1
|
Kendrick AA, Nguyen KHV, Ma W, Karasmanis EP, Amaro RE, Reck-Peterson SL, Leschziner AE. Multiple steps of dynein activation by Lis1 visualized by cryo-EM. Nat Struct Mol Biol 2025:10.1038/s41594-025-01558-w. [PMID: 40410592 DOI: 10.1038/s41594-025-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/11/2025] [Indexed: 05/25/2025]
Abstract
Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly, plays a role in dynein activation. We recently identified a structure of partially autoinhibited dynein bound to Lis1, which suggests an intermediate state in dynein's activation pathway. However, other structural information is needed to fully understand how Lis1 activates dynein. Here, we used cryo-EM and yeast dynein and Lis1 incubated with ATP at different time points to reveal conformations that we propose represent additional intermediate states in dynein's activation pathway. We solved 16 high-resolution structures, including 7 distinct dynein and dynein-Lis1 structures from the same sample. Our data support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Rao L, Liu X, Berger F, McKenney RJ, Arnold M, Stengel K, Sidoli S, Gennerich A. The Power of Three: Dynactin associates with three dyneins under load for greater force production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632506. [PMID: 39868132 PMCID: PMC11761377 DOI: 10.1101/2025.01.14.632506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cytoplasmic dynein is an essential microtubule motor protein that powers organelle transport and mitotic spindle assembly. Its activity depends on dynein-dynactin-cargo adaptor complexes, such as dynein-dynactin-BicD2 (DDB), which typically function with two dynein motors. We show that mechanical tension recruits a third dynein motor via an auxiliary BicD adaptor binding the light intermediate chain of the third dynein, stabilizing multi-dynein assemblies and enhancing force generation. Lis1 prevents dynein from transitioning into a force-limiting phi-like conformation, allowing single-dynein DDB to sustain forces up to ~4.5 pN, whereas force generation often ends at ~2.5 pN without Lis1. Complexes with two or three dyneins generate ~7 pN and ~9 pN, respectively, consistent with a staggered motor arrangement that enhances collective output. Under load, DDB primarily takes ~8 nm steps, challenging existing dynein coordination models. These findings reveal adaptive mechanisms that enable robust intracellular transport under varying mechanical demands.
Collapse
|
3
|
Geohring IC, Chai P, Iyer BR, Ton WD, Yang J, Ide AH, George SC, Bagri JS, Baird SV, Zhang K, Markus SM. A nucleotide code governs Lis1's ability to relieve dynein autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630615. [PMID: 39803478 PMCID: PMC11722441 DOI: 10.1101/2024.12.30.630615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Dynein-1 is a microtubule motor responsible for the transport of cytoplasmic cargoes. Activation of motility requires it first overcome an autoinhibited state prior to its assembly with dynactin and a cargo adaptor. Studies suggest that Lis1 may relieve dynein's autoinhibited state. However, evidence for this mechanism is lacking. We first set out to determine the rules governing dynein-Lis1 binding, which reveals that their binding affinity is regulated by the nucleotide-bound states of each of three nucleotide-binding pockets within the dynein motor domain. We also find that distinct nucleotide 'codes' coordinate dynein-Lis1 binding stoichiometry by impacting binding affinity at two different sites within the dynein motor domain. Electron microscopy reveals that a 1 Lis1:1 dynein complex directly promotes an open, uninhibited conformational state of dynein, whereas a 2:1 complex resembles the autoinhibited state. Cryo-EM analysis reveals the structural basis for Lis1 opening dynein relies on interactions with the linker domain.
Collapse
|
4
|
Zimmermann N, Ishikawa T. Comparative structural study on axonemal and cytoplasmic dyneins. Cytoskeleton (Hoboken) 2024; 81:681-690. [PMID: 39073294 DOI: 10.1002/cm.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Kendrick AA, Nguyen KHV, Ma W, Karasmanis EP, Amaro RE, Reck-Peterson SL, Leschziner AE. Cryo-EM visualizes multiple steps of dynein's activation pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615567. [PMID: 39416051 PMCID: PMC11482813 DOI: 10.1101/2024.09.28.615567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. We recently identified a structure of partially autoinhibited dynein bound to Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly. This structure provides an intermediate state in dynein's activation pathway; however, other structural information is needed to fully explain Lis1 function in dynein activation. Here, we used cryo-EM and samples incubated with ATP for different times to reveal novel conformations that we propose represent intermediate states in the dynein's activation pathway. We solved sixteen high-resolution structures, including seven distinct dynein and dynein-Lis1 structures from the same sample. Our data also support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.
