1
|
Devi R, Nandi R, Mishra S. A Plasmodium LARC GAP provides preerythrocytic, stage and species transcending protection in mice. NPJ Vaccines 2025; 10:97. [PMID: 40379677 PMCID: PMC12084556 DOI: 10.1038/s41541-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/29/2025] [Indexed: 05/19/2025] Open
Abstract
Malonyl-CoA-acyl carrier protein transacylase (MCAT) catalyzes the transfer of a malonyl moiety from malonyl-CoA to acyl carrier protein during the initiation step of type II fatty acid synthesis (FASII). The Plasmodium FASII pathway was found to be essential for late liver-stage development in rodent malaria parasites. Here, we generated a novel genetically attenuated parasite (GAP) by disrupting Plasmodium MCAT. Deleting MCAT in rodent malaria parasites did not affect asexual blood-stage propagation and mosquito-stage development. MCAT KO sporozoites failed to initiate blood-stage infection in mice. Hepatic MCAT KO parasites showed impaired nuclear division and apicoplast biogenesis. This led to a defect in hepatic merozoite formation and attenuation of parasites during late liver stages. Vaccination of mice with MCAT KO sporozoites exhibited sterilizing immunity against homologous and heterologous species challenge. Further, MCAT KO-immunized mice were able to clear blood stage infection after iRBCs challenge. These findings highlight that late-liver arresting MCAT KO sporozoite is a promising GAP vaccine candidate for inducing pre-erythrocytic, stage, and species-transcending protection in mice.
Collapse
Affiliation(s)
- Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohini Nandi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Roozen GVT, van Schuijlenburg R, Hensen ADO, Koopman JPR, Lamers OAC, Geurten FJA, Sijtsma JC, Baalbergen E, Janse JJ, Chevalley-Maurel S, Naar CM, Bezemer S, Kroeze H, van de Stadt HJF, de Visser B, Meij P, Tihaya MS, Colstrup E, Iliopoulou E, de Bes-Roeleveld HM, Wessels E, van der Stoep MYEC, Janse CJ, Murugan R, Franke-Fayard BMD, Roestenberg M. Single immunization with genetically attenuated Pf∆mei2 (GA2) parasites by mosquito bite in controlled human malaria infection: a placebo-controlled randomized trial. Nat Med 2025; 31:218-222. [PMID: 39753962 PMCID: PMC11750698 DOI: 10.1038/s41591-024-03347-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025]
Abstract
Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial. Primary outcomes were safety and tolerability, time-to-parasitemia and protective efficacy. Humoral and cellular immunological results were considered secondary outcomes. Here we report the safe administration of GA2-MB with no breakthrough malaria and sterile protection in nine of ten participants at 6 weeks after a single immunization with 50 GA2-infected mosquitoes, compared with none of five mock-immunized participants, against a homologous controlled human malaria infection. Immunization increased circulating Pf-specific polyfunctional effector memory CD4+ T cells coexpressing tumor necrosis factor and interleukin-2. This unprecedented 90% protective efficacy after a single low-dose immunization holds great promise for the potency of GA2 immunization. Future studies should demonstrate whether GA2 is similarly efficacious in pre-exposed populations and whether the favorable safety profile reported here holds up in larger groups. ClinicalTrials.gov registration: NCT05468606 .
Collapse
Affiliation(s)
- Geert V T Roozen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Roos van Schuijlenburg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annefleur D O Hensen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Olivia A C Lamers
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Fiona J A Geurten
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Els Baalbergen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chanel M Naar
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sascha Bezemer
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Kroeze
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bram de Visser
- Medical Technology and Prototyping, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Mara S Tihaya
- Center for Cell and Gene Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Emil Colstrup
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva Iliopoulou
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Helena M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Els Wessels
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - M Y Eileen C van der Stoep
- Center for Cell and Gene Therapy, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Rajagopal Murugan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Blandine M D Franke-Fayard
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Lamers OAC, Franke-Fayard BMD, Koopman JPR, Roozen GVT, Janse JJ, Chevalley-Maurel SC, Geurten FJA, de Bes-Roeleveld HM, Iliopoulou E, Colstrup E, Wessels E, van Gemert GJ, van de Vegte-Bolmer M, Graumans W, Stoter TR, Mordmüller BG, Houlder EL, Bousema T, Murugan R, McCall MBB, Janse CJ, Roestenberg M. Safety and Efficacy of Immunization with a Late-Liver-Stage Attenuated Malaria Parasite. N Engl J Med 2024; 391:1913-1923. [PMID: 39565990 DOI: 10.1056/nejmoa2313892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND Currently licensed and approved malaria subunit vaccines provide modest, short-lived protection against malaria. Immunization with live-attenuated Plasmodium falciparum malaria parasites is an alternative vaccination strategy that has potential to improve protection. METHODS We conducted a double-blind, controlled clinical trial to evaluate the safety, side-effect profile, and efficacy of immunization, by means of mosquito bites, with a second-generation genetically attenuated parasite (GA2) - a mei2 single knockout P. falciparum NF54 parasite (sporozoite form) with extended development into the liver stage. After an open-label dose-escalation safety phase in which participants were exposed to the bites of 15 or 50 infected mosquitoes (stage A), healthy adults who had not had malaria were randomly assigned to be exposed to 50 mosquito bites per immunization of GA2, an early-arresting parasite (GA1), or placebo (bites from uninfected mosquitoes) (stage B). After the completion of three immunization sessions with 50 mosquito bites per session, we compared the protective efficacy of GA2 against homologous P. falciparum controlled human malaria infection with that of GA1 and placebo. The primary end points were the number and severity of adverse events (in stages A and B) and blood-stage parasitemia greater than 100 P. falciparum parasites per milliliter after bites from GA2-infected mosquitoes (in stage A) and after controlled human malaria infection (in stage B). RESULTS Adverse events were similar across the trial groups. Protective efficacy against subsequent controlled human malaria infection was observed in 8 of 9 participants (89%) in the GA2 group, in 1 of 8 participants (13%) in the GA1 group, and in 0 of 3 participants in the placebo group. A significantly higher frequency of P. falciparum-specific polyfunctional CD4+ and Vδ2+ γδ T cells were observed among participants who received GA2 than among those who received GA1, whereas GA2 and GA1 induced similar antibody titers targeting the P. falciparum circumsporozoite protein. CONCLUSIONS In this small trial, GA2 was associated with a favorable immune induction profile and protective efficacy, findings that warrant further evaluation. (Funded by the Bontius Foundation; ClinicalTrials.gov number, NCT04577066.).
