1
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Erwinia phage Asesino is a nucleus-forming phage that lacks PhuZ. Sci Rep 2025; 15:1692. [PMID: 39799172 PMCID: PMC11724907 DOI: 10.1038/s41598-024-64095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 01/15/2025] Open
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Wu Q, An N, Fang Z, Li S, Xiang L, Liu Q, Tan L, Weng Q. Characteristics and whole-genome analysis of a novel Pseudomonas syringae pv. tomato bacteriophage D6 isolated from a karst cave. Virus Genes 2024; 60:295-308. [PMID: 38594490 PMCID: PMC11139720 DOI: 10.1007/s11262-024-02064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Pseudomonas syringae is a gram-negative plant pathogen that infects plants such as tomato and poses a threat to global crop production. In this study, a novel lytic phage infecting P. syringae pv. tomato DC3000, named phage D6, was isolated and characterized from sediments in a karst cave. The latent period of phage D6 was found to be 60 min, with a burst size of 16 plaque-forming units per cell. Phage D6 was stable at temperatures between 4 and 40 °C but lost infectivity when heated to 70 °C. Its infectivity was unaffected at pH 6-10 but became inactivated at pH ≤ 5 or ≥ 12. The genome of phage D6 is a linear double-stranded DNA of 307,402 bp with a G + C content of 48.43%. There is a codon preference between phage D6 and its host, and the translation of phage D6 gene may not be entirely dependent on the tRNA library provided by the host. A total of 410 open reading frames (ORFs) and 14 tRNAs were predicted in its genome, with 92 ORFs encoding proteins with predicted functions. Phage D6 showed low genomic similarity to known phage genomes in the GenBank and Viral sequence databases. Genomic and phylogenetic analyses revealed that phage D6 is a novel phage. The tomato plants were first injected with phage D6, and subsequently with Pst DC3000, using the foliar spraying and root drenching inoculum approach. Results obtained after 14 days indicated that phage D6 inoculation decreased P. syringae-induced symptoms in tomato leaves and inhibited the pathogen's growth in the leaves. The amount of Pst DC3000 was reduced by 150- and 263-fold, respectively. In conclusion, the lytic phage D6 identified in this study belongs to a novel phage within the Caudoviricetes class and has potential for use in biological control of plant diseases.
Collapse
Affiliation(s)
- Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Ni An
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Shixia Li
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lan Xiang
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China.
| |
Collapse
|
3
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
5
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Asesino: a nucleus-forming phage that lacks PhuZ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593592. [PMID: 38766163 PMCID: PMC11100802 DOI: 10.1101/2024.05.10.593592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody ERR, Ramirez-Diaz DA, Schmid A, Williams TA, Bisson-Filho AW, Garner E. Salactin, a dynamically unstable actin homolog in Haloarchaea. mBio 2023; 14:e0227223. [PMID: 37966230 PMCID: PMC10746226 DOI: 10.1128/mbio.02272-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.
Collapse
Affiliation(s)
- Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - John Mallon
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alex Lammers
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Department of Biomedical Engineering, The Biological Design Center, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Thomas Litschel
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Edmund R. R. Moody
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Diego A. Ramirez-Diaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amy Schmid
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre W. Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Cobián Güemes AG, Ghatbale P, Blanc AN, Morgan CJ, Garcia A, Leonard J, Huang L, Kovalick G, Proost M, Chiu M, Kuo P, Oh J, Karthikeyan S, Knight R, Pogliano J, Schooley RT, Pride DT. Jumbo phages are active against extensively drug-resistant eyedrop-associated Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2023; 67:e0065423. [PMID: 37931230 PMCID: PMC10720484 DOI: 10.1128/aac.00654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 11/08/2023] Open
Abstract
Antibiotic-resistant bacteria present an emerging challenge to human health. Their prevalence has been increasing across the globe due in part to the liberal use of antibiotics that has pressured them to develop resistance. Those bacteria that acquire mobile genetic elements are especially concerning because those plasmids may be shared readily with other microbes that can then also become antibiotic resistant. Serious infections have recently been related to the contamination of preservative-free eyedrops with extensively drug-resistant (XDR) isolates of Pseudomonas aeruginosa, already resulting in three deaths. These drug-resistant isolates cannot be managed with most conventional antibiotics. We sought to identify alternatives to conventional antibiotics for the lysis of these XDR isolates and identified multiple bacteriophages (viruses that attack bacteria) that killed them efficiently. We found both jumbo phages (>200 kb in genome size) and non-jumbo phages that were active against these isolates, the former killing more efficiently. Jumbo phages effectively killed the three separate XDR P. aeruginosa isolates both on solid and liquid medium. Given the ongoing nature of the XDR P. aeruginosa eyedrop outbreak, the identification of phages active against them provides physicians with several novel potential alternatives for treatment.
