1
|
Lin H, Qu L, Wei H, Guo M, Chen X, Lin Q, Zhang H, Dai S, Chen Y. Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer. Commun Biol 2025; 8:134. [PMID: 39875456 PMCID: PMC11775172 DOI: 10.1038/s42003-025-07490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma. In this study, we investigate the antitumor activity of bozitinib against MET-amplified gastric cancer and elucidate its molecular mechanism. Bozitinib demonstrates a strong effect on MET-amplified gastric cancer cells by blocking the c-Met signaling pathway, leading to the inhibition of cell proliferation and survival, as well as the induction of G0/G1 phase arrest and apoptosis. Structurally, bozitinib is optimally embedded in the ATP pocket of c-Met and firmly binds via an extensive interaction network. In addition, bozitinib efficiently inhibits c-Met resistance-conferring mutations G1163R and Y1230H, although its potency is significantly decreased against the D1228N and Y1230C mutations. Overall, our study reveals the molecular mechanism of bozitinib against c-Met, highlights its ability to overcome acquired resistance mutations, and provides valuable insights into further design and improvement of selective c-Met inhibitors.
Collapse
Affiliation(s)
- Hang Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyan Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Furia F, Levy AM, Theunis M, Bamshad MJ, Bartos MN, Bijlsma EK, Brancati F, Cejudo L, Chong JX, De Luca C, Dean SJ, Egense A, Goel H, Guenzel AJ, Hüffmeier U, Legius E, Mancini GMS, Marcos-Alcalde I, Niclass T, Planes M, Redon S, Ros-Pardo D, Rouault K, Schot R, Schuhmann S, Shen JJ, Tao AM, Thiffault I, Van Esch H, Wentzensen IM, Barakat TS, Møller RS, Gomez-Puertas P, Chung WK, Gardella E, Tümer Z. The phenotypic and genotypic spectrum of individuals with mono- or biallelic ANK3 variants. Clin Genet 2024; 106:574-584. [PMID: 38988293 PMCID: PMC11444875 DOI: 10.1111/cge.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.
Collapse
Affiliation(s)
- Francesca Furia
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
- Faculty of Health Science, University of Southern Denmark (SDU), Odense, Denmark
| | - Amanda M Levy
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Miel Theunis
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Meghan N Bartos
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Francesco Brancati
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Human Functional Genetics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Roma, Rome, Italy
| | - Lucile Cejudo
- CHU de Poitiers, Service de Génétique, Poitiers, France
| | - Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara De Luca
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sarah Joy Dean
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alena Egense
- Division of Genomic Medicine, Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Himanshu Goel
- General Genetics Service, Hunter Genetics, Waratah, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Eric Legius
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Iñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | | | - Marc Planes
- Service de Génétique Clinique, CHRU de Brest, Brest, France
| | - Sylvia Redon
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Université de Brest, INSERM, Etablissement Français du Sang, UMR 1078, Brest, France
| | - David Ros-Pardo
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Karen Rouault
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Université de Brest, INSERM, Etablissement Français du Sang, UMR 1078, Brest, France
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sarah Schuhmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alice M Tao
- Vagelos School of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Isabelle Thiffault
- Department of Pathology, Children's Mercy Kansas City, Kansas City, Missouri, USA
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for the Genetics of Cognition, KU Leuven, Leuven, Belgium
| | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
- Faculty of Health Science, University of Southern Denmark (SDU), Odense, Denmark
| | - Paulino Gomez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
- Faculty of Health Science, University of Southern Denmark (SDU), Odense, Denmark
- Department of Neurophysiology, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Escobedo Jr. G, Wu Y, Ogawa Y, Ding X, Rasband MN. An evolutionarily conserved AnkyrinG-dependent motif clusters axonal K2P K+ channels. J Cell Biol 2024; 223:e202401140. [PMID: 39078369 PMCID: PMC11289519 DOI: 10.1083/jcb.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
The evolution of ion channel clustering at nodes of Ranvier enabled the development of complex vertebrate nervous systems. At mammalian nodes, the K+ leak channels TRAAK and TREK-1 underlie membrane repolarization. Despite the molecular similarities between nodes and the axon initial segment (AIS), TRAAK and TREK-1 are reportedly node-specific, suggesting a unique clustering mechanism. However, we show that TRAAK and TREK-1 are enriched at both nodes and AIS through a common mechanism. We identified a motif near the C-terminus of TRAAK that is necessary and sufficient for its clustering. The motif first evolved among cartilaginous fish. Using AnkyrinG (AnkG) conditional knockout mice, CRISPR/Cas9-mediated disruption of AnkG, co-immunoprecipitation, and surface recruitment assays, we show that TRAAK forms a complex with AnkG and that AnkG is necessary for TRAAK's AIS and nodal clustering. In contrast, TREK-1's clustering requires TRAAK. Our results expand the repertoire of AIS and nodal ion channel clustering mechanisms and emphasize AnkG's central role in assembling excitable domains.