Collapse
Affiliation(s)
- Olivia A C Lamers
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Blandine M D Franke-Fayard
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Jan Pieter R Koopman
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Geert V T Roozen
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Jacqueline J Janse
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Severine C Chevalley-Maurel
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Fiona J A Geurten
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Helena M de Bes-Roeleveld
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Eva Iliopoulou
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Emil Colstrup
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Els Wessels
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Geert-Jan van Gemert
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Marga van de Vegte-Bolmer
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Wouter Graumans
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Thabitha R Stoter
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Benjamin G Mordmüller
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Emma L Houlder
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Teun Bousema
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Rajagopal Murugan
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Matthew B B McCall
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Chris J Janse
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Meta Roestenberg
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| |
Collapse
|
4
|
Mishra A, Paul P, Srivastava M, Mishra S. A Plasmodium late liver stage arresting GAP provides superior protection in mice. NPJ Vaccines 2024; 9:193. [PMID: 39424860 PMCID: PMC11489731 DOI: 10.1038/s41541-024-00975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Liver-stage genetically attenuated malaria parasites (GAPs) are powerful immunogens that provide protection against sporozoite challenge. We previously generated two late liver-stage-arresting GAPs by deleting the stearoyl-CoA desaturase (Scd) or sporozoite conserved orthologous transcript 1 (Scot1) genes in Plasmodium berghei. Immunization with Scd or Scot1 GAP conferred complete protection against a sporozoite challenge. In a safety study, we observed rare breakthrough blood-stage infections in mice inoculated with high doses of sporozoites, indicating that both GAPs were incompletely attenuated. In this study, we generated a Scd/Scot1 GAP by dual gene deletion. This resulted in complete attenuation of the parasites in the liver and did not transition to blood-stage infection despite a high-dose sporozoite challenge. The Scd/Scot1 KO and WT GFP parasites were indistinguishable during blood, mosquito and early liver stage development. Moreover, Scd/Scot1 KO liver-stage schizonts exhibited an abnormal apicoplast biogenesis and nuclear division phenotype, failed to form hepatic merozoites, and exhibited late liver-stage arrest. Compared with early-arresting Speld KO immunization, late-stage liver-arresting Scd/Scot1 KO induces greater and broader CD8+ T-cell responses and elicits stage-transcending immunity that provides superior protection in C57BL/6 mice. These data prove that multiple gene deletions lead to complete attenuation of the parasite and support the development of late liver stage-arresting P. falciparum GAP.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mrigank Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Moita D, Prudêncio M. Whole-sporozoite malaria vaccines: where we are, where we are going. EMBO Mol Med 2024; 16:2279-2289. [PMID: 39284948 PMCID: PMC11473726 DOI: 10.1038/s44321-024-00131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 10/16/2024] Open
Abstract
The malaria vaccination landscape has seen significant advancements with the recent endorsement of RTS,S/AS01 and R21/Matrix-M vaccines, which target the pre-erythrocytic stages of Plasmodium falciparum (Pf) infection. However, several challenges remain to be addressed, including the incomplete protection afforded by these vaccines, their dependence on a single Pf antigen, and the fact that they were not designed to protect against P. vivax (Pv) malaria. Injectable formulations of whole-sporozoite (WSpz) malaria vaccines offer a promising alternative to existing subunit vaccines, with recent developments including genetically engineered parasites and optimized administration regimens. Clinical evaluations demonstrate varying efficacy, influenced by factors, such as immune status, prior exposure to malaria, and age. Despite significant progress, a few hurdles persist in vaccine production, deployment, and efficacy in malaria-endemic regions, particularly in children. Concurrently, transgenic parasites expressing Pv antigens emerge as potential solutions for PvWSpz vaccine development. Ongoing clinical studies and advancements in vaccine technology, including the recently described PfSPZ-LARC2 candidate, signify a hopeful future for WSpz malaria vaccines, which hold great promise in the global fight against malaria.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
6
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Ghosh A, Mishra A, Devi R, Narwal SK, Nirdosh, Srivastava PN, Mishra S. A Micronemal Protein, Scot1, Is Essential for Apicoplast Biogenesis and Liver Stage Development in Plasmodium berghei. ACS Infect Dis 2024; 10:3013-3025. [PMID: 39037752 DOI: 10.1021/acsinfecdis.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal-small-molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against malaria via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Moita D, Nunes-Cabaço H, Rôla C, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. Variable long-term protection by radiation-, chemo-, and genetically-attenuated Plasmodium berghei sporozoite vaccines. Vaccine 2023; 41:7618-7625. [PMID: 38007342 DOI: 10.1016/j.vaccine.2023.