Collapse
Affiliation(s)
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Chase J. Morgan
- Department of Biology, University of California San Diego, La Jolla, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Jesse Leonard
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Grace Kovalick
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Marissa Proost
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Megan Chiu
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph Oh
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Smruthi Karthikeyan
- Department of Environmental Science and Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Sciences & Engineering, University of California San Diego, La Jolla, California, USA
| | - Joe Pogliano
- Department of Biology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Thammatinna K, Sinprasertporn A, Naknaen A, Samernate T, Nuanpirom J, Chanwong P, Somboonwiwat K, Pogliano J, Sathapondecha P, Thawonsuwan J, Nonejuie P, Chaikeeratisak V. Nucleus-forming vibriophage cocktail reduces shrimp mortality in the presence of pathogenic bacteria. Sci Rep 2023; 13:17844. [PMID: 37857653 PMCID: PMC10587174 DOI: 10.1038/s41598-023-44840-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The global aquaculture industry has suffered significant losses due to the outbreak of Acute Hepatopancreatic Necrosis Disease (AHPND) caused by Vibrio parahaemolyticus. Since the use of antibiotics as control agents has not been shown to be effective, an alternative anti-infective regimen, such as phage therapy, has been proposed. Here, we employed high-throughput screening for potential phages from 98 seawater samples and obtained 14 phages exhibiting diverse host specificity patterns against pathogenic VPAHPND strains. Among others, two Chimallinviridae phages, designated Eric and Ariel, exhibited the widest host spectrum against vibrios. In vitro and in vivo studies revealed that a cocktail derived from these two nucleus-forming vibriophages prolonged the bacterial regrowth of various pathogenic VPAHPND strains and reduced shrimp mortality from VPAHPND infection. This research highlights the use of high-throughput phage screening that leads to the formulation of a nucleus-forming phage cocktail applicable for bacterial infection treatment in aquaculture.
Collapse
Affiliation(s)
- Khrongkhwan Thammatinna
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ammara Sinprasertporn
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Nuanpirom
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Parinda Chanwong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy AE, Spencer T, Asavavimol A, Cafferata A, Cameron M, Chiu N, Davydov D, Desai I, Diaz G, Guereca M, Hearst K, Huang L, Jacobs E, Johnson A, Kahn S, Koch R, Martinez A, Norquist M, Pau T, Prasad G, Saam K, Sandhu M, Sarabia AJ, Schumaker S, Sonin A, Uyeno A, Zhao A, Corbett KD, Pogliano K, Meyer J, Grose JH, Villa E, Dutton R, Pogliano J. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. Cell Rep 2023; 42:112432. [PMID: 37120812 PMCID: PMC10299810 DOI: 10.1016/j.celrep.2023.112432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amber Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kyle P Thomas
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika E Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tara Spencer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aileen Asavavimol
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Allison Cafferata
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mia Cameron
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Chiu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Demyan Davydov
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Desai
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel Diaz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Guereca
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kiley Hearst
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leyi Huang
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily Jacobs
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Johnson
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Samuel Kahn
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ryan Koch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Adamari Martinez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meliné Norquist
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler Pau
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gino Prasad
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Saam
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Milan Sandhu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Angel Jose Sarabia
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Siena Schumaker
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aaron Sonin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariya Uyeno
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alison Zhao
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Dutton
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Nieweglowska ES, Brilot AF, Méndez-Moran M, Kokontis C, Baek M, Li J, Cheng Y, Baker D, Bondy-Denomy J, Agard DA. The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice. Nat Commun 2023; 14:927. [PMID: 36807264 PMCID: PMC9938867 DOI: 10.1038/s41467-023-36526-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/03/2023] [Indexed: 02/20/2023] Open
Abstract
To protect themselves from host attack, numerous jumbo bacteriophages establish a phage nucleus-a micron-scale, proteinaceous structure encompassing the replicating phage DNA. Bacteriophage and host proteins associated with replication and transcription are concentrated inside the phage nucleus while other phage and host proteins are excluded, including CRISPR-Cas and restriction endonuclease host defense systems. Here, we show that nucleus fragments isolated from ϕPA3 infected Pseudomonas aeruginosa form a 2-dimensional lattice, having p2 or p4 symmetry. We further demonstrate that recombinantly purified primary Phage Nuclear Enclosure (PhuN) protein spontaneously assembles into similar 2D sheets with p2 and p4 symmetry. We resolve the dominant p2 symmetric state to 3.9 Å by cryo-EM. Our structure reveals a two-domain core, organized into quasi-symmetric tetramers. Flexible loops and termini mediate adaptable inter-tetramer contacts that drive subunit assembly into a lattice and enable the adoption of different symmetric states. While the interfaces between subunits are mostly well packed, two are open, forming channels that likely have functional implications for the transport of proteins, mRNA, and small molecules.
