a non-fluorescent voltage-dependent acceptor that rapidly moves across the membrane in response to changes in polarity. Compared to the currently available techniques, hVoSorg has advantages including simple and precise subcellular targeting, the ability to record from individual organelles, and the potential for optical multiplexing of organellar activity.
Collapse
Affiliation(s)
- Ella Matamala
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Cristian Castillo
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Juan P Vivar
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio A Rojas
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastian E Brauchi
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US.
| |
Collapse
|
21
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
22
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
23
|
Woodley KT, Collins MO. Regulation and function of the palmitoyl-acyltransferase ZDHHC5. FEBS J 2021; 288:6623-6634. [PMID: 33415776 DOI: 10.1111/febs.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023]
Abstract
Protein palmitoylation (S-acylation) has emerged as an important player in a range of cellular processes, and as a result, the palmitoyl-acyltransferase (PAT) enzymes which mediate this modification have entered into the spotlight. Palmitoyltransferase ZDHHC5 (ZDHHC5) is among the more unique members of the PAT family as it is mainly localised to the plasma membrane and contains an extended cytoplasmic domain with several regulatory features. ZDHHC5 plays a vital role in a wide range of processes in different cell types. In this review, we offer a summary of the functions of ZDHHC5 in synaptic plasticity, cardiac function, cell adhesion and fatty acid uptake, among other processes. We also explore recent work has revealed several mechanisms to control the activity, localisation and function of ZDHHC5.
Collapse
Affiliation(s)
- Keith T Woodley
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK.,Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, UK
| | - Mark O Collins
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK
| |
Collapse
|
24
|
Plain F, Howie J, Kennedy J, Brown E, Shattock MJ, Fraser NJ, Fuller W. Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Commun Biol 2020; 3:411. [PMID: 32737405 PMCID: PMC7395175 DOI: 10.1038/s42003-020-01145-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.
Collapse
Affiliation(s)
- Fiona Plain
- School of Medicine, University of Dundee, Dundee, UK
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, King's College London, London, UK
| | | | - William Fuller
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Stix R, Lee CJ, Faraldo-Gómez JD, Banerjee A. Structure and Mechanism of DHHC Protein Acyltransferases. J Mol Biol 2020; 432:4983-4998. [PMID: 32522557 DOI: 10.1016/j.jmb.2020.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
S-acylation, whereby a fatty acid chain is covalently linked to a cysteine residue by a thioester linkage, is the most prevalent kind of lipid modification of proteins. Thousands of proteins are targets of this post-translational modification, which is catalyzed by a family of eukaryotic integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs). Our knowledge of the repertoire of S-acylated proteins has been rapidly expanding owing to development of the chemoproteomic techniques. There has also been an increasing number of reports in the literature documenting the importance of S-acylation in human physiology and disease. Recently, the first atomic structures of two different DHHC-PATs were determined using X-ray crystallography. This review will focus on the insights gained into the molecular mechanism of DHHC-PATs from these structures and highlight representative data from the biochemical literature that they help explain.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul-Jin Lee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Abstract
In this issue of Cell Chemical Biology, Ko et al. (2019) describe a form of regulated necrosis that depends on active, retrograde transport of vesicles from the plasma membrane to the Golgi. The cell death is distinct from defined modalities including apoptosis, and most tumor lines show enhanced sensitivity to it.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Cracking the code of sodium/calcium exchanger (NCX) gating: Old and new complexities surfacing from the deep web of secondary regulations. Cell Calcium 2020; 87:102169. [PMID: 32070925 DOI: 10.1016/j.ceca.2020.102169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Cell membranes spatially define gradients that drive the complexity of biological signals. To guarantee movements and exchanges of solutes between compartments, membrane transporters negotiate the passages of ions and other important molecules through lipid bilayers. The Na+/Ca2+ exchangers (NCXs) in particular play central roles in balancing Na+ and Ca2+ fluxes across diverse proteolipid borders in all eukaryotic cells, influencing cellular functions and fate by multiple means. To prevent progression from balance to disease, redundant regulatory mechanisms cooperate at multiple levels (transcriptional, translational, and post-translational) and guarantee that the activities of NCXs are finely-tuned to cell homeostatic requirements. When this regulatory network is disturbed by pathological forces, cells may approach the end of life. In this review, we will discuss the main findings, controversies and open questions about regulatory mechanisms that control NCX functions in health and disease.