Collapse
Affiliation(s)
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
5
|
Luque-Fernández V, Vanspauwen SK, Landra-Willm A, Arvedsen E, Besquent M, Sandoz G, Rasmussen HB. An ankyrin G-binding motif mediates TRAAK periodic localization at axon initial segments of hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 2024; 121:e2310120121. [PMID: 39058579 PMCID: PMC11295008 DOI: 10.1073/pnas.2310120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.
Collapse
Affiliation(s)
- Virginia Luque-Fernández
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Sam K. Vanspauwen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Arnaud Landra-Willm
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Emil Arvedsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Maïlys Besquent
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Guillaume Sandoz
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Hanne B. Rasmussen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| |
Collapse
|
6
|
Wang Y, Jin P, Kumar A, Jan L, Cheng Y, Jan YN, Zhang Y. Nonlinear compliance of NompC gating spring and its implication in mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599842. [PMID: 38979198 PMCID: PMC11230213 DOI: 10.1101/2024.06.20.599842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lily Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Nelson AD, Catalfio AM, Gupta JP, Min L, Caballero-Florán RN, Dean KP, Elvira CC, Derderian KD, Kyoung H, Sahagun A, Sanders SJ, Bender KJ, Jenkins PM. Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites. Neuron 2024; 112:1133-1149.e6. [PMID: 38290518 PMCID: PMC11097922 DOI: 10.1016/j.neuron.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
Collapse
Affiliation(s)
- Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kendall P Dean
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carina C Elvira
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly D Derderian
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Kong C, Qu X, Liu M, Xu W, Chen D, Zhang Y, Zhang S, Zhu F, Liu Z, Li J, Huang C, Wang C. Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance. Nat Commun 2023; 14:6860. [PMID: 37891324 PMCID: PMC10611751 DOI: 10.1038/s41467-023-42628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and β-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.
Collapse
Affiliation(s)
- Chao Kong
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiaozhan Qu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Da Chen
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yanshen Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenbang Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chengdong Huang
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
10
|
Lindsay PL, Ivanov S, Pumplin N, Zhang X, Harrison MJ. Distinct ankyrin repeat subdomains control VAPYRIN locations and intracellular accommodation functions during arbuscular mycorrhizal symbiosis. Nat Commun 2022; 13:5228. [PMID: 36064777 PMCID: PMC9445082 DOI: 10.1038/s41467-022-32124-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Over 70% of vascular flowering plants engage in endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. VAPYRIN (VPY) is a plant protein that is required for intracellular accommodation of AM fungi but how it functions is still unclear. VPY has a large ankyrin repeat domain with potential for interactions with multiple proteins. Here we show that overexpression of the ankyrin repeat domain results in a vpy-like phenotype, consistent with the sequestration of interacting proteins. We identify distinct ankyrin repeats that are essential for intracellular accommodation of arbuscules and reveal that VPY functions in both the cytoplasm and nucleus. VPY interacts with two kinases, including DOES NOT MAKE INFECTIONS3 (DMI3), a nuclear-localized symbiosis signaling kinase. Overexpression of VPY in a symbiosis-attenuated genetic background results in a dmi3 -like phenotype suggesting that VPY negatively influences DMI3 function. Overall, the data indicate a requirement for VPY in the nucleus and cytoplasm where it may coordinate signaling and cellular accommodation processes.
Collapse
Affiliation(s)
- Penelope L Lindsay
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
- PLL: Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA
| | - Nathan Pumplin
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xinchun Zhang
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Sae-Lee W, McCafferty CL, Verbeke EJ, Havugimana PC, Papoulas O, McWhite CD, Houser JR, Vanuytsel K, Murphy GJ, Drew K, Emili A, Taylor DW, Marcotte EM. The protein organization of a red blood cell. Cell Rep 2022; 40:111103. [PMID: 35858567 PMCID: PMC9764456 DOI: 10.1016/j.celrep.2022.111103] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.