Collapse
Affiliation(s)
- Eliza S Nieweglowska
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Axel F Brilot
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Sauer Structural Biology Laboratory, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Melissa Méndez-Moran
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Claire Kokontis
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Minkyung Baek
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Junrui Li
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - Yifan Cheng
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
12
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
13
|
Shi X, Zeng Z, Zhang YM, Yang ZC, Peng YZ. [Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:849-853. [PMID: 36177589 DOI: 10.3760/cma.j.cn501120-20210929-00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pseudomonas aeruginosa is the most common pathogen of burn wound infection. It can encode a variety of virulence factors and is highly pathogenic, which can lead to poor prognosis and high mortality. In order to research a new method to combat Pseudomonas aeruginosa infection, researchers have observed a wide range of interactions between the bacteriophages and the host. Bacteriophages influence and even dominate the structure, movement, and metabolism of host bacteria through a variety of mechanisms, catalyze the evolution of the host, and are also an important factor in host environmental adaptability and pathogenicity. In this paper, the interaction between Pseudomonas aeruginosa bacteriophages and the host is reviewed from the single cell level and the population level. Understanding these interactions could provide new idea for the treatment of Pseudomonas aeruginosa clinical infections, provides a basis for future development of antimicrobial agents and guides the treatment of burn infections.
Collapse
Affiliation(s)
- X Shi
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400037, China
| | - Z Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - Y M Zhang
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400037, China
| | - Z C Yang
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400037, China
| | - Y Z Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
14
|
A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli. Cell Rep 2022; 40:111179. [PMID: 35977483 PMCID: PMC9891218 DOI: 10.1016/j.celrep.2022.111179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Nucleus-forming jumbo phages establish an intricate subcellular organization, enclosing phage genomes within a proteinaceous shell called the phage nucleus. During infection in Pseudomonas, some jumbo phages assemble a bipolar spindle of tubulin-like PhuZ filaments that positions the phage nucleus at midcell and drives its intracellular rotation. This facilitates the distribution of capsids on its surface for genome packaging. Here we show that the Escherichia coli jumbo phage Goslar assembles a phage nucleus surrounded by an array of PhuZ filaments resembling a vortex instead of a bipolar spindle. Expression of a mutant PhuZ protein strongly reduces Goslar phage nucleus rotation, demonstrating that the PhuZ cytoskeletal vortex is necessary for rotating the phage nucleus. While vortex-like cytoskeletal arrays are important in eukaryotes for cytoplasmic streaming and nucleus alignment, this work identifies a coherent assembly of filaments into a vortex-like structure driving intracellular rotation within the prokaryotic cytoplasm.
Collapse
|
15
|
Dieterle PB, Zheng J, Garner E, Amir A. Universal catastrophe time distributions of dynamically unstable polymers. Phys Rev E 2022; 105:064503. [PMID: 35854610 DOI: 10.1103/physreve.105.064503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
Dynamic instability-the growth, catastrophe, and shrinkage of quasi-one-dimensional filaments-has been observed in multiple biopolymers. Scientists have long understood the catastrophic cessation of growth and subsequent depolymerization as arising from the interplay of hydrolysis and polymerization at the tip of the polymer. Here we show that for a broad class of catastrophe models, the expected catastrophe time distribution is exponential. We show that the distribution shape is insensitive to noise, but that depletion of monomers from a finite pool can dramatically change the distribution shape by reducing the polymerization rate. We derive a form for this finite-pool catastrophe time distribution and show that finite-pool effects can be important even when the depletion of monomers does not greatly alter the polymerization rate.
Collapse
Affiliation(s)
- Paul B Dieterle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
17
|
Chaikeeratisak V, Khanna K, Nguyen KT, Egan ME, Enustun E, Armbruster E, Lee J, Pogliano K, Villa E, Pogliano J. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. SCIENCE ADVANCES 2022; 8:eabj9670. [PMID: 35507660 PMCID: PMC9067925 DOI: 10.1126/sciadv.abj9670] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/16/2022] [Indexed: 06/03/2023]
Abstract
Many eukaryotic viruses assemble mature particles within distinct subcellular compartments, but bacteriophages are generally assumed to assemble randomly throughout the host cell cytoplasm. Here, we show that viral particles of Pseudomonas nucleus-forming jumbo phage PhiPA3 assemble into a unique structure inside cells we term phage bouquets. We show that after capsids complete DNA packaging at the surface of the phage nucleus, tails assemble and attach to capsids, and these particles accumulate over time in a spherical pattern, with tails oriented inward and the heads outward to form bouquets at specific subcellular locations. Bouquets localize at the same fixed distance from the phage nucleus even when it is mispositioned, suggesting an active mechanism for positioning. These results mark the discovery of a pathway for organizing mature viral particles inside bacteria and demonstrate that nucleus-forming jumbo phages, like most eukaryotic viruses, are highly spatially organized during all stages of their lytic cycle.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Armbruster
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
19
|
Bonilla E, Costa AR, van den Berg DF, van Rossum T, Hagedoorn S, Walinga H, Xiao M, Song W, Haas PJ, Nobrega FL, Brouns SJJ. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res 2021; 28:6352498. [PMID: 34390569 PMCID: PMC8386662 DOI: 10.1093/dnares/dsab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0–13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Teunke van Rossum
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Stefan Hagedoorn
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Hielke Walinga
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Franklin L Nobrega
- Fagenbank, Delft, The Netherlands.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| |
Collapse
|
20
|
Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Front Microbiol 2021; 12:641317. [PMID: 34326818 PMCID: PMC8314001 DOI: 10.3389/fmicb.2021.641317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Erica A Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Nguyen KT, Sugie J, Khanna K, Egan ME, Birkholz EA, Lee J, Beierschmitt C, Villa E, Pogliano J. Selective transport of fluorescent proteins into the phage nucleus. PLoS One 2021; 16:e0251429. [PMID: 34111132 PMCID: PMC8191949 DOI: 10.1371/journal.pone.0251429] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.