Collapse
Affiliation(s)
- Agnieszka A. Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kendrick H. V. Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Eva P. Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Samara L. Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Jongsma MLM, Bakker N, Voortman LM, Koning RI, Bos E, Akkermans JJLL, Janssen L, Neefjes J. Systems mapping of bidirectional endosomal transport through the crowded cell. Curr Biol 2024; 34:4476-4494.e11. [PMID: 39276769 PMCID: PMC11466077 DOI: 10.1016/j.cub.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
7
|
Kusakci E, Htet ZM, Zhao Y, Gillies JP, Reck-Peterson SL, Yildiz A. Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules. Nat Chem Biol 2024; 20:521-529. [PMID: 37919547 PMCID: PMC11164236 DOI: 10.1038/s41589-023-01464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Lis1 is a key cofactor for the assembly of active cytoplasmic dynein complexes that transport cargo along microtubules. Lis1 binds to the AAA+ ring and stalk of dynein and slows dynein motility, but the underlying mechanism has remained unclear. Using single-molecule imaging and optical trapping assays, we investigated how Lis1 binding affects the motility and force generation of yeast dynein in vitro. We showed that Lis1 slows motility by binding to the AAA+ ring of dynein, not by serving as a roadblock or tethering dynein to microtubules. Lis1 binding also does not affect force generation, but it induces prolonged stalls and reduces the asymmetry in the force-induced detachment of dynein from microtubules. The mutagenesis of the Lis1-binding sites on the dynein stalk partially recovers this asymmetry but does not restore dynein velocity. These results suggest that Lis1-stalk interaction slows the detachment of dynein from microtubules by interfering with the stalk sliding mechanism.
Collapse
Affiliation(s)
- Emre Kusakci
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yuanchang Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ahmet Yildiz
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Physics Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
LIS1 (Pac1) binding slows dissociation of dynein from microtubules. Nat Chem Biol 2024; 20:408-409. [PMID: 37932530 DOI: 10.1038/s41589-023-01465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
|
9
|
Singh K, Lau CK, Manigrasso G, Gama JB, Gassmann R, Carter AP. Molecular mechanism of dynein-dynactin complex assembly by LIS1. Science 2024; 383:eadk8544. [PMID: 38547289 PMCID: PMC7615804 DOI: 10.1126/science.adk8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.
Collapse
Affiliation(s)
- Kashish Singh
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Giulia Manigrasso
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
10
|
Okada K, Iyer BR, Lammers LG, Gutierrez PA, Li W, Markus SM, McKenney RJ. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat Commun 2023; 14:5833. [PMID: 37730751 PMCID: PMC10511499 DOI: 10.1038/s41467-023-41466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Processive transport by the microtubule motor cytoplasmic dynein requires the regulated assembly of a dynein-dynactin-adapter complex. Interactions between dynein and dynactin were initially ascribed to the dynein intermediate chain N-terminus and the dynactin subunit p150Glued. However, recent cryo-EM structures have not resolved this interaction, questioning its importance. The intermediate chain also interacts with Nde1/Ndel1, which compete with p150Glued for binding. We reveal that the intermediate chain N-terminus is a critical evolutionarily conserved hub that interacts with dynactin and Ndel1, the latter of which recruits LIS1 to drive complex assembly. In additon to revealing that the intermediate chain N-terminus is likely bound to p150Glued in active transport complexes, our data support a model whereby Ndel1-LIS1 must dissociate prior to LIS1 being handed off to dynein in temporally discrete steps. Our work reveals previously unknown steps in the dynein activation pathway, and provide insight into the integrated activities of LIS1/Ndel1 and dynactin/cargo-adapters.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Bharat R Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Karasmanis EP, Reimer JM, Kendrick AA, Nguyen KHV, Rodriguez JA, Truong JB, Lahiri I, Reck-Peterson SL, Leschziner AE. Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge. Nat Struct Mol Biol 2023; 30:1357-1364. [PMID: 37620585 PMCID: PMC10497415 DOI: 10.1038/s41594-023-01069-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jennifer A Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Indrajit Lahiri