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Long-term protection against malaria remains one of the greatest challenges of vaccination against this deadly parasitic disease. Whole-sporozoite (WSp) malaria vaccine formulations, which target the Plasmodium parasite's pre-erythrocytic stages, include radiation-attenuated sporozoites (RAS), early- and late-arresting genetically-attenuated parasites (EA-GAP and LA-GAP, respectively), and chemoprophylaxis with sporozoites (CPS). Although all these four vaccine formulations induce protective immune responses in the clinic, data on the longevity of the antimalarial protection they afford remain scarce. We employed a mouse model of malaria to assess protection conferred by immunization with P. berghei (Pb)-based surrogates of these four WSp formulations over a 36-week period. We show that EA-GAP WSp provide the lowest overall protection against an infectious Pb challenge, and that while immunization with RAS and LA-GAP WSp elicits the most durable protection, the protective efficacy of CPS WSp wanes rapidly over the 36-week period, most notably at higher immunization dosages. Analyses of liver immune cells show that CD44hi CD8+ T cells in CPS WSp-immunized mice express increased levels of the co-inhibitory PD-1 and LAG-3 markers compared to mice immunized with the other WSp formulations. This indicates that memory CD8+ T cells elicited by CPS WSp immunization display a more exhausted phenotype, which may explain the rapid waning of protection conferred by the former. These results emphasize the need for a detailed comparison of the duration of protection of different WSp formulations in humans and suggest a more beneficial effect of RAS and LA-GAP WSp compared to EA-GAP or CSP WSp.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Moita D, Rôla C, Nunes-Cabaço H, Nogueira G, Maia TG, Othman AS, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria. NPJ Vaccines 2023; 8:182. [PMID: 37996533 PMCID: PMC10667361 DOI: 10.1038/s41541-023-00778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ahmad Syibli Othman
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
10
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Abstract
INTRODUCTION : Eradication of malaria remains one of the main aims of medicine. Despite progress in malaria treatment, mortality rate remains high, especially in the poorest parts of the world. Therefore, prevention through vaccines is fundamental and recent approval of the first effective vaccine reinforced this assumption. However, since the parasite cycle is complex, being composed of three stages, different types of vaccine targeting stage-specific antigens shall be developed. Moreover, the beneficial effect on vaccinated subjects can be tuned using compositions targeting different disease stages. AREA COVERED : We analysed the malaria vaccine patent landscape describing the most significant patents published after 2016, classified according to the different parasite stages targeted focusing on selected protein antigens or epitopes. We searched "malaria vaccine" on Patentscope and Espacenet. EXPERT OPINION : Pre-erythrocytic vaccines were boosted by RTS,S approval, but its partial efficacy, limited to sporozoites, calls for compositions active against other disease stages. In particular, multi-antigens vaccines could be more effective than single-stage ones, as they would activate an immune response more similar to that acquired in endemic regions. Furthermore, vaccine storage is another factor to be taken into account given the climate of the areas where malaria is widespread. More advanced technologies can lead to more effective and safer vaccines.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
13
|
Creation and preclinical evaluation of genetically attenuated malaria parasites arresting growth late in the liver. NPJ Vaccines 2022; 7:139. [PMCID: PMC9636417 DOI: 10.1038/s41541-022-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWhole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.
Collapse
|
14
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
15
|
Imai T, Ngo-Thanh H, Suzue K, Shimo A, Nakamura A, Horiuchi Y, Hisaeda H, Murakami T. Live Vaccination with Blood-Stage Plasmodium yoelii 17XNL Prevents the Development of Experimental Cerebral Malaria. Vaccines (Basel) 2022; 10:vaccines10050762. [PMID: 35632518 PMCID: PMC9145751 DOI: 10.3390/vaccines10050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
In our work, we aim to develop a malaria vaccine with cross-strain (-species) protection. C57BL/6 mice infected with the P. berghei ANKA strain (PbA) develop experimental cerebral malaria (ECM). In contrast, ECM development is inhibited in infected mice depleted of T cells. The clinical applications of immune-cell depletion are limited due to the benefits of host defense against infectious diseases. Therefore, in the present study we attempted to develop a new method for preventing ECM without immune cell depletion. We demonstrated that mice inoculated with a heterologous live-vaccine of P. yoelii 17XNL were able to prevent both ECM and lung pathology and survived longer than control mice when challenged with PbA. Live vaccination protected blood–organ barriers from PbA infection. Meanwhile, live vaccination conferred sterile protection against homologous challenge with the P. yoelii 17XL virulent strain for the long-term. Analysis of the immune response induced by live vaccination showed that cross-reactive antibodies against PbA antigens were generated. IL-10, which has an immunosuppressive effect, was strongly induced in mice challenged with PbA, unlike the pro-inflammatory cytokine IFNγ. These results suggest that the protective effect of heterologous live vaccination against ECM development results from IL-10-mediated host protection.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
- Correspondence: ; Tel.: +81-49-276-1166
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- National Hospital for Tropical Disease, 78 Giai Phong, Dong Da, Hanoi 10000, Vietnam
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
| | - Aoi Shimo
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| |
Collapse
|
16
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
17
|
Shah Z, Naung MT, Moser KA, Adams M, Buchwald AG, Dwivedi A, Ouattara A, Seydel KB, Mathanga DP, Barry AE, Serre D, Laufer MK, Silva JC, Takala-Harrison S. Whole-genome analysis of Malawian Plasmodium falciparum isolates identifies possible targets of allele-specific immunity to clinical malaria. PLoS Genet 2021; 17:e1009576. [PMID: 34033654 PMCID: PMC8184011 DOI: 10.1371/journal.pgen.1009576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.