Collapse
Affiliation(s)
- Katrina T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - MacKennon E. Egan
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Erica A. Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jina Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher Beierschmitt
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
22
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
23
|
Vacheron J, Heiman CM, Keel C. Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion. Commun Biol 2021; 4:87. [PMID: 33469108 PMCID: PMC7815802 DOI: 10.1038/s42003-020-01581-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
24
|
Viral speciation through subcellular genetic isolation and virogenesis incompatibility. Nat Commun 2021; 12:342. [PMID: 33436625 PMCID: PMC7804931 DOI: 10.1038/s41467-020-20575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how biological species arise is critical for understanding the evolution of life on Earth. Bioinformatic analyses have recently revealed that viruses, like multicellular life, form reproductively isolated biological species. Viruses are known to share high rates of genetic exchange, so how do they evolve genetic isolation? Here, we evaluate two related bacteriophages and describe three factors that limit genetic exchange between them: 1) A nucleus-like compartment that physically separates replicating phage genomes, thereby limiting inter-phage recombination during co-infection; 2) A tubulin-based spindle that orchestrates phage replication and forms nonfunctional hybrid polymers; and 3) A nuclear incompatibility factor that reduces phage fitness. Together, these traits maintain species differences through Subcellular Genetic Isolation where viral genomes are physically separated during co-infection, and Virogenesis Incompatibility in which the interaction of cross-species components interferes with viral production. Virus speciation cannot be fully explained by the evolution of different host specificities. Here, Chaikeeratisak et al. identify ways viruses can remain genetically isolated despite co-infecting the same cell, providing insight into how new virus species evolve.
Collapse
|
25
|
Lewicka E, Mitura M, Steczkiewicz K, Kieracinska J, Skrzynska K, Adamczyk M, Jagura-Burdzy G. Unique Properties of the Alpha-Helical DNA-Binding Protein KfrA Encoded by the IncU Incompatibility Group Plasmid RA3 and Its Host-Dependent Role in Plasmid Maintenance. Appl Environ Microbiol 2021; 87:e01771-20. [PMID: 33097508 PMCID: PMC7783346 DOI: 10.1128/aem.01771-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/18/2020] [Indexed: 01/15/2023] Open
Abstract
KfrA, encoded on the broad-host-range RA3 plasmid, is an alpha-helical DNA-binding protein that acts as a transcriptional autoregulator. The KfrARA3 operator site overlaps the kfrA promoter and is composed of five 9-bp direct repeats (DRs). Here, the biological properties of KfrA were studied using both in vivo and in vitro approaches. Localization of the DNA-binding helix-turn-helix motif (HTH) was mapped to the N29-R52 region by protein structure modeling and confirmed by alanine scanning. KfrA repressor ability depended on the number and orientation of DRs in the operator, as well as the ability of the protein to oligomerize. The long alpha-helical tail from residues 54 to 355 was shown to be involved in self-interactions, whereas the region from residue 54 to 177 was involved in heterodimerization with KfrC, another RA3-encoded alpha-helical protein. KfrA also interacted with the segrosome proteins IncC (ParA) and KorB (ParB), representatives of the class Ia active partition systems. Deletion of the kfr genes from the RA3 stability module decreased the plasmid retention in diverse hosts in a species-dependent manner. The specific interactions of KfrA with DNA are essential not only for the transcriptional regulatory function but also for the accessory role of KfrA in stable plasmid maintenance.IMPORTANCE Alpha-helical coiled-coil KfrA-type proteins are encoded by various broad-host-range low-copy-number conjugative plasmids. The DNA-binding protein KfrA encoded on the RA3 plasmid, a member of the IncU incompatibility group, oligomerizes, forms a complex with another plasmid-encoded, alpha-helical protein, KfrC, and interacts with the segrosome proteins IncC and KorB. The unique mode of KfrA dimer binding to the repetitive operator is required for a KfrA role in the stable maintenance of RA3 plasmid in distinct hosts.
Collapse
Affiliation(s)
- Ewa Lewicka
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| | - Monika Mitura
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Department of Bioinformatics, PAS, Warsaw, Poland
| | - Justyna Kieracinska
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Kamila Skrzynska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Malgorzata Adamczyk
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| |
Collapse
|
26
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
27
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Maturation of Pseudo-Nucleus Compartment in P. aeruginosa, Infected with Giant phiKZ Phage. Viruses 2020; 12:v12101197. [PMID: 33096802 PMCID: PMC7589130 DOI: 10.3390/v12101197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.