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Ton WD, Wang Y, Chai P, Beauchamp-Perez C, Flint NT, Lammers LG, Xiong H, Zhang K, Markus SM. Microtubule-binding-induced allostery triggers LIS1 dissociation from dynein prior to cargo transport. Nat Struct Mol Biol 2023; 30:1365-1379. [PMID: 37322240 PMCID: PMC10590275 DOI: 10.1038/s41594-023-01010-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
The lissencephaly-related protein LIS1 is a critical regulator of cytoplasmic dynein that governs motor function and intracellular localization (for example, to microtubule plus-ends). Although LIS1 binding is required for dynein activity, its unbinding prior to initiation of cargo transport is equally important, since preventing dissociation leads to dynein dysfunction. To understand whether and how dynein-LIS1 binding is modulated, we engineered dynein mutants locked in a microtubule-bound (MT-B) or microtubule-unbound (MT-U) state. Whereas the MT-B mutant exhibits low LIS1 affinity, the MT-U mutant binds LIS1 with high affinity, and as a consequence remains almost irreversibly associated with microtubule plus-ends. We find that a monomeric motor domain is sufficient to exhibit these opposing LIS1 affinities, and that this is evolutionarily conserved between yeast and humans. Three cryo-EM structures of human dynein with and without LIS1 reveal microtubule-binding induced conformational changes responsible for this regulation. Our work reveals key biochemical and structural insight into LIS1-mediated dynein activation.
Collapse
Affiliation(s)
- William D Ton
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Nicholas T Flint
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Hao Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Lau CK. New pieces for the Lis1-dynein puzzle. Nat Struct Mol Biol 2023; 30:1244-1246. [PMID: 37700119 DOI: 10.1038/s41594-023-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Affiliation(s)
- Clinton K Lau
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Reimer JM, DeSantis ME, Reck-Peterson SL, Leschziner AE. Structures of human dynein in complex with the lissencephaly 1 protein, LIS1. eLife 2023; 12:84302. [PMID: 36692009 PMCID: PMC9889085 DOI: 10.7554/elife.84302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
15
|
Okada K, Iyer BR, Lammers LG, Gutierrez P, Li W, Markus SM, McKenney RJ. Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523097. [PMID: 36711700 PMCID: PMC9882231 DOI: 10.1101/2023.01.13.523097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytoplasmic dynein, the primary retrograde microtubule transport motor within cells, must be activated for processive motility through the regulated assembly of a dynein-dynactin-adapter (DDA) complex. The interaction between dynein and dynactin was initially ascribed to the N-terminus of the dynein intermediate chain (IC) and a coiled-coil of the dynactin subunit p150 Glued . However, cryo-EM structures of DDA complexes have not resolve these regions of the IC and p150 Glued , raising questions about the importance of this interaction. The IC N-terminus (ICN) also interacts with the dynein regulators Nde1/Ndel1, which compete with p150 Glued for binding to ICN. Using a combination of approaches, we reveal that the ICN plays critical, evolutionarily conserved roles in DDA assembly by interacting with dynactin and Ndel1, the latter of which recruits the DDA assembly factor LIS1 to the dynein complex. In contrast to prior models, we find that LIS1 cannot simultaneously bind to Ndel1 and dynein, indicating that LIS1 must be handed off from Ndel1 to dynein in temporally discrete steps. Whereas exogenous Ndel1 or p150 Glued disrupts DDA complex assembly in vitro , neither perturbs preassembled DDA complexes, indicating that the IC is stably bound to p150 Glued within activated DDA complexes. Our study reveals previously unknown regulatory steps in the dynein activation pathway, and provides a more complete model for how the activities of LIS1/Ndel1 and dynactin/cargo-adapters are integrated to regulate dynein motor activity.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Bharat R. Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G. Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Pedro Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
17
|
Gillies JP, Reimer JM, Karasmanis EP, Lahiri I, Htet ZM, Leschziner AE, Reck-Peterson SL. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 2022; 11:e71229. [PMID: 34994688 PMCID: PMC8824474 DOI: 10.7554/elife.71229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.