Collapse
Affiliation(s)
- Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myo T. Naung
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Don P. Mathanga
- University of Malawi College of Medicine, Malaria Alert Centre, Blantyre, Malawi
| | - Alyssa E. Barry
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, Victoria, Australia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Jaijyan DK, Govindasamy K, Singh J, Bhattacharya S, Singh AP. Establishment of a stable transfection method in Babesia microti and identification of a novel bidirectional promoter of Babesia microti. Sci Rep 2020; 10:15614. [PMID: 32973208 PMCID: PMC7515924 DOI: 10.1038/s41598-020-72489-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Babesia microti, an emerging human pathogen, is primarily transmitted through a bite of an infected tick and blood transfusions in human. Stable transfection technique has been reported in many protozoan parasites over the past few years. However, in vivo transient and stable transfection method has not been established for Babesia microti. Here, for the first time, we present a method of transient as well as stable transfection of the Babesia microti (B. microti) in the in vivo conditions. We have identified a novel promoter of B. microti. We also demonstrated that Plasmodium berghei DHFR promoter is recognized and functional in B. microti. We show that BM-CTQ41297 promoter control the expression of two genes, which are present on either side and thus represents a bi-functional promoter in B. microti. The predicted promoter activity values using Promoter 2.0 program is higher for BM- CTQ41297 promoter than strong promoters such as β-actin, ef-1β, and many other promoters. Furthermore, we discovered a non-essential locus for the genetic manipulation of the parasite, allowing us to stably integrate foreign genes; GFP, mCherry, into the B. microti. The transfection using an electroporation method and genetic manipulation of B. microti is now achievable and it is possible to obtain transfected viable parasites under in vivo growing conditions. The growth curve analysis of transfected and WT B. microti are similar indicating no defects in the transgenic parasites. This study will enable other researchers in understanding the B. microti biology, host modulation and diverse parasite developmental stages using reverse genetics and holds great potential to identify novel drug targets and vaccine development.
Collapse
Affiliation(s)
- Dabbu Kumar Jaijyan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | | | - Jyoti Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | - Shreya Bhattacharya
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India.
| |
Collapse
|
19
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
20
|
Imai T, Suzue K, Ngo-Thanh H, Shimokawa C, Hisaeda H. Potential and Limitations of Cross-Protective Vaccine against Malaria by Blood-Stage Naturally Attenuated Parasite. Vaccines (Basel) 2020; 8:vaccines8030375. [PMID: 32664476 PMCID: PMC7564742 DOI: 10.3390/vaccines8030375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Human malaria vaccine trials have revealed vaccine efficacy but improvement is still needed. In this study, we aimed to re-evaluate vaccination with blood-stage naturally attenuated parasites, as a whole-organism vaccine model against cross-strain and cross-species malaria, to establish a better vaccination strategy. C57BL/6 mice controlled blood-stage Plasmodium yoelii 17XNL (PyNL) within 1 month of infection, while mice with a variety of immunodeficiencies demonstrated different susceptibilities to PyNL, including succumbing to hyperparasitemia. However, after recovery, survivors had complete protection against a challenge with the lethal strain PyL. Unlike cross-strain protection, PyNL-recovered mice failed to induce sterile immunity against Plasmodium berghei ANKA, although prolonged survival was observed in some vaccinated mice. Splenomegaly is a typical characteristic of malaria; the splenic structure became reorganized to prioritize extra-medullary hematopoiesis and to eliminate parasites. We also found that the peritoneal lymph node was enlarged, containing activated/memory phenotype cells that did not confer protection against PyL challenge. Hemozoins remained in the spleen several months after PyNL infection. Generation of an attenuated human blood-stage parasite expressing proteins from multiple species of malaria would greatly improve anti-malaria vaccination.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-27-220-8023
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan; (C.S.); (H.H.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan; (C.S.); (H.H.)
| |
Collapse
|
21
|
Goswami D, Betz W, Locham NK, Parthiban C, Brager C, Schäfer C, Camargo N, Nguyen T, Kennedy SY, Murphy SC, Vaughan AM, Kappe SH. A replication-competent late liver stage-attenuated human malaria parasite. JCI Insight 2020; 5:135589. [PMID: 32484795 DOI: 10.1172/jci.insight.135589] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Navin K Locham
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Carolyn Brager
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Roestenberg M, Walk J, van der Boor SC, Langenberg MCC, Hoogerwerf MA, Janse JJ, Manurung M, Yap XZ, García AF, Koopman JPR, Meij P, Wessels E, Teelen K, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJ, Visser LG, van der Ven AJAM, de Mast Q, Natasha KC, Abebe Y, Murshedkar T, Billingsley PF, Richie TL, Sim BKL, Janse CJ, Hoffman SL, Khan SM, Sauerwein RW. A double-blind, placebo-controlled phase 1/2a trial of the genetically attenuated malaria vaccine PfSPZ-GA1. Sci Transl Med 2020; 12:eaaz5629. [PMID: 32434847 DOI: 10.1126/scitranslmed.aaz5629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/22/2020] [Indexed: 11/02/2022]
Abstract
Immunization with attenuated Plasmodium sporozoites can induce protection against malaria infection, as shown by Plasmodium falciparum (Pf) sporozoites attenuated by radiation in multiple clinical trials. As alternative attenuation strategy with a more homogeneous population of Pf sporozoites (PfSPZ), genetically engineered Plasmodium berghei sporozoites (SPZ) lacking the genes b9 and slarp induced sterile protection against malaria in mice. Consequently, PfSPZ-GA1 Vaccine, a Pf identical double knockout (Pf∆b9∆slarp), was generated as a genetically attenuated malaria parasite vaccine and tested for safety, immunogenicity, and preliminary efficacy in malaria-naïve Dutch volunteers. Dose-escalation immunizations up to 9.0 × 105 PfSPZ of PfSPZ-GA1 Vaccine were well tolerated without breakthrough blood-stage infection. Subsequently, groups of volunteers were immunized three times by direct venous inoculation with cryopreserved PfSPZ-GA1 Vaccine (9.0 × 105 or 4.5 × 105 PfSPZ, N = 13 each), PfSPZ Vaccine (radiation-attenuated PfSPZ, 4.5 × 105 PfSPZ, N = 13), or normal saline placebo at 8-week intervals, followed by exposure to mosquito bite controlled human malaria infection (CHMI). After CHMI, 3 of 25 volunteers from both PfSPZ-GA1 groups were sterilely protected, and the remaining 17 of 22 showed a patency ≥9 days (median patency in controls, 7 days; range, 7 to 9). All volunteers in the PfSPZ Vaccine control group developed parasitemia (median patency, 9 days; range, 7 to 12). Immunized groups exhibited a significant, dose-related increase in anti-Pf circumsporozoite protein (CSP) antibodies and Pf-specific interferon-γ (IFN-γ)-producing T cells. Although no definite conclusion can be drawn on the potential strength of protective efficacy of PfSPZ-GA1 Vaccine, the favorable safety profile and induced immune responses by PfSPZ-GA1 Vaccine warrant further clinical evaluation.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Jona Walk
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Saskia C van der Boor