Collapse
|
28
|
Offringa-Hup A. INAD and Duchenne muscular dystrophy, two ends of the iPLA2β spectrum. Med Hypotheses 2020; 137:109589. [PMID: 32006920 DOI: 10.1016/j.mehy.2020.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) and Duchenne muscular dystrophy (DMD) are two deadly neuromuscular degenerative diseases of childhood. Knowledge on their pathophysiological mechanisms may direct us towards treatment or a cure. Although these diseases are caused by two totally different gene-mutations and cause different clinical pictures, in this article I propose a common disease mechanism in the two. This common mechanism is induced by defects in the response to cellular stress and injury. THE HYPOTHESIS: Depletion of iPLA2β in INAD and increased activity of iPLA2β in DMD eventually lead to similar defects in the response to cell stress and injury. According to this hypothesis, the depletion of iPLA2β in INAD primarily blocks repair mechanisms by the inability to form a mitochondrial permeability transition pore (PTP). Forming of the PTP is necessary to release mitochondrial coenzyme A (CoA) into the cytoplasm for activation of palmitoylation and massive endocytosis as a repair response. In DMD the increased activity of iPLA2β causes exhaustion of the stress signalling cascade by increased and prolonged PTP opening. Continuous leaking of mitochondrial CoA through the PTP leads to the inability of the cell to build a sufficient mitochondrial:cytoplasmic CoA gradient, also causing insufficient release of mitochondrial CoA as a response to cell stress and injury. Decreased palmitoylation capacity and decreased endocytosis and membrane remodelling are implicated in proven pathophysiological mechanisms in INAD and DMD. The described mechanism in INAD and DMD, may be considered a common mechanism of repair in case of cell stress and injury. Beside their role in INAD and DMD, they may therefore be implicated in other neurodegenerative diseases as well. Available research shows involvement of iPLA2β in other neurodegenerative diseases. We might be able to divide neurodegenerative diseases in "INAD-like disease-mechanism" or "DMD-like disease-mechanism", depending on decreased or increased iPLA2β activity.
Collapse
|
29
|
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium 2020; 86:102158. [PMID: 31935590 DOI: 10.1016/j.ceca.2019.102158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. https://twitter.com@FullerLabGlas
| |
Collapse
|
30
|
Offringa-Hup A. Alzheimer's disease: The derailed repair hypothesis. Med Hypotheses 2019; 136:109516. [PMID: 31825804 DOI: 10.1016/j.mehy.2019.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022]
Abstract
A lot of research has been done on Alzheimer's disease, especially focused on factors like amyloid beta, ApoE and tau-protein. However, a complete theory on the disease mechanism of AD, including and connecting all known pathological elements of AD in a conceivable context and order of occurrence, is still lacking. In this article I describe a hypothesis on the entire pathophysiology of Alzheimer's disease, based on the most wellknown pathological elements in AD, filling the gaps with hypothetical mechanisms. This proposed mechanism of derailed repair starts with an insufficiently increased level of injury signalling in the axon by ApoE, DLK, APP, BACE-1, Aβ and iPLA2β, followed by an excessive repair response induced by opening of the mitochondrial permeability transition pore, release of mitochondrial CoA and activation of palmitoylation and massive endocytosis. Excessive compounds, associated with injury signalling and repair, start to accumulate, adding to axonal injury. This increased activation of the repair mechanism causes exhaustion of the repair response by lack of mitochondrial CoA. A vicious circle of increased injury signalling and insufficient repair ensues. Based on this hypothesis, I propose possible markers for early diagnosis and disease-modifying treatments for Alzheimer's disease.
Collapse
|
31
|
Fekri F, Abousawan J, Bautista S, Orofiamma L, Dayam RM, Antonescu CN, Karshafian R. Targeted enhancement of flotillin-dependent endocytosis augments cellular uptake and impact of cytotoxic drugs. Sci Rep 2019; 9:17768. [PMID: 31780775 PMCID: PMC6882852 DOI: 10.1038/s41598-019-54062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Cellular uptake is limiting for the efficacy of many cytotoxic drugs used to treat cancer. Identifying endocytic mechanisms that can be modulated with targeted, clinically-relevant interventions is important to enhance the efficacy of various cancer drugs. We identify that flotillin-dependent endocytosis can be targeted and upregulated by ultrasound and microbubble (USMB) treatments to enhance uptake and efficacy of cancer drugs such as cisplatin. USMB involves targeted ultrasound following administration of encapsulated microbubbles, used clinically for enhanced ultrasound image contrast. USMB treatments robustly enhanced internalization of the molecular scaffold protein flotillin, as well as flotillin-dependent fluid-phase internalization, a phenomenon dependent on the protein palmitoyltransferase DHHC5 and the Src-family kinase Fyn. USMB treatment enhanced DNA damage and cell killing elicited by the cytotoxic agent cisplatin in a flotillin-dependent manner. Thus, flotillin-dependent endocytosis can be modulated by clinically-relevant USMB treatments to enhance drug uptake and efficacy, revealing an important new strategy for targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Farnaz Fekri
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Stephen Bautista
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Laura Orofiamma
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada.