Collapse
Affiliation(s)
- John P Gillies
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research MohaliMohaliIndia
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Molecular Biology Section, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San DiegoSan DiegoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
18
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|
19
|
Qiu R, Zhang J, Rotty JD, Xiang X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr Biol 2021; 31:4486-4498.e6. [PMID: 34428469 DOI: 10.1016/j.cub.2021.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023]
Abstract
Cytoplasmic dynein is activated by the dynactin complex, cargo adapters and LIS1 (Lissencephaly 1). How this process is regulated in vivo remains unclear. The dynein motor ring contains six AAA+ (ATPases associated with diverse cellular activities) domains. Here, we used the filamentous fungus Aspergillus nidulans to examine whether ATP hydrolysis at AAA3 regulates dynein activation in the context of other regulators. In fungal hyphae, early endosomes undergo dynein-mediated movement away from the microtubule plus ends near the hyphal tip. Dynein normally accumulates at the microtubule plus ends. The early endosomal adaptor Hook protein, together with dynactin, drives dynein activation to cause its relocation to the microtubule minus ends. This activation process depends on LIS1, but LIS1 tends to dissociate from dynein after its activation. In this study, we found that dynein containing a mutation-blocking ATP hydrolysis at AAA3 can undergo LIS1-independent activation, consistent with our genetic data that the same mutation suppresses the growth defect of the A. nidulans LIS1-deletion mutant. Our data also suggest that blocking AAA3 ATP hydrolysis allows dynein activation by dynactin without the early endosomal adaptor. As a consequence, dynein accumulates at microtubule minus ends whereas early endosomes stay near the plus ends. Dynein containing a mutation-blocking ATP binding at AAA3 largely depends on LIS1 for activation, but this mutation abnormally prevents LIS1 dissociation upon dynein activation. Together, our data suggest that the AAA3 ATPase cycle regulates the coordination between dynein activation and cargo binding as well as the dynamic dynein-LIS1 interaction.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
20
|
Kubo S, Yang SK, Black CS, Dai D, Valente-Paterno M, Gaertig J, Ichikawa M, Bui KH. Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM. EMBO Rep 2021; 22:e52911. [PMID: 34338432 PMCID: PMC8419702 DOI: 10.15252/embr.202152911] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Corbin S Black
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Daniel Dai
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | | | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGAUSA
| | - Muneyoshi Ichikawa
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- PRESTOJapan Science and Technology AgencyKawaguchiJapan
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
- Centre de Recherche en Biologie StructuraleMcGill UniversityMontréalQCCanada
| |
Collapse
|
21
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Santarossa CC, Mickolajczyk KJ, Steinman JB, Urnavicius L, Chen N, Hirata Y, Fukase Y, Coudray N, Ekiert DC, Bhabha G, Kapoor TM. Targeting allostery in the Dynein motor domain with small molecule inhibitors. Cell Chem Biol 2021; 28:1460-1473.e15. [PMID: 34015309 DOI: 10.1016/j.chembiol.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.
Collapse
Affiliation(s)
- Cristina C Santarossa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nan Chen
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yasuhiro Hirata
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Yoshiyuki Fukase
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
24
|
Spriggs CC, Badieyan S, Verhey KJ, Cianfrocco MA, Tsai B. Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. J Cell Biol 2021; 219:151622. [PMID: 32259203 PMCID: PMC7199864 DOI: 10.1083/jcb.201908099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called “focus” to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
25
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
26
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
27
|
|
28
|
Auckland P, Roscioli E, Coker HLE, McAinsh AD. CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes. J Cell Biol 2020; 219:e201905018. [PMID: 32207772 PMCID: PMC7199848 DOI: 10.1083/jcb.201905018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Helena Louise Elvidge Coker
- Computing and Advanced Microscopy Development Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
29
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Htet ZM, Gillies JP, Baker RW, Leschziner AE, DeSantis ME, Reck-Peterson SL. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat Cell Biol 2020; 22:518-525. [PMID: 32341549 PMCID: PMC7271980 DOI: 10.1038/s41556-020-0506-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biophysics Graduate Program, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
31
|
Lis1 activates dynein motility by modulating its pairing with dynactin. Nat Cell Biol 2020; 22:570-578. [PMID: 32341547 PMCID: PMC7212015 DOI: 10.1038/s41556-020-0501-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.