Collapse
Affiliation(s)
- Wisath Sae-Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Eric J Verbeke
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - John R Houser
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
12
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
13
|
Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, Clarke OB. Architecture of the human erythrocyte ankyrin-1 complex. Nat Struct Mol Biol 2022; 29:706-718. [PMID: 35835865 PMCID: PMC10373098 DOI: 10.1038/s41594-022-00792-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Kookjoo Kim
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center (PNC), University of Padua, Padua, Italy.,Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Structure, dynamics and assembly of the ankyrin complex on human red blood cell membrane. Nat Struct Mol Biol 2022; 29:698-705. [PMID: 35655099 DOI: 10.1038/s41594-022-00779-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
The cytoskeleton of a red blood cell (RBC) is anchored to the cell membrane by the ankyrin complex. This complex is assembled during RBC genesis and comprises primarily band 3, protein 4.2 and ankyrin, whose mutations contribute to numerous human inherited diseases. High-resolution structures of the ankyrin complex have been long sought-after to understand its assembly and disease-causing mutations. Here, we analyzed native complexes on the human RBC membrane by stepwise fractionation. Cryo-electron microscopy structures of nine band-3-associated complexes reveal that protein 4.2 stabilizes the cytoplasmic domain of band 3 dimer. In turn, the superhelix-shaped ankyrin binds to this protein 4.2 via ankyrin repeats (ARs) 6-13 and to another band 3 dimer via ARs 17-20, bridging two band 3 dimers in the ankyrin complex. Integration of these structures with both prior data and our biochemical data supports a model of ankyrin complex assembly during erythropoiesis and identifies interactions essential for the mechanical stability of RBC.
Collapse
|
15
|
Nelson DR, Hazzouri KM, Lauersen KJ, Jaiswal A, Chaiboonchoe A, Mystikou A, Fu W, Daakour S, Dohai B, Alzahmi A, Nobles D, Hurd M, Sexton J, Preston MJ, Blanchette J, Lomas MW, Amiri KMA, Salehi-Ashtiani K. Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe 2021; 29:250-266.e8. [PMID: 33434515 DOI: 10.1016/j.chom.2020.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e-4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.
Collapse
Affiliation(s)
- David R Nelson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Khaled M Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Al Ain, Abu Dhabi, UAE; Biology Department, College of Science, UAE University, Al Ain, Abu Dhabi, UAE
| | - Kyle J Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Alexandra Mystikou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Bushra Dohai
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Amnah Alzahmi
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - David Nobles
- UTEX Culture Collection of Algae at the University of Texas at Austin, Austin, TX, USA
| | - Mark Hurd
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Julie Sexton
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Michael J Preston
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Joan Blanchette
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, East Boothbay, ME, USA
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Al Ain, Abu Dhabi, UAE; Biology Department, College of Science, UAE University, Al Ain, Abu Dhabi, UAE
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
16
|
Utgés JS, Tsenkov MI, Dietrich NJM, MacGowan SA, Barton GJ. Ankyrin repeats in context with human population variation. PLoS Comput Biol 2021; 17:e1009335. [PMID: 34428215 PMCID: PMC8415598 DOI: 10.1371/journal.pcbi.1009335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ankyrin protein repeats bind to a wide range of substrates and are one of the most common protein motifs in nature. Here, we collate a high-quality alignment of 7,407 ankyrin repeats and examine for the first time, the distribution of human population variants from large-scale sequencing of healthy individuals across this family. Population variants are not randomly distributed across the genome but are constrained by gene essentiality and function. Accordingly, we interpret the population variants in context with evolutionary constraint and structural features including secondary structure, accessibility and protein-protein interactions across 383 three-dimensional structures of ankyrin repeats. We find five positions that are highly conserved across homologues and also depleted in missense variants within the human population. These positions are significantly enriched in intra-domain contacts and so likely to be key for repeat packing. In contrast, a group of evolutionarily divergent positions are found to be depleted in missense variants in human and significantly enriched in protein-protein interactions. Our analysis also suggests the domain has three, not two surfaces, each with different patterns of enrichment in protein-substrate interactions and missense variants. Our findings will be of interest to those studying or engineering ankyrin-repeat containing proteins as well as those interpreting the significance of disease variants.