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Raffi Karshafian
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Mitochondrial interaction with the endosomal compartment in endocytosis and mitochondrial transfer. Mitochondrion 2019; 49:284-288. [DOI: 10.1016/j.mito.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
|
33
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
34
|
Woodley KT, Collins MO. S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion. EMBO Rep 2019; 20:e47472. [PMID: 31402609 PMCID: PMC6776912 DOI: 10.15252/embr.201847472] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
S-acylation (palmitoylation) is the only fully reversible lipid modification of proteins; however, little is known about how protein S-acyltransferases (PATs) that mediate it are regulated. DHHC5 is a PAT that is mainly localised at the plasma membrane with roles in synaptic plasticity, massive endocytosis and cancer cell growth/invasion. Here, we demonstrate that DHHC5 binds to and palmitoylates a novel accessory protein Golga7b. Palmitoylation of Golga7b prevents clathrin-mediated endocytosis of DHHC5 and stabilises it at the plasma membrane. Proteomic analysis of the composition of DHHC5/Golga7b-associated protein complexes reveals a striking enrichment in adhesion proteins, particularly components of desmosomes. We show that desmoglein-2 and plakophilin-3 are substrates of DHHC5 and that DHHC5 and Golga7b are required for localisation of desmoglein-2 to the plasma membrane and for desmosomal patterning. Loss of DHHC5/Golga7b causes functional impairments in cell adhesion, suggesting these proteins have a wider role in cell adhesion beyond desmosome assembly. This work uncovers a novel mechanism of DHHC5 regulation by Golga7b and demonstrates a role for the DHHC5/Golga7b complex in the regulation of cell adhesion.
Collapse
Affiliation(s)
- Keith T Woodley
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western BankUniversity of SheffieldSheffieldUK
| | - Mark O Collins
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western BankUniversity of SheffieldSheffieldUK
- Faculty of Science Mass Spectrometry CentreUniversity of SheffieldSheffieldUK
| |
Collapse
|
35
|
Hilgemann DW, Lin MJ, Fine M, Deisl C. On the existence of endocytosis driven by membrane phase separations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183007. [PMID: 31202864 DOI: 10.1016/j.bbamem.2019.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
Abstract
Large endocytic responses can occur rapidly in diverse cell types without dynamins, clathrin, or actin remodeling. Our experiments suggest that membrane phase separations are crucial with more ordered plasma membrane domains being internalized. Not only do these endocytic processes rely on coalescence of membrane domains, they are promoted by participation of membrane proteins in such domains, one important regulatory influence being palmitoylation. Membrane actin cytoskeleton in general resists membrane phase transitions, and its remodeling may play many roles. Besides membrane 'caging' and 'pinching' roles, typically ascribed to clathrin and dynamins, cytoskeleton remodeling may modify local membrane tension and buckling, as well as the presence and location of actin- and tension-free membrane patches. Endocytosis that depends on membrane phase separations becomes activated in metabolic stress and in response to Ca and PI3 kinase signaling. Internalized membrane traffics normally, and the secretory pathway eventually resupplies membrane to the plasmalemma or directs internalized membrane to other locations, including the extracellular space as exosomes. We describe here that endocytosis driven by membrane phase transitions is regulated by the same signaling mechanisms that regulate macropinocytosis, and it may play diverse roles in cells from nutrient assimilation to membrane recycling, cell migration, and the initiation of quiescent or hibernating cell states. Membrane ordering and phase separations have been shown to promote endocytosis in diverse cell types, including fibroblasts, myocytes, glial cells, and immune cells. We propose that clathrin/dynamin-independent endocytosis represents a continuum of related mechanisms with variable but universal dependence on membrane ordering and actin remodeling. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA.