Collapse
|
29
|
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France.
| |
Collapse
|
30
|
A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 2019; 5:48-55. [PMID: 31819217 DOI: 10.1038/s41564-019-0612-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against bacteriophages1. However, DNA modification2,3, the production of anti-CRISPR proteins4,5 and potentially other strategies enable phages to evade CRISPR-Cas. Here, we discovered a Serratia jumbo phage that evades type I CRISPR-Cas systems, but is sensitive to type III immunity. Jumbo phage infection resulted in a nucleus-like structure enclosed by a proteinaceous phage shell-a phenomenon only reported recently for distantly related Pseudomonas phages6,7. All three native CRISPR-Cas complexes in Serratia-type I-E, I-F and III-A-were spatially excluded from the phage nucleus and phage DNA was not targeted. However, the type III-A system still arrested jumbo phage infection by targeting phage RNA in the cytoplasm in a process requiring Cas7, Cas10 and an accessory nuclease. Type III, but not type I, systems frequently targeted nucleus-forming jumbo phages that were identified in global viral sequence datasets. The ability to recognize jumbo phage RNA and elicit immunity probably contributes to the presence of both RNA- and DNA-targeting CRISPR-Cas systems in many bacteria1,8. Together, our results support the model that jumbo phage nucleus-like compartments serve as a barrier to DNA-targeting, but not RNA-targeting, defences, and that this phenomenon is widespread among jumbo phages.
Collapse
|
31
|
Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, Chaikeeratisak V, Pogliano J, Agard DA, Bondy-Denomy J. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 2019; 577:244-248. [PMID: 31819262 PMCID: PMC6949375 DOI: 10.1038/s41586-019-1786-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2019] [Indexed: 11/09/2022]
Abstract
All viruses require strategies to inhibit or evade the immunity pathways of cells they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid nucleic-acid targeting immune pathways such as CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) and restriction-modification (R-M) systems to replicate efficiently1. Here, we show that jumbo phage ΦKZ, infecting Pseudomonas aeruginosa, segregates its DNA from immunity nucleases by constructing a proteinaceous nucleus-like compartment. ΦKZ resists many DNA-targeting immune systems in vivo, including two CRISPR-Cas3 subtypes, Cas9, Cas12a, and the restriction enzymes HsdRMS and EcoRI. Cas and restriction enzymes are unable to access the phage DNA throughout the infection, but engineered re-localization of EcoRI inside the compartment enables phage targeting and cell protection. Moreover, ΦKZ is sensitive to the RNA targeting CRISPR-Cas enzyme, Cas13a, likely due to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.
Collapse
Affiliation(s)
- Senén D Mendoza
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Eliza S Nieweglowska
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Sutharsan Govindarajan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.,Department of Biology, SRM University AP, Amaravati, India
| | - Lina M Leon
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joel D Berry
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Anika Tiwari
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - David A Agard
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA. .,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Jonasson EM, Mauro AJ, Li C, Labuz EC, Mahserejian SM, Scripture JP, Gregoretti IV, Alber M, Goodson HV. Behaviors of individual microtubules and microtubule populations relative to critical concentrations: dynamic instability occurs when critical concentrations are driven apart by nucleotide hydrolysis. Mol Biol Cell 2019; 31:589-618. [PMID: 31577530 PMCID: PMC7202068 DOI: 10.1091/mbc.e19-02-0101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The concept of critical concentration (CC) is central to understanding the behavior of microtubules (MTs) and other cytoskeletal polymers. Traditionally, these polymers are understood to have one CC, measured in multiple ways and assumed to be the subunit concentration necessary for polymer assembly. However, this framework does not incorporate dynamic instability (DI), and there is work indicating that MTs have two CCs. We use our previously established simulations to confirm that MTs have (at least) two experimentally relevant CCs and to clarify the behavior of individuals and populations relative to the CCs. At free subunit concentrations above the lower CC (CCElongation), growth phases of individual filaments can occur transiently; above the higher CC (CCNetAssembly), the population’s polymer mass will increase persistently. Our results demonstrate that most experimental CC measurements correspond to CCNetAssembly, meaning that “typical” DI occurs below the concentration traditionally considered necessary for polymer assembly. We report that [free tubulin] at steady state does not equal CCNetAssembly, but instead approaches CCNetAssembly asymptotically as [total tubulin] increases, and depends on the number of stable MT nucleation sites. We show that the degree of separation between CCElongation and CCNetAssembly depends on the rate of nucleotide hydrolysis. This clarified framework helps explain and unify many experimental observations.