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marijke C C Langenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Mikhael Manurung
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - X Zen Yap
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Amanda Fabra García
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jan Pieter R Koopman
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Pauline Meij
- Interdivisional GMP Facility, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Karina Teelen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Geert Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - André J A M van der Ven
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Quirijn de Mast
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | | | | | | | | | | | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
23
|
Odedra A, McCarthy JS. Safety Considerations for Malaria Volunteer Infection Studies: A Mini-Review. Am J Trop Med Hyg 2020; 102:934-939. [PMID: 32189610 DOI: 10.4269/ajtmh.19-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria clinical studies entailing the experimental infection of healthy volunteers with Plasmodium parasites by bites from infected mosquitos, injection of cryopreserved sporozoites, or injection of blood-stage parasites provide valuable information for vaccine and drug development. Success of these studies depends on maintaining safety. In this mini-review, we discuss the safety risks and associated mitigation strategies of these three types of experimental malaria infection. We aimed to inform researchers and regulators who are currently involved in or are planning to establish experimental malaria infection studies in endemic or non-endemic settings.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Herston, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James S McCarthy
- The University of Queensland, St Lucia, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
24
|
Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, Patarroyo MA, Patarroyo ME. Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 2020; 19:56. [PMID: 32013956 PMCID: PMC6998842 DOI: 10.1186/s12936-020-3141-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide strategies between 2010 and 2017 aimed at controlling malarial parasites (mainly Plasmodium falciparum) led to a reduction of just 18% regarding disease incidence rates. Many biologically-derived anti-malarial vaccine candidates have been developed to date; this has involved using many experimental animals, an immense amount of work and the investment of millions of dollars. This review provides an overview of the current state and the main results of clinical trials for sporozoite-targeting vaccines (i.e. the parasite stage infecting the liver) carried out by research groups in areas having variable malaria transmission rates. However, none has led to promising results regarding the effective control of the disease, thereby making it necessary to complement such efforts at finding/introducing new vaccine candidates by adopting a multi-epitope, multi-stage approach, based on minimal subunits of the main sporozoite proteins involved in the invasion of the liver.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Cuy-Chaparro
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Anny Camargo
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Reyes
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia.,3D Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marcela Gómez
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - David Ricardo Salamanca
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Medical School, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
25
|
Goswami D, Minkah NK, Kappe SHI. Designer Parasites: Genetically Engineered Plasmodium as Vaccines To Prevent Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:20-28. [PMID: 30587570 DOI: 10.4049/jimmunol.1800727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
A highly efficacious malaria vaccine that prevents disease and breaks the cycle of infection remains an aspirational goal of medicine. Whole parasite vaccines based on the sporozoite forms of the parasite that target the clinically silent pre-erythrocytic stages of infection have emerged as one of the leading candidates. In animal models of malaria, these vaccines elicit potent neutralizing Ab responses against the sporozoite stage and cytotoxic T cells that eliminate parasite-infected hepatocytes. Among whole-sporozoite vaccines, immunization with live, replication-competent whole parasites engenders superior immunity and protection when compared with live replication-deficient sporozoites. As such, the genetic design of replication-competent vaccine strains holds the promise for a potent, broadly protective malaria vaccine. In this report, we will review the advances in whole-sporozoite vaccine development with a particular focus on genetically attenuated parasites both as malaria vaccine candidates and also as valuable tools to interrogate protective immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
26
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
27
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
28
|
O'Brochta DA, Alford R, Harrell R, Aluvihare C, Eappen AG, Li T, Chakravarty S, Sim BKL, Hoffman SL, Billingsley PF. Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum? Malar J 2019; 18:2. [PMID: 30602380 PMCID: PMC6317240 DOI: 10.1186/s12936-018-2634-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.
Collapse
Affiliation(s)
- David A O'Brochta
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.,Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Robert Alford
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Harrell
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Channa Aluvihare
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Abraham G Eappen
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Peter F Billingsley
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
29
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
30
|
Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria. Front Immunol 2018; 9:2748. [PMID: 30619241 PMCID: PMC6297750 DOI: 10.3389/fimmu.2018.02748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Each year malaria kills hundreds of thousands of people and infects hundreds of millions of people despite current control measures. An effective malaria vaccine will likely be necessary to aid in malaria eradication. Vaccination using whole sporozoites provides an increased repertoire of immunogens compared to subunit vaccines across at least two life cycle stages of the parasite, the extracellular sporozoite, and intracellular liver stage. Three potential whole sporozoite vaccine approaches are under development and include genetically attenuated parasites, radiation attenuated sporozoites, and wild-type sporozoites administered in combination with chemoprophylaxis. Pre-clinical and clinical studies have demonstrated whole sporozoite vaccine immunogenicity, including humoral and cellular immunity and a range of vaccine efficacy that depends on the pre-exposure of vaccinated individuals. While whole sporozoite vaccines can provide protection against malaria in some cases, more recent studies in malaria-endemic regions demonstrate the need for improvements. Moreover, challenges remain in manufacturing large quantities of sporozoites for vaccine commercialization. A promising solution to the whole sporozoite manufacturing challenge is in vitro culturing methodology, which has been described for several Plasmodium species, including the major disease-causing human malaria parasite, Plasmodium falciparum. Here, we review whole sporozoite vaccine immunogenicity and in vitro culturing platforms for sporozoite production.