| | - Mei-Jung Lin
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Christine Deisl
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| |
Collapse
|
36
|
Abstract
Ouabain preconditioning (OPC) initiated by low concentrations of the cardiac glycoside (CG) ouabain binding to Na/K-ATPase is relayed by a unique intracellular signaling and protects cardiac myocytes against ischemia/reperfusion injury. To explore more clinically applicable protocols based on CG properties, we tested whether the FDA-approved CG digoxin could trigger cardioprotective effects comparable with those of ouabain using PC, preconditioning and PostC, postconditioning protocols in the Langendorff-perfused mouse heart subjected to global ischemia and reperfusion. Ouabain or digoxin at 10 μmol/L inhibited Na/K-ATPase activity by approximately 30% and activated PKCε translocation by approximately 50%. Digoxin-induced PC (DigPC), initiated by a transient exposure before 40 minutes of ischemia, was as effective as OPC as suggested by the recovery of left ventricular developed pressure, end-diastolic pressure, and cardiac Na/K-ATPase activity after 30 minutes of reperfusion. DigPC also significantly decreased lactate dehydrogenase release and reduced infarct size, comparable with OPC. PostC protocols consisting of a single bolus injection of 100 nmoles of ouabain or digoxin in the coronary tree at the beginning of reperfusion both improved significantly the recovery of left ventricular developed pressure and decreased lactate dehydrogenase release, demonstrating a functional and structural protection comparable with the one provided by OPC. Given the unique signaling triggered by OPC, these results suggest that DigPostC could be considered for patients with risk factors and/or concurrent treatments that may limit effectiveness of ischemic PostC.
Collapse
|
37
|
Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proc Natl Acad Sci U S A 2019; 116:1279-1288. [PMID: 30610172 PMCID: PMC6347675 DOI: 10.1073/pnas.1812588116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxins exploit numerous pathways of their host cells to gain cellular entry and promote intoxication. Therefore, studying the action of toxins allows us to better understand basic mechanisms in cell biology. In this study, we found that ZDHHC5, an enzyme that adds a lipid posttranslational modification to cysteines of proteins, is responsible for allowing anthrax toxin to enter cells. This enzyme acts on proprotein convertases that are needed to cleave these toxins to their active forms. ZDHHC5 does not affect the enzymatic activity of these proteases, but allows them to encounter the toxin by favoring their partitioning in microdomains on the cell surface, domains where the toxin has previously been shown to preferentially reside. The protein acyl transferase ZDHHC5 was recently proposed to regulate trafficking in the endocytic pathway. Therefore, we explored the function of this enzyme in controlling the action of bacterial toxins. We found that ZDHHC5 activity is required for two very different toxins: the anthrax lethal toxin and the pore-forming toxin aerolysin. Both of these toxins have precursor forms, the protoxins, which can use the proprotein convertases Furin and PC7 for activation. We show that ZDHHC5 indeed affects the processing of the protoxins to their active forms. We found that Furin and PC7 can both be S-palmitoylated and are substrates of ZDHHC5. The impact of ZDHHC5 on Furin/PC7-mediated anthrax toxin cleavage is dual, having an indirect and a direct component. First, ZDHHC5 affects the homeostasis and trafficking of a subset of cellular proteins, including Furin and PC7, presumably by affecting the endocytic/recycling pathway. Second, while not inhibiting the protease activity per se, ZDHHC5-mediated Furin/PC7 palmitoylation is required for the cleavage of the anthrax toxin. Finally, we show that palmitoylation of Furin and PC7 promotes their association with plasma membrane microdomains. Both the receptor-bound toxin and the convertases are of very low abundance at the cell surface. Their encounter is unlikely on reasonable time scales. This work indicates that palmitoylation drives their encounter in specific domains, allowing processing and thereby intoxication of the cell.