Collapse
|
32
|
Marzo MG, Griswold JM, Markus SM. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat Cell Biol 2020; 22:559-569. [PMID: 32341548 DOI: 10.1038/s41556-020-0492-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
33
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
34
|
Niekamp S, Coudray N, Zhang N, Vale RD, Bhabha G. Coupling of ATPase activity, microtubule binding, and mechanics in the dynein motor domain. EMBO J 2019; 38:e101414. [PMID: 31268607 PMCID: PMC6600642 DOI: 10.15252/embj.2018101414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
The movement of a molecular motor protein along a cytoskeletal track requires communication between enzymatic, polymer-binding, and mechanical elements. Such communication is particularly complex and not well understood in the dynein motor, an ATPase that is comprised of a ring of six AAA domains, a large mechanical element (linker) spanning over the ring, and a microtubule-binding domain (MTBD) that is separated from the AAA ring by a ~ 135 Å coiled-coil stalk. We identified mutations in the stalk that disrupt directional motion, have microtubule-independent hyperactive ATPase activity, and nucleotide-independent low affinity for microtubules. Cryo-electron microscopy structures of a mutant that uncouples ATPase activity from directional movement reveal that nucleotide-dependent conformational changes occur normally in one-half of the AAA ring, but are disrupted in the other half. The large-scale linker conformational change observed in the wild-type protein is also inhibited, revealing that this conformational change is not required for ATP hydrolysis. These results demonstrate an essential role of the stalk in regulating motor activity and coupling conformational changes across the two halves of the AAA ring.
Collapse
Affiliation(s)
- Stefan Niekamp
- Department of Cellular and Molecular PharmacologyHoward Hughes Medical InstituteUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nicolas Coudray
- Department of Cell BiologySkirball Institute of Biomolecular MedicineNew York University School of MedicineNew YorkNYUSA
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkNYUSA
| | - Nan Zhang
- Department of Cellular and Molecular PharmacologyHoward Hughes Medical InstituteUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ronald D Vale
- Department of Cellular and Molecular PharmacologyHoward Hughes Medical InstituteUniversity of California San FranciscoSan FranciscoCAUSA
| | - Gira Bhabha
- Department of Cell BiologySkirball Institute of Biomolecular MedicineNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
35
|
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor that drives the movement of diverse cargos along the microtubule cytoskeleton, including organelles, vesicles and RNAs. A long-standing question is how a single form of dynein can be adapted to a wide range of cellular functions in both interphase and mitosis. Recent progress has provided new insights - dynein interacts with a group of activating adaptors that provide cargo-specific and/or function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the complex that dynein forms with its required activator dynactin, leading to highly processive motility toward the microtubule minus end. Furthermore, activating adaptors mediate specific interactions of the motor complex with cargos such as Rab6-positive vesicles or ribonucleoprotein particles for BICD2, and signaling endosomes for Hook1. In this Cell Science at a Glance article and accompanying poster, we highlight the conserved structural features found in dynein activators, the effects of these activators on biophysical parameters, such as motor velocity and stall force, and the specific intracellular functions they mediate.