Collapse
Affiliation(s)
- Erin M Jonasson
- Department of Chemistry and Biochemistry.,Department of Natural Sciences, Saint Martin's University, Lacey, WA 98503
| | - Ava J Mauro
- Department of Chemistry and Biochemistry.,Department of Applied and Computational Mathematics and Statistics, and.,Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003
| | - Chunlei Li
- Department of Applied and Computational Mathematics and Statistics, and
| | | | | | | | | | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, and.,Department of Mathematics, University of California, Riverside, Riverside, CA 92521
| | - Holly V Goodson
- Department of Chemistry and Biochemistry.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
33
|
Mauro AJ, Jonasson EM, Goodson HV. Relationship between dynamic instability of individual microtubules and flux of subunits into and out of polymer. Cytoskeleton (Hoboken) 2019; 76:495-516. [PMID: 31403242 DOI: 10.1002/cm.21557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Behaviors of dynamic polymers such as microtubules and actin are frequently assessed at one or both of the following scales: (a) net assembly or disassembly of bulk polymer, (b) growth and shortening of individual filaments. Previous work has derived various forms of an equation to relate the rate of change in bulk polymer mass (i.e., flux of subunits into and out of polymer, often abbreviated as "J") to individual filament behaviors. However, these versions of the "J equation" differ in the variables used to quantify individual filament behavior, which correspond to different experimental approaches. For example, some variants of the J equation use dynamic instability parameters, obtained by following particular individual filaments for long periods of time. Another form of the equation uses measurements from many individuals followed over short time steps. We use a combination of derivations and computer simulations that mimic experiments to (a) relate the various forms of the J equation to each other, (b) determine conditions under which these J equation forms are and are not equivalent, and (c) identify aspects of the measurements that can affect the accuracy of each form of the J equation. Improved understanding of the J equation and its connections to experimentally measurable quantities will contribute to efforts to build a multiscale understanding of steady-state polymer behavior.
Collapse
Affiliation(s)
- Ava J Mauro
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Erin M Jonasson
- Department of Natural Sciences, Saint Martin's University, Lacey, Washington
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
34
|
Tarnopol RL, Bowden S, Hinkle K, Balakrishnan K, Nishii A, Kaczmarek CJ, Pawloski T, Vecchiarelli AG. Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch? Chembiochem 2019; 20:2535-2545. [DOI: 10.1002/cbic.201900249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Rebecca L. Tarnopol
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Sierra Bowden
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Kevin Hinkle
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Krithika Balakrishnan
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Akira Nishii
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Caleb J. Kaczmarek
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Tara Pawloski
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
35
|
Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J. Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell 2019; 177:1771-1780.e12. [PMID: 31199917 PMCID: PMC7301877 DOI: 10.1016/j.cell.2019.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
36
|
The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. mBio 2019; 10:mBio.01127-19. [PMID: 31186328 PMCID: PMC6561030 DOI: 10.1128/mbio.01127-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The emergence of fluoroquinolone resistance in nosocomial pathogens has restricted the clinical efficacy of this antibiotic class. In Acinetobacter baumannii, the majority of clinical isolates now show high-level resistance due to mutations in gyrA (DNA gyrase) and parC (topoisomerase IV [topo IV]). To investigate the molecular basis for fluoroquinolone resistance, an exhaustive mutation analysis was performed in both drug-sensitive and -resistant strains to identify loci that alter ciprofloxacin sensitivity. To this end, parallel fitness tests of over 60,000 unique insertion mutations were performed in strains with various alleles in genes encoding the drug targets. The spectra of mutations that altered drug sensitivity were found to be similar in the drug-sensitive and gyrA parC double-mutant backgrounds, having resistance alleles in both genes. In contrast, the introduction of a single gyrA resistance allele, resulting in preferential poisoning of topo IV by ciprofloxacin, led to extreme alterations in the insertion mutation fitness landscape. The distinguishing feature of preferential topo IV poisoning was enhanced induction of DNA synthesis in the region of two endogenous prophages, with DNA synthesis associated with excision and circularization of the phages. Induction of the selective DNA synthesis in the gyrA background was also linked to heightened prophage gene transcription and enhanced activation of the mutagenic SOS response relative to that observed in either the wild-type (WT) or gyrA parC double mutant. Therefore, the accumulation of mutations that result in the stepwise evolution of high ciprofloxacin resistance is tightly connected to modulation of the SOS response and endogenous prophage DNA synthesis.IMPORTANCE Fluoroquinolones have been extremely successful antibiotics due to their ability to target multiple bacterial enzymes critical to DNA replication, the topoisomerases DNA gyrase and topo IV. Unfortunately, mutations lowering drug affinity for both enzymes are now widespread, rendering these drugs ineffective for many pathogens. To undermine this form of resistance, we examined how bacteria with target alterations differentially cope with fluoroquinolone exposures. We studied this problem in the nosocomial pathogen A. baumannii, which causes drug-resistant life-threatening infections. Employing genome-wide approaches, we uncovered numerous pathways that could be exploited to raise fluoroquinolone sensitivity independently of target alteration. Remarkably, fluoroquinolone targeting of topo IV in specific mutants caused dramatic hyperinduction of prophage replication and enhanced the mutagenic DNA damage response, but these responses were muted in strains with DNA gyrase as the primary target. This work demonstrates that resistance evolution via target modification can profoundly modulate the antibiotic stress response, revealing potential resistance-associated liabilities.
Collapse
|
37
|
Abstract
Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.