Collapse
Affiliation(s)
| | | | - Julie Do
- MalarVx, Inc., Seattle, WA, United States
| | | | - Ashley M Vaughan
- Seattle Children's Research Institute, Seattle, WA, United States
| | | |
Collapse
|
31
|
Pre-clinical evaluation of a P. berghei-based whole-sporozoite malaria vaccine candidate. NPJ Vaccines 2018; 3:54. [PMID: 30510775 PMCID: PMC6258718 DOI: 10.1038/s41541-018-0091-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/17/2018] [Indexed: 11/11/2022] Open
Abstract
Whole-sporozoite vaccination/immunization induces high levels of protective immunity in both rodent models of malaria and in humans. Recently, we generated a transgenic line of the rodent malaria parasite P. berghei (Pb) that expresses the P. falciparum (Pf) circumsporozoite protein (PfCS), and showed that this parasite line (PbVac) was capable of (1) infecting and developing in human hepatocytes but not in human erythrocytes, and (2) inducing neutralizing antibodies against the human Pf parasite. Here, we analyzed PbVac in detail and developed tools necessary for its use in clinical studies. A microbiological contaminant-free Master Cell Bank of PbVac parasites was generated through a process of cyclic propagation and clonal expansion in mice and mosquitoes and was genetically characterized. A highly sensitive qRT-PCR-based method was established that enables PbVac parasite detection and quantification at low parasite densities in vivo. This method was employed in a biodistribution study in a rabbit model, revealing that the parasite is only present at the site of administration and in the liver up to 48 h post infection and is no longer detectable at any site 10 days after administration. An extensive toxicology investigation carried out in rabbits further showed the absence of PbVac-related toxicity. In vivo drug sensitivity assays employing rodent models of infection showed that both the liver and the blood stage forms of PbVac were completely eliminated by Malarone® treatment. Collectively, our pre-clinical safety assessment demonstrates that PbVac possesses all characteristics necessary to advance into clinical evaluation. PbVac is a transgenic malaria parasite expressing circumsporozoite antigen from the human parasite Plasmodium falciparum. PbVac elicits neutralizing P. falciparum antibodies and can infect human hepatocytes but not erythrocytes, suggesting that humans would be non-permissive. Miguel Prudêncio and colleagues at the Institute of Molecular Medicine in Lisbon perform a detailed in vivo analysis and toxicology of PbVac. Extensive biodistribution analysis using a highly sensitive qPCR in non-permissive rabbit hosts shows PbVac are present at the initial bite site early on with later appearance in the liver, but by day 10 is undetectable. Importantly no PbVac could be detected in the blood at any time-point. PbVac was well tolerated with no apparent pathological signatures. In permissive mouse hosts PbVac could be effectively eliminated from both the blood and liver and could thereby act as a potential clinical ‘safety net’ in the event of an erythrocytic stage or persistence in the liver.
Collapse
|
32
|
Mendes AM, Machado M, Gonçalves-Rosa N, Reuling IJ, Foquet L, Marques C, Salman AM, Yang ASP, Moser KA, Dwivedi A, Hermsen CC, Jiménez-Díaz B, Viera S, Santos JM, Albuquerque I, Bhatia SN, Bial J, Angulo-Barturen I, Silva JC, Leroux-Roels G, Janse CJ, Khan SM, Mota MM, Sauerwein RW, Prudêncio M. A Plasmodium berghei sporozoite-based vaccination platform against human malaria. NPJ Vaccines 2018; 3:33. [PMID: 30155278 PMCID: PMC6109154 DOI: 10.1038/s41541-018-0068-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development. A genetically engineered parasite, related to malaria-causing Plasmodium falciparum, excels as a vaccine in preclinical tests. A team led by Miguel Prudêncio, of the University of Lisbon, Portugal, developed a genetically altered vaccine candidate based on Plasmodium berghei, which is pathogenic to rodents but, in humans, fails to progress from a harmless, transient liver infection to causing full, blood-borne malaria. The candidate expresses a human form of ‘circumsporozoite protein,’ a known antigen, and is designed to provoke a more comprehensive immune response as it presents a whole pathogen to the host. In preclinical tests, the candidate generated antibodies able to neutralize infection in human hepatocytes and also provoked a cellular immune response in rabbits. The team’s candidate proved safe and efficacious, warranting further trials and clinical testing.
Collapse
Affiliation(s)
- António M Mendes
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta Machado
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nataniel Gonçalves-Rosa
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Isaie J Reuling
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Lander Foquet
- 3Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Departments of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Cláudia Marques
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ahmed M Salman
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.,6The Jenner Institute, Nuffield Department of Medicine, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Annie S P Yang
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Kara A Moser
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Ankit Dwivedi
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Cornelus C Hermsen
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Belén Jiménez-Díaz
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Sara Viera
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Jorge M Santos
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,12Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, 02115 Boston, MA USA
| | - Inês Albuquerque
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sangeeta N Bhatia
- 9Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - John Bial
- 10Yecuris Corporation, PO Box 4645, Tualatin, OR 97062 USA
| | - Iñigo Angulo-Barturen
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Joana C Silva
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,11Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Geert Leroux-Roels
- 3Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Chris J Janse
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Shahid M Khan
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria M Mota
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Robert W Sauerwein
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Miguel Prudêncio
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
33
|
Othman AS, Franke-Fayard BM, Imai T, van der Gracht ETI, Redeker A, Salman AM, Marin-Mogollon C, Ramesar J, Chevalley-Maurel S, Janse CJ, Arens R, Khan SM. OX40 Stimulation Enhances Protective Immune Responses Induced After Vaccination With Attenuated Malaria Parasites. Front Cell Infect Microbiol 2018; 8:247. [PMID: 30073152 PMCID: PMC6060232 DOI: 10.3389/fcimb.2018.00247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/28/2018] [Indexed: 01/15/2023] Open
Abstract
Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.