Collapse
Affiliation(s)
- Mara A Olenick
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
37
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Kubo T, Hou Y, Cochran DA, Witman GB, Oda T. A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1). Mol Biol Cell 2018. [PMID: 29540525 PMCID: PMC5921573 DOI: 10.1091/mbc.e17-11-0689] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
FAP44 and FAP43/FAP244 form a complex that tethers the Inner dynein subspecies f to the microtubule in Chlamydomonas flagella. The tether complex regulates flagellar motility by restraining conformational change in the dynein motor. Motility of cilia/flagella is generated by a coordinated activity of thousands of dyneins. Inner dynein arms (IDAs) are particularly important for the formation of ciliary/flagellar waveforms, but the molecular mechanism of IDA regulation is poorly understood. Here we show using cryoelectron tomography and biochemical analyses of Chlamydomonas flagella that a conserved protein FAP44 forms a complex that tethers IDA f (I1 dynein) head domains to the A-tubule of the axonemal outer doublet microtubule. In wild-type flagella, IDA f showed little nucleotide-dependent movement except for a tilt in the f β head perpendicular to the microtubule-sliding direction. In the absence of the tether complex, however, addition of ATP and vanadate caused a large conformational change in the IDA f head domains, suggesting that the movement of IDA f is mechanically restricted by the tether complex. Motility defects in flagella missing the tether demonstrates the importance of the IDA f-tether interaction in the regulation of ciliary/flagellar beating.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
39
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
40
|
Simões PA, Celestino R, Carvalho AX, Gassmann R. NudE regulates dynein at kinetochores but is dispensable for other dynein functions in the C. elegans early embryo. J Cell Sci 2018; 131:jcs.212159. [PMID: 29192061 PMCID: PMC5818066 DOI: 10.1242/jcs.212159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
In mitosis, the molecular motor dynein is recruited to kinetochores by the Rod-Zw10-Zwilch complex (RZZ) and Spindly to control spindle assembly checkpoint (SAC) signaling and microtubule attachment. How the ubiquitous dynein co-factors Lis1 and NudE contribute to these functions remains poorly understood. Here, we show that the C. elegans NudE homolog NUD-2 is dispensable for dynein- and LIS-1-dependent mitotic spindle assembly in the zygote. This facilitates functional characterization of kinetochore-localized NUD-2, which is recruited by the CENP-F-like proteins HCP-1 and HCP-2 independently of RZZ-Spindly and dynein-LIS-1. Kinetochore dynein levels are reduced in Δnud-2 embryos, and, as occurs upon RZZ inhibition, loss of NUD-2 delays the formation of load-bearing kinetochore-microtubule attachments and causes chromatin bridges in anaphase. Survival of Δnud-2 embryos requires a functional SAC, and kinetochores without NUD-2 recruit an excess of SAC proteins. Consistent with this, SAC signaling in early Δnud-2 embryos extends mitotic duration and prevents high rates of chromosome mis-segregation. Our results reveal that both NUD-2 and RZZ-Spindly are essential for dynein function at kinetochores, and that the gain in SAC strength during early embryonic development is relevant under conditions that mildly perturb mitosis.
Collapse
Affiliation(s)
- Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
41
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
42
|
Rao L, Hülsemann M, Gennerich A. Combining Structure-Function and Single-Molecule Studies on Cytoplasmic Dynein. Methods Mol Biol 2018; 1665:53-89. [PMID: 28940064 PMCID: PMC5639168 DOI: 10.1007/978-1-4939-7271-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein's molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.
Collapse
Affiliation(s)
- Lu Rao
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
43
|
She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat Commun 2017; 8:2151. [PMID: 29247176 PMCID: PMC5732302 DOI: 10.1038/s41467-017-02004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility. Dynein is a microtubule motor the motility of which is affected by the microtubule-associated protein She1. Here, the authors show that She1 alters dynein stepping behavior and increases its microtubule affinity through simultaneous interactions with the microtubule and dynein microtubule binding domain.
Collapse
|
44
|
DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE. Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein. Cell 2017; 170:1197-1208.e12. [PMID: 28886386 DOI: 10.1016/j.cell.2017.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.
Collapse
Affiliation(s)
- Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biophysics Graduate Program, Harvard University, Boston, MA 92105, USA
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Cellular and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Aiken J, Buscaglia G, Bates EA, Moore JK. The α-Tubulin gene TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend. J Dev Biol 2017; 5. [PMID: 29057214 PMCID: PMC5648057 DOI: 10.3390/jdb5030008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules are dynamic cytoskeletal polymers that mediate numerous, essential functions such as axon and dendrite growth and neuron migration throughout brain development. In recent years, sequencing has revealed dominant mutations that disrupt the tubulin protein building blocks of microtubules. These tubulin mutations lead to a spectrum of devastating brain malformations, complex neurological and physical phenotypes, and even fatality. The most common tubulin gene mutated is the α-tubulin gene TUBA1A, which is the most prevalent α-tubulin gene expressed in post-mitotic neurons. The normal role of TUBA1A during neuronal maturation, and how mutations alter its function to produce the phenotypes observed in patients, remains unclear. This review synthesizes current knowledge of TUBA1A function and expression during brain development, and the brain malformations caused by mutations in TUBA1A.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-6198; Fax: +1-303-724-3420
| |
Collapse
|
46
|
Takahara T, Inoue K, Arai Y, Kuwata K, Shibata H, Maki M. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins. J Biol Chem 2017; 292:17057-17072. [PMID: 28864773 DOI: 10.1074/jbc.m117.800201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that MAPK1-interacting and spindle-stabilizing (MISS)-like (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of secreted alkaline phosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B.