Collapse
Affiliation(s)
- Javier S. Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maxim I. Tsenkov
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Noah J. M. Dietrich
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Stuart A. MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
17
|
Quistgaard EM, Nissen JD, Hansen S, Nissen P. Mind the Gap: Molecular Architecture of the Axon Initial Segment - From Fold Prediction to a Mechanistic Model of Function? J Mol Biol 2021; 433:167176. [PMID: 34303720 DOI: 10.1016/j.jmb.2021.167176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is a distinct neuronal domain, which is responsible for initiating action potentials, and therefore of key importance to neuronal signaling. To determine how it functions, it is necessary to establish which proteins reside there, how they are organized, and what the dynamic features are. Great strides have been made in recent years, and it is now clear that several AIS cytoskeletal and membrane proteins interact to form a higher-order periodic structure. Here we briefly describe AIS function, protein composition and molecular architecture, and discuss perspectives for future structural characterization, and if structure predictions will be able to model complex higher-order assemblies.
Collapse
Affiliation(s)
- Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Josephine Dannersø Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Sean Hansen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Abstract
Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels.
Collapse
Affiliation(s)
- Wang Zheng
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
19
|
Castro-Salguedo C, Mendez-Cuadro D, Moneriz C. Erythrocyte membrane proteins involved in the immune response to Plasmodium falciparum and Plasmodium vivax infection. Parasitol Res 2021; 120:1789-1797. [PMID: 33797613 DOI: 10.1007/s00436-021-07135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/21/2021] [Indexed: 11/29/2022]
Abstract
Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.
Collapse
Affiliation(s)
- Cristian Castro-Salguedo
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.,Grupo de Investigaciones Biomédicas-GIB, Universidad de San Buenaventura, Cartagena, 130010, Colombia
| | - Darío Mendez-Cuadro
- Analytical Chemistry and Biomedicine Group, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, 130015, Colombia
| | - Carlos Moneriz
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
20
|
Chen X, Liao S, Makaros Y, Guo Q, Zhu Z, Krizelman R, Dahan K, Tu X, Yao X, Koren I, Xu C. Molecular basis for arginine C-terminal degron recognition by Cul2 FEM1 E3 ligase. Nat Chem Biol 2021; 17:254-262. [PMID: 33398168 DOI: 10.1038/s41589-020-00704-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
Degrons are elements within protein substrates that mediate the interaction with specific degradation machineries to control proteolysis. Recently, a few classes of C-terminal degrons (C-degrons) that are recognized by dedicated cullin-RING ligases (CRLs) have been identified. Specifically, CRL2 using the related substrate adapters FEM1A/B/C was found to recognize C degrons ending with arginine (Arg/C-degron). Here, we uncover the molecular mechanism of Arg/C-degron recognition by solving a subset of structures of FEM1 proteins in complex with Arg/C-degron-bearing substrates. Our structural research, complemented by binding assays and global protein stability (GPS) analyses, demonstrates that FEM1A/C and FEM1B selectively target distinct classes of Arg/C-degrons. Overall, our study not only sheds light on the molecular mechanism underlying Arg/C-degron recognition for precise control of substrate turnover, but also provides valuable information for development of chemical probes for selectively regulating proteostasis.
Collapse
Affiliation(s)
- Xinyan Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shanhui Liao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Qiong Guo
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Rina Krizelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiaoming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
21
|
|
22
|
Galpern EA, Freiberger MI, Ferreiro DU. Large Ankyrin repeat proteins are formed with similar and energetically favorable units. PLoS One 2020; 15:e0233865. [PMID: 32579546 PMCID: PMC7314423 DOI: 10.1371/journal.pone.0233865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ankyrin containing proteins are one of the most abundant repeat protein families present in all extant organisms. They are made with tandem copies of similar amino acid stretches that fold into elongated architectures. Here, we built and curated a dataset of 200 thousand proteins that contain 1.2 million Ankyrin regions and characterize the abundance, structure and energetics of the repetitive regions in natural proteins. We found that there is a continuous roughly exponential variety of array lengths with an exceptional frequency at 24 repeats. We described that individual repeats are seldom interrupted with long insertions and accept few deletions, in line with the known tertiary structures. We found that longer arrays are made up of repeats that are more similar to each other than shorter arrays, and display more favourable folding energy, hinting at their evolutionary origin. The array distributions show that there is a physical upper limit to the size of an array of repeats of about 120 copies, consistent with the limit found in nature. The identity patterns within the arrays suggest that they may have originated by sequential copies of more than one Ankyrin unit.