Collapse
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Takashi Imai
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Esmé T I van der Gracht
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M Salman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands.,The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Immunization efficacy of cryopreserved genetically attenuated Plasmodium berghei sporozoites. Parasitol Res 2018; 117:2487-2497. [PMID: 29797085 DOI: 10.1007/s00436-018-5937-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Malaria is transmitted through the injection of Plasmodium sporozoites into the skin by Anopheles mosquitoes. The parasites first replicate within the liver before infecting red blood cells, which leads to the symptoms of the disease. Experimental immunization with attenuated sporozoites that arrest their development in the liver has been extensively investigated in rodent models and humans. Recent technological advances have included the capacity to cryopreserve sporozoites for injection, which has enabled a series of controlled studies on human infection with sporozoites. Here, we used a cryopreservation protocol to test the efficiency of genetically attenuated cryopreserved sporozoites for immunization of mice in comparison with freshly isolated controls. This showed that cryopreserved sporozoites are highly viable as judged by their capacity to migrate in vitro but show only 20% efficiency in liver infection, which impacts their capacity to generate protection of animals in immunization experiments.
Collapse
|
35
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
36
|
Itsara LS, Zhou Y, Do J, Dungel S, Fishbaugher ME, Betz WW, Nguyen T, Navarro MJ, Flannery EL, Vaughan AM, Kappe SHI, Ghosh AK. PfCap380 as a marker for Plasmodium falciparum oocyst development in vivo and in vitro. Malar J 2018; 17:135. [PMID: 29609625 PMCID: PMC5880026 DOI: 10.1186/s12936-018-2277-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 11/12/2022] Open
Abstract
Background Despite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380). The goal of this work was to study the growth of P. falciparum oocysts using PfCap380 as a developmental marker. Methods To study P. falciparum oocyst development using both in vivo (mosquito-derived) and in vitro (culture-derived) growth conditions, antibodies (polyclonal antisera) were raised against PfCap380. For studies on in vivo oocysts, mature P. falciparum gametocytes were fed to Anopheles stephensi mosquitoes. For studies on in vitro parasites, P. falciparum gametocytes were induced and matured for subsequent ookinete production. Ookinetes were purified and then tested for binding affinity to basal lamina components and transformation into early oocysts, which were grown on reconstituted basal lamia coated wells with novel oocyst media. To monitor in vivo oocyst development, immunofluorescence assays (IFA) were performed using anti-PfCap380 antisera on Pf-infected mosquito midguts. IFA were also performed on culture-derived oocysts to follow in vitro oocyst development. Results The anti-PfCap380 antisera allowed detection of early midgut oocysts starting at 2 days after gametocyte infection, while circumsporozoite protein was definitively observed on day 6. For in vitro culture, significant transformation of gametocytes to ookinetes (24%) and of ookinetes to early oocysts (85%) was observed. After screening several basal lamina components, collagen IV provided greatest binding of ookinetes and transformation into early oocysts. Finally, PfCap380 expression was observed on the surface of culture-derived oocysts but not on gametocytes or ookinetes. Conclusions This study presents developmental monitoring of P. falciparum oocysts produced in vivo and in vitro. The anti-PfCap380 antisera serves as an important reagent for developmental studies of oocysts from the mosquito midgut and also from oocyst culture using in vitro methodology. The present data demonstrate that PfCap380 is a useful marker to follow the development and maturation of in vivo and in vitro produced oocysts as early as 2 days after zygote formation. Further in vitro studies focused on oocyst and sporozoite maturation will support the manufacturing of whole sporozoites for malaria vaccines. Electronic supplementary material The online version of this article (10.1186/s12936-018-2277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie S Itsara
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Yaxian Zhou
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Julie Do
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Samrita Dungel
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Matthew E Fishbaugher
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Will W Betz
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Thao Nguyen
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Mary Jane Navarro
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Erika L Flannery
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Ashley M Vaughan
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Anil K Ghosh
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA. .,Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA.