Collapse
Affiliation(s)
- Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Chaikeeratisak V, Nguyen K, Egan ME, Erb ML, Vavilina A, Pogliano J. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep 2018; 20:1563-1571. [PMID: 28813669 DOI: 10.1016/j.celrep.2017.07.064] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/27/2023] Open
Abstract
We recently demonstrated that the large Pseudomonas chlororaphis bacteriophage 201φ2-1 assembles a nucleus-like structure that encloses phage DNA and segregates proteins according to function, with DNA processing proteins inside and metabolic enzymes and ribosomes outside the nucleus. Here, we investigate the replication pathway of the Pseudomonas aeruginosa bacteriophages φKZ and φPA3. Bacteriophages φKZ and φPA3 encode a proteinaceous shell that assembles a nucleus-like structure that compartmentalizes proteins and DNA during viral infection. We show that the tubulin-like protein PhuZ encoded by each phage assembles a bipolar spindle that displays dynamic instability and positions the nucleus at midcell. Our results suggest that the phage spindle and nucleus play the same functional role in all three phages, 201φ2-1, φKZ, and φPA3, demonstrating that these key structures are conserved among large Pseudomonas phages.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katrina Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Efficient models of polymerization applied to FtsZ ring assembly in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:4933-4938. [PMID: 29686085 DOI: 10.1073/pnas.1719391115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High protein concentrations complicate modeling of polymer assembly kinetics by introducing structural complexity and a large variety of protein forms. We present a modeling approach that achieves orders of magnitude speed-up by replacing distributions of lengths and widths with their average counterparts and by introducing a hierarchical classification of species and reactions into sets. We have used this model to study FtsZ ring assembly in Escherichia coli The model's prediction of key features of the ring formation, such as time to reach the steady state, total concentration of FtsZ species in the ring, total concentration of monomers, and average dimensions of filaments and bundles, are all in agreement with the experimentally observed values. Besides validating our model against the in vivo observations, this study fills some knowledge gaps by proposing a specific structure of the ring, describing the influence of the total concentration in short and long kinetics processes, determining some characteristic mechanisms in polymer assembly regulation, and providing insights about the role of ZapA proteins, critical components for both positioning and stability of the ring.
Collapse
|
40
|
Wagstaff J, Löwe J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 2018; 16:187-201. [PMID: 29355854 DOI: 10.1038/nrmicro.2017.153] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
Collapse
Affiliation(s)
- James Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
41
|
Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis. J Bacteriol 2017; 199:JB.00211-17. [PMID: 28716960 DOI: 10.1128/jb.00211-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Prosthecobacter express homologs of eukaryotic α- and β-tubulin, called BtubA and BtubB (BtubA/B), that have been observed to assemble into filaments in the presence of GTP. BtubA/B polymers are proposed to be composed in vitro by two to six protofilaments in contrast to that in vivo, where they have been reported to form 5-protofilament tubes named bacterial microtubules (bMTs). The btubAB genes likely entered the Prosthecobacter lineage via horizontal gene transfer and may be derived from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is reversible and that BtubA/B folding does not require chaperones. To better understand BtubA/B filament behavior and gain insight into the evolution of microtubule dynamics, we characterized in vitro BtubA/B assembly using a combination of polymerization kinetics assays and microscopy. Like eukaryotic microtubules, BtubA/B filaments exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by BtubA/B polymerization drives a stochastic mechanism of filament disassembly that occurs via polymer breakage and/or fast continuous depolymerization. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of BtubA/B filament fragments. Unlike MTs, polymerization of BtubA/B requires KCl, which reduces the critical concentration for BtubA/B assembly and induces it to form stable mixed-orientation bundles in the absence of any additional BtubA/B-binding proteins. The complex dynamics that we observe in stabilized and unstabilized BtubA/B filaments may reflect common properties of an ancestral eukaryotic tubulin polymer.IMPORTANCE Microtubules are polymers within all eukaryotic cells that perform critical functions; they segregate chromosomes, organize intracellular transport, and support the flagella. These functions rely on the remarkable range of tunable dynamic behaviors of microtubules. Bacterial tubulin A and B (BtubA/B) are evolutionarily related proteins that form polymers. They are proposed to be evolved from the ancestral eukaryotic tubulin, a missing link in microtubule evolution. Using microscopy and biochemical approaches to characterize BtubA/B assembly in vitro, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules but differ in how they self-associate into bundles and how this bundling affects their stability. Our results demonstrate the diversity of mechanisms through which tubulin homologs promote filament dynamics and monomer turnover.