Collapse
Affiliation(s)
- Ezequiel A. Galpern
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María I. Freiberger
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
23
|
Li J, Chen K, Zhu R, Zhang M. Structural Basis Underlying Strong Interactions between Ankyrins and Spectrins. J Mol Biol 2020; 432:3838-3850. [DOI: 10.1016/j.jmb.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
|
24
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
25
|
Díaz-Casado E, Gómez-Nieto R, de Pereda JM, Muñoz LJ, Jara-Acevedo M, López DE. Analysis of gene variants in the GASH/Sal model of epilepsy. PLoS One 2020; 15:e0229953. [PMID: 32168507 PMCID: PMC7069730 DOI: 10.1371/journal.pone.0229953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate- and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by “in silico” reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arhgef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that encode proteins with functions related to neuronal excitability, which could be implied in the phenotype of the GASH/Sal. Our findings provide valuable genetic and biological pathway data associated to the genetic burden of the audiogenic seizure susceptibility and reinforce the need to validate the role of each key mutation in the phenotype of the GASH/Sal model.
Collapse
Affiliation(s)
- Elena Díaz-Casado
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
| | - José M. de Pereda
- Institute of Molecular and Cellular Biology of Cancer, CSIC.—University of Salamanca, Salamanca, Spain
| | - Luis J. Muñoz
- Animal facilities, University of Salamanca, Salamanca, Spain
| | | | - Dolores E. López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
26
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Mechanistic insights into the interactions of dynein regulator Ndel1 with neuronal ankyrins and implications in polarity maintenance. Proc Natl Acad Sci U S A 2019; 117:1207-1215. [PMID: 31889000 DOI: 10.1073/pnas.1916987117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ankyrin-G (AnkG), a highly enriched scaffold protein in the axon initial segment (AIS) of neurons, functions to maintain axonal polarity and the integrity of the AIS. At the AIS, AnkG regulates selective intracellular cargo trafficking between soma and axons via interaction with the dynein regulator protein Ndel1, but the molecular mechanism underlying this binding remains elusive. Here we report that Ndel1's C-terminal coiled-coil region (CT-CC) binds to giant neuron-specific insertion regions present in both AnkG and AnkB with 2:1 stoichiometry. The high-resolution crystal structure of AnkB in complex with Ndel1 CT-CC revealed the detailed molecular basis governing the AnkB/Ndel1 complex formation. Mechanistically, AnkB binds with Ndel1 by forming a stable 5-helix bundle dominated by hydrophobic interactions spread across 6 distinct interaction layers. Moreover, we found that AnkG is essential for Ndel1 accumulation at the AIS. Finally, we found that cargo sorting at the AIS can be disrupted by blocking the AnkG/Ndel1 complex formation using a peptide designed based on our structural data. Collectively, the atomic structure of the AnkB/Ndel1 complex together with studies of cargo sorting through the AIS establish the mechanistic basis for AnkG/Ndel1 complex formation and for the maintenance of axonal polarity. Our study will also be valuable for future studies of the interaction between AnkB and Ndel1 perhaps at distal axonal cargo transport.
Collapse
|
28
|
Weber T, Stephan R, Moreno E, Pielage J. The Ankyrin Repeat Domain Controls Presynaptic Localization of Drosophila Ankyrin2 and Is Essential for Synaptic Stability. Front Cell Dev Biol 2019; 7:148. [PMID: 31475145 PMCID: PMC6703079 DOI: 10.3389/fcell.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
The structural integrity of synaptic connections critically depends on the interaction between synaptic cell adhesion molecules (CAMs) and the underlying actin and microtubule cytoskeleton. This interaction is mediated by giant Ankyrins, that act as specialized adaptors to establish and maintain axonal and synaptic compartments. In Drosophila, two giant isoforms of Ankyrin2 (Ank2) control synapse stability and organization at the larval neuromuscular junction (NMJ). Both Ank2-L and Ank2-XL are highly abundant in motoneuron axons and within the presynaptic terminal, where they control synaptic CAMs distribution and organization of microtubules. Here, we address the role of the conserved N-terminal ankyrin repeat domain (ARD) for subcellular localization and function of these giant Ankyrins in vivo. We used a P[acman] based rescue approach to generate deletions of ARD subdomains, that contain putative binding sites of interacting transmembrane proteins. We show that specific subdomains control synaptic but not axonal localization of Ank2-L. These domains contain binding sites to L1-family member CAMs, and we demonstrate that these regions are necessary for the organization of synaptic CAMs and for the control of synaptic stability. In contrast, presynaptic Ank2-XL localization only partially depends on the ARD but strictly requires the presynaptic presence of Ank2-L demonstrating a critical co-dependence of the two isoforms at the NMJ. Ank2-XL dependent control of microtubule organization correlates with presynaptic abundance of the protein and is thus only partially affected by ARD deletions. Together, our data provides novel insights into the synaptic targeting of giant Ankyrins with relevance for the control of synaptic plasticity and maintenance.