Collapse
|
38
|
Wang J, Hao JW, Wang X, Guo H, Sun HH, Lai XY, Liu LY, Zhu M, Wang HY, Li YF, Yu LY, Xie C, Wang HR, Mo W, Zhou HM, Chen S, Liang G, Zhao TJ. DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane. Cell Rep 2019; 26:209-221.e5. [DOI: 10.1016/j.celrep.2018.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 11/01/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
|
39
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
40
|
Abstract
Drug transporter proteins are critical to the distribution of a wide range of endogenous compounds and xenobiotics such as hormones, bile acids, peptides, lipids, sugars, and drugs. There are two classes of drug transporters- the solute carrier (SLC) transporters and ATP-binding cassette (ABC) transporters -which predominantly differ in the energy source utilized to transport substrates across a membrane barrier. Despite their hydrophobic nature and residence in the membrane bilayer, drug transporters have dynamic structures and adopt many conformations during the translocation process. Whereas there is significant literature evidence for the substrate specificity and structure-function relationship for clinically relevant drug transporters proteins, there is less of an understanding in the regulatory mechanisms that contribute to the functional expression of these proteins. Post-translational modifications have been shown to modulate drug transporter functional expression via a wide range of molecular mechanisms. These modifications commonly occur through the addition of a functional group (e.g. phosphorylation), a small protein (e.g. ubiquitination), sugar chains (e.g. glycosylation), or lipids (e.g. palmitoylation) on solvent accessible amino acid residues. These covalent additions often occur as a result of a signaling cascade and may be reversible depending on the type of modification and the intended fate of the signaling event. Here, we review the significant role in which post-translational modifications contribute to the dynamic regulation and functional consequences of SLC and ABC drug transporters and highlight recent progress in understanding their roles in transporter structure, function, and regulation.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Howie J, Wypijewski KJ, Plain F, Tulloch LB, Fraser NJ, Fuller W. Greasing the wheels or a spanner in the works? Regulation of the cardiac sodium pump by palmitoylation. Crit Rev Biochem Mol Biol 2018; 53:175-191. [PMID: 29424237 DOI: 10.1080/10409238.2018.1432560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.
Collapse
Affiliation(s)
- Jacqueline Howie
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | | | - Fiona Plain
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Lindsay B Tulloch
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Niall J Fraser
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - William Fuller
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
42
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
43
|
Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res 2018; 13:194-197. [PMID: 29557359 PMCID: PMC5879881 DOI: 10.4103/1673-5374.226382] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mitochondria are essential cellular organelles critical for generating adenosine triphosphate for cellular homeostasis, as well as various mechanisms that can lead to both necrosis and apoptosis. The field of “mitochondrial medicine” is emerging in which injury/disease states are targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. Consequently, novel mitochondrial transplantation strategies represent a potentially multifactorial therapy leading to increased adenosine triphosphate production, decreased oxidative stress, mitochondrial DNA replacement, improved bioenergetics and tissue sparing. Herein, we describe briefly the history of mitochondrial transplantation and the various techniques used for both in vitro and in vivo delivery, the benefits associated with successful transference into both peripheral and central nervous system tissues, along with caveats and pitfalls that hinder the advancements of this novel therapeutic.
Collapse
Affiliation(s)
- Jenna L Gollihue
- Spinal Cord and Brain Injury Research Center; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Samir P Patel
- Spinal Cord and Brain Injury Research Center; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alexander G Rabchevsky
- Spinal Cord and Brain Injury Research Center; Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
44
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
45
|
Daniotti JL, Pedro MP, Valdez Taubas J. The role of S-acylation in protein trafficking. Traffic 2017; 18:699-710. [DOI: 10.1111/tra.12510] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Maria P. Pedro
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
46
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
|
48
|
Tay CL, Jones ML, Hodson N, Theron M, Choudhary JS, Rayner JC. Study of Plasmodium falciparum DHHC palmitoyl transferases identifies a role for PfDHHC9 in gametocytogenesis. Cell Microbiol 2016; 18:1596-1610. [PMID: 27060339 PMCID: PMC5091645 DOI: 10.1111/cmi.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Palmitoylation is the post-translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate-Histidine-Histidine-Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl-transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont-expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite-specific organelles such as the rhoptries and inner membrane complex. Knock-out studies identified individual DHHCs that may be essential for blood-stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood-stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission-blocking target. The localization and stage-specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.
Collapse
Affiliation(s)
- Chwen L Tay
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Matthew L Jones
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Nicola Hodson
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Michel Theron
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
49
|
Lu FM, Deisl C, Hilgemann DW. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes. eLife 2016; 5. [PMID: 27627745 PMCID: PMC5050017 DOI: 10.7554/elife.19267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.
Collapse
Affiliation(s)
- Fang-Min Lu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
50
|
Fekri F, Delos Santos RC, Karshafian R, Antonescu CN. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms. PLoS One 2016; 11:e0156754. [PMID: 27275866 PMCID: PMC4898768 DOI: 10.1371/journal.pone.0156754] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/19/2016] [Indexed: 01/24/2023] Open
Abstract
Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted drug delivery.
Collapse
Affiliation(s)
- Farnaz Fekri
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Ralph Christian Delos Santos
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Raffi Karshafian
- Department of Medical Physics, Ryerson University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- * E-mail: (RK); (CNA)
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- * E-mail: (RK); (CNA)
| |
Collapse
|