Collapse
|
42
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
43
|
|
44
|
Ruiz-Martinez A, Bartol TM, Sejnowski TJ, Tartakovsky DM. Efficient Multiscale Models of Polymer Assembly. Biophys J 2017; 111:185-96. [PMID: 27410746 DOI: 10.1016/j.bpj.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/24/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Protein polymerization and bundling play a central role in cell physiology. Predictive modeling of these processes remains an open challenge, especially when the proteins involved become large and their concentrations high. We present an effective kinetics model of filament formation, bundling, and depolymerization after GTP hydrolysis, which involves a relatively small number of species and reactions, and remains robust over a wide range of concentrations and timescales. We apply this general model to study assembly of FtsZ protein, a basic element in the division process of prokaryotic cells such as Escherichia coli, Bacillus subtilis, or Caulobacter crescentus. This analysis demonstrates that our model outperforms its counterparts in terms of both accuracy and computational efficiency. Because our model comprises only 17 ordinary differential equations, its computational cost is orders-of-magnitude smaller than the current alternatives consisting of up to 1000 ordinary differential equations. It also provides, to our knowledge, a new insight into the characteristics and functioning of FtsZ proteins at high concentrations. The simplicity and versatility of our model render it a powerful computational tool, which can be used either as a standalone descriptor of other biopolymers' assembly or as a component in more complete kinetic models.
Collapse
Affiliation(s)
- Alvaro Ruiz-Martinez
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California; The Division of Biological Studies Sciences, University of California-San Diego, La Jolla, California.
| | - Daniel M Tartakovsky
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California.
| |
Collapse
|
45
|
TubZ filament assembly dynamics requires the flexible C-terminal tail. Sci Rep 2017; 7:43342. [PMID: 28230082 PMCID: PMC5322520 DOI: 10.1038/srep43342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Abstract
Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.
Collapse
|
46
|
Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JKC, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J. Assembly of a nucleus-like structure during viral replication in bacteria. Science 2017; 355:194-197. [PMID: 28082593 PMCID: PMC6028185 DOI: 10.1126/science.aal2130] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
We observed the assembly of a nucleus-like structure in bacteria during viral infection. Using fluorescence microscopy and cryo-electron tomography, we showed that Pseudomonas chlororaphis phage 201φ2-1 assembled a compartment that separated viral DNA from the cytoplasm. The phage compartment was centered by a bipolar tubulin-based spindle, and it segregated phage and bacterial proteins according to function. Proteins involved in DNA replication and transcription localized inside the compartment, whereas proteins involved in translation and nucleotide synthesis localized outside. Later during infection, viral capsids assembled on the cytoplasmic membrane and moved to the surface of the compartment for DNA packaging. Ultimately, viral particles were released from the compartment and the cell lysed. These results demonstrate that phages have evolved a specialized structure to compartmentalize viral replication.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Axel F Brilot
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joanna K C Coker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald L Newton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert Buschauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Agard
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
48
|
Abstract
A family of tubulin-related proteins (TubZs) has been identified in prokaryotes as being important for the inheritance of virulence plasmids of several pathogenic Bacilli and also being implicated in the lysogenic life cycle of several bacteriophages. Cell biological studies and reconstitution experiments revealed that TubZs function as prokaryotic cytomotive filaments, providing one-dimensional motive forces. Plasmid-borne TubZ filaments most likely transport plasmid centromeric complexes by depolymerisation, pulling on the plasmid DNA, in vitro. In contrast, phage-borne TubZ (PhuZ) pushes bacteriophage particles (virions) to mid cell by filament growth. Structural studies by both crystallography and electron cryo-microscopy of multiple proteins, both from the plasmid partitioning sub-group and the bacteriophage virion centring group of TubZ homologues, allow a detailed consideration of the structural phylogeny of the group as a whole, while complete structures of both crystallographic protofilaments at high resolution and fully polymerised filaments at intermediate resolution by cryo-EM have revealed details of the polymerisation behaviour of both TubZ sub-groups.
Collapse
|
49
|
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res 2015; 43:5002-16. [PMID: 25916847 PMCID: PMC4446434 DOI: 10.1093/nar/gkv374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Antonia Heyer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Eugen Pfeifer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anja Wittmann
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Reinhard Krämer
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| |
Collapse
|
50
|
Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments. Proc Natl Acad Sci U S A 2015; 112:E1845-50. [PMID: 25825718 DOI: 10.1073/pnas.1423746112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segregation of DNA is a fundamental process during cell division. The mechanism of prokaryotic DNA segregation is largely unknown, but several low-copy-number plasmids encode cytomotive filament systems of the actin type and tubulin type important for plasmid inheritance. Of these cytomotive filaments, only actin-like systems are mechanistically well characterized. In contrast, the mechanism by which filaments of tubulin-like TubZ protein mediate DNA motility is unknown. To understand polymer-driven DNA transport, we reconstituted the filaments of TubZ protein (TubZ filaments) from Bacillus thuringiensis pBtoxis plasmid with their centromeric TubRC complexes containing adaptor protein TubR and tubC DNA. TubZ alone assembled into polar filaments, which annealed laterally and treadmilled. Using single-molecule imaging, we show that TubRC complexes were not pushed by filament polymerization; instead, they processively tracked shrinking, depolymerizing minus ends. Additionally, the TubRC complex nucleated TubZ filaments and allowed for treadmilling. Overall, our results indicate a pulling mechanism for DNA transport by the TubZRC system. The discovered minus end-tracking property of the TubRC complex expands the mechanistic diversity of the prokaryotic cytoskeleton.
Collapse
|