Collapse
Affiliation(s)
- Terunao Takahara
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Kuniko Inoue
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Yumika Arai
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Keiko Kuwata
- the Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Hideki Shibata
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| | - Masatoshi Maki
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, and
| |
Collapse
|
47
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Gutierrez PA, Ackermann BE, Vershinin M, McKenney RJ. Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. J Biol Chem 2017; 292:12245-12255. [PMID: 28576829 DOI: 10.1074/jbc.m117.790048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
Cytoplasmic dynein is the primary minus-end-directed microtubule motor protein in animal cells, performing a wide range of motile activities, including transport of vesicular cargos, mRNAs, viruses, and proteins. Lissencephaly-1 (LIS1) is a highly conserved dynein-regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein-regulatory factor, releases dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here, we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we found that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bound up to two LIS1 dimers, and mutational analysis suggested that LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhanced DDB velocity in a concentration-dependent manner, in contrast to observations of the effect of LIS1 on the motility of isolated dynein. Thus, LIS1 exerts concentration-dependent effects on dynein motility and can synergize with dynactin to enhance processive dynein movement. Our results suggest that the effect of LIS1 on dynein motility depends on both LIS1 concentration and the presence of other regulatory factors such as dynactin and may provide new insights into the mechanism of LIS1 haploinsufficiency in the neurodevelopmental disorder lissencephaly.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Bryce E Ackermann
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Michael Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112; Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616.
| |
Collapse
|
49
|
Verdeny-Vilanova I, Wehnekamp F, Mohan N, Sandoval Álvarez Á, Borbely JS, Otterstrom JJ, Lamb DC, Lakadamyali M. 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. J Cell Sci 2017; 130:1904-1916. [PMID: 28420672 PMCID: PMC5482975 DOI: 10.1242/jcs.201178] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 01/15/2023] Open
Abstract
Vesicle transport is regulated at multiple levels, including regulation by scaffolding proteins and the cytoskeleton. This tight regulation is essential, since slowing or stoppage of transport can cause accumulation of obstacles and has been linked to diseases. Understanding the mechanisms by which transport is regulated as well as how motor proteins overcome obstacles can give important clues as to how these mechanisms break down in disease states. Here, we describe that the cytoskeleton architecture impacts transport in a vesicle-size-dependent manner, leading to pausing of vesicles larger than the separation of the microtubules. We further develop methods capable of following 3D transport processes in living cells. Using these methods, we show that vesicles move using two different modes along the microtubule. Off-axis motion, which leads to repositioning of the vesicle in 3D along the microtubule, correlates with the presence of steric obstacles and may help in circumventing them.
Collapse
Affiliation(s)
- Ione Verdeny-Vilanova
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Fabian Wehnekamp
- Ludwig-Maximilians-Universität München, Department of Chemistry, Physical Chemistry, Center for Integrated Protein Science Munich, and Nanosystems Initiative Munich, Butenandtstr. 5-13, München 81377, Germany
| | - Nitin Mohan
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Ángel Sandoval Álvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Joseph Steven Borbely
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jason John Otterstrom
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Don C Lamb
- Ludwig-Maximilians-Universität München, Department of Chemistry, Physical Chemistry, Center for Integrated Protein Science Munich, and Nanosystems Initiative Munich, Butenandtstr. 5-13, München 81377, Germany
| | - Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
50
|
Baumbach J, Murthy A, McClintock MA, Dix CI, Zalyte R, Hoang HT, Bullock SL. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 2017; 6. [PMID: 28406398 PMCID: PMC5413349 DOI: 10.7554/elife.21768] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo. DOI:http://dx.doi.org/10.7554/eLife.21768.001
Collapse
Affiliation(s)
- Janina Baumbach
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andal Murthy
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Carly I Dix
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ruta Zalyte
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ha Thi Hoang
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|