| |
Collapse
|
37
|
Affiliation(s)
| | - Stefan H I Kappe
- a Center for Infectious Disease Research , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| |
Collapse
|
38
|
Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025486. [PMID: 28242785 DOI: 10.1101/cshperspect.a025486] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109.,Department of Global Health, University of Washington, Seattle, Washington 98195
| |
Collapse
|
39
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
40
|
Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM. The use of transgenic parasites in malaria vaccine research. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1333426] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Blandine M. Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
41
|
Acharya P, Garg M, Kumar P, Munjal A, Raja KD. Host-Parasite Interactions in Human Malaria: Clinical Implications of Basic Research. Front Microbiol 2017; 8:889. [PMID: 28572796 PMCID: PMC5435807 DOI: 10.3389/fmicb.2017.00889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The malaria parasite, Plasmodium, is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host–parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment. Hence understanding the environmental niche of the parasite is crucial in developing strategies to combat this deadly infectious disease. It has been increasingly recognized that interactions between parasite proteins and host factors are essential to establishing infection and virulence at every stage of the parasite life cycle. This review reassesses all of these interactions and discusses their clinical importance in designing therapeutic approaches such as design of novel vaccines. The interactions have been followed from the initial stages of introduction of the parasite under the human dermis until asexual and sexual blood stages which are essential for transmission of malaria. We further classify the interactions as “direct” or “indirect” depending upon their demonstrated ability to mediate direct physical interactions of the parasite with host factors or their indirect manipulation of the host immune system since both forms of interactions are known to have a crucial role during infections. We also discuss the many ways in which this understanding has been taken to the field and the success of these strategies in controlling human malaria.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Manika Garg
- Department of Biochemistry, Jamia Hamdard UniversityNew Delhi, India
| | - Praveen Kumar
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Akshay Munjal
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - K D Raja
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
42
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
43
|
Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends Parasitol 2016; 33:202-213. [PMID: 27793562 DOI: 10.1016/j.pt.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Abstract
INTRODUCTION Despite recent advances, malaria remains a major health threat both to populations in endemic areas as well travelers, including military personnel, to these areas. Subunit vaccines have not yet achieved sufficient efficacy needed for use in any of these at risk populations. Areas covered: This review discusses the current status of various whole sporozoite vaccine approaches and is mainly focused on current clinical trials. Expert commentary: Nearly 100% efficacy was achieved by administering multiple bites of radiation-attenuated sporozoite (RAS) Plasmodium falciparum-infected mosquitoes; this is impractical for widespread use. Now, this high level efficacy has been reproduced using purified, metabolically active RAS (PfSPZ Sanaria® Vaccine), which is undergoing extensive clinical testing. Alternative whole sporozoite vaccines include immunization with fully infectious sporozoites under chloroquine prophylaxis (CPS) or as genetically-attenuated parasites (GAP). By also manufacturing purified infectious sporozoites, it is now possible to combine these with CPS and GAP, as well as perform challenge studies using controlled doses of sporozoites.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
45
|
van der Velden M, Rijpma SR, Verweij V, van Gemert GJ, Chevalley-Maurel S, van de Vegte-Bolmer M, Franke-Fayard BM, Russel FGM, Janse CJ, Sauerwein RW, Koenderink JB. Protective Efficacy Induced by Genetically Attenuated Mid-to-Late Liver-Stage Arresting Plasmodium berghei Δmrp2 Parasites. Am J Trop Med Hyg 2016; 95:378-82. [PMID: 27296385 DOI: 10.4269/ajtmh.16-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Whole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites. Low-dose immunization using 400 PbΔmrp2 sporozoites induced 100% sterile protection in BALB/c mice after IV challenge with 10,000 wild-type sporozoites. In addition, almost full protection (90%) was obtained after three immunizations with 10,000 sporozoites in C57BL/6J mice. Parasite liver loads in nonprotected PbΔmrp2-challenged C57BL/6J mice were reduced by 86% ± 5% on average compared with naive control mice. The mid-to-late arresting PbΔmrp2 GAP was equipotent in induction of protective immunity to the early arresting PbΔb9Δslarp GAP. The combined data support a clear basis for further exploration of Plasmodium falciparum parasites lacking mrp2 as a suitable GAP vaccine candidate.
Collapse
Affiliation(s)
- Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Protective efficacy and safety of liver stage attenuated malaria parasites. Sci Rep 2016; 6:26824. [PMID: 27241521 PMCID: PMC4886212 DOI: 10.1038/srep26824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.
Collapse
|
47
|
Zhang M, Kaneko I, Tsao T, Mitchell R, Nardin EH, Iwanaga S, Yuda M, Tsuji M. A highly infectious Plasmodium yoelii parasite, bearing Plasmodium falciparum circumsporozoite protein. Malar J 2016; 15:201. [PMID: 27068454 PMCID: PMC4828769 DOI: 10.1186/s12936-016-1248-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium circumsporozoite protein (CSP) is a major surface antigen present in the sporozoite (Spz) stage of a malaria parasite. RTS, S vaccine, the most clinically advanced malaria vaccine, consists of a large portion of Plasmodium falciparum CSP (PfCSP). A highly infectious, recombinant rodent malaria, Plasmodium yoelii parasite bearing a full-length PfCSP, PfCSP/Py Spz, was needed as a tool to evaluate the role of PfCSP in mediating, protective, anti-malaria immunity in a mouse model. Methods A transgenic parasite, PfCSP/Py Spz, was generated by inserting a construct expressing the PfCSP at the locus of the P. yoelii CSP gene by double cross-over homologous recombination. Then the biological and protective properties of PfCSP/Py Spz were determined. Results This PfCSP/Py parasite produced up to 30,000 Spz in mosquito salivary glands, which is equal or even higher than the number of Spz produced by wild-type P. yoelii parasites. Five bites of PfCSP/Py-infected mosquitoes could induce blood infection in BALB/c mice. Conclusions The current study has demonstrated a successful establishment of a transgenic P. yoelii parasite clone that is able to express a full-length PfCSP, PfCSP/Py parasite. Importantly, this PfCSP/Py parasite can be as infectious as the wild-type P. yoelii parasite both in mosquito vector and in mouse, a mammalian host. A new transgenic parasite that expresses a full-length PfCSP may become a useful tool for researchers to investigate immunity against PfCSP in a mouse model.
Collapse
Affiliation(s)
- Min Zhang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA.,Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tiffany Tsao
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | - Robert Mitchell
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Elizabeth H Nardin
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Shiroh Iwanaga
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA.
| |
Collapse
|
48
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, Lyke KE, Mordmüller B, Alonso P, Duffy PE, Doumbo OK, Sauerwein RW, Tanner M, Abdulla S, Kremsner PG, Seder RA, Hoffman SL. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine 2015; 33:7452-61. [PMID: 26469720 PMCID: PMC5077156 DOI: 10.1016/j.vaccine.2015.09.096] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/04/2022]
Abstract
Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015-2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kirsten E Lyke
- Center for Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Pedro Alonso
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | | | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | | |
Collapse
|
50
|
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
|