Collapse
Affiliation(s)
- Tobias Weber
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Raiko Stephan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
29
|
Li J, Liu H, Raval MH, Wan J, Yengo CM, Liu W, Zhang M. Structure of the MORN4/Myo3a Tail Complex Reveals MORN Repeats as Protein Binding Modules. Structure 2019; 27:1366-1374.e3. [PMID: 31279628 DOI: 10.1016/j.str.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Tandem repeats are basic building blocks for constructing proteins with diverse structures and functions. Compared with extensively studied α-helix-based tandem repeats such as ankyrin, tetratricopeptide, armadillo, and HEAT repeat proteins, relatively little is known about tandem repeat proteins formed by β hairpins. In this study, we discovered that the MORN repeats from MORN4 function as a protein binding module specifically recognizing a tail cargo binding region from Myo3a. The structure of the MORN4/Myo3a complex shows that MORN4 forms an extended single-layered β-sheet structure and uses a U-shaped groove to bind to the Myo3a tail with high affinity and specificity. Sequence and structural analyses further elucidated the unique sequence features for folding and target binding of MORN repeats. Our work establishes that the β-hairpin-based MORN repeats are protein-protein interaction modules.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Kitamata M, Hanawa-Suetsugu K, Maruyama K, Suetsugu S. Membrane-Deformation Ability of ANKHD1 Is Involved in the Early Endosome Enlargement. iScience 2019; 17:101-118. [PMID: 31255983 PMCID: PMC6606961 DOI: 10.1016/j.isci.2019.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Ankyrin-repeat domains (ARDs) are conserved in large numbers of proteins. ARDs are composed of various numbers of ankyrin repeats (ANKs). ARDs often adopt curved structures reminiscent of the Bin-Amphiphysin-Rvs (BAR) domain, which is the dimeric scaffold for membrane tubulation. BAR domains sometimes have amphipathic helices for membrane tubulation and vesiculation. However, it is unclear whether ARD-containing proteins exhibit similar membrane deformation properties. We found that the ARD of ANK and KH domain-containing protein 1 (ANKHD1) dimerize and deform membranes into tubules and vesicles. Among 25 ANKs of ANKHD1, the first 15 ANKs can form a dimer and the latter 10 ANKs enable membrane tubulation and vesiculation through an adjacent amphipathic helix and a predicted curved structure with a positively charged surface, analogous to BAR domains. Knockdown and localization of ANKHD1 suggested its involvement in the negative regulation of early endosome enlargement owing to its membrane vesiculation. ANKHD1 is a large protein of 270 kDa, containing 25 ankyrin repeats ANKHD1 generates membrane tubules and vesicles by its ankyrin-repeat domain (ARD). The ARD has an amphipathic helix and a predicted curved structure, like BAR domains ANKHD1 negatively regulates early endosome enlargement by its vesiculation ability
Collapse
Affiliation(s)
- Manabu Kitamata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kohei Maruyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
31
|
Bapaume L, Laukamm S, Darbon G, Monney C, Meyenhofer F, Feddermann N, Chen M, Reinhardt D. VAPYRIN Marks an Endosomal Trafficking Compartment Involved in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2019; 10:666. [PMID: 31231402 PMCID: PMC6558636 DOI: 10.3389/fpls.2019.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
32
|
Huang TL, Sang BH, Lei QL, Song CY, Lin YB, Lv Y, Yang CH, Li N, Yang YH, Zhang XW, Tian X. A de novo ANK1 mutation associated to hereditary spherocytosis: a case report. BMC Pediatr 2019; 19:62. [PMID: 30777044 PMCID: PMC6379977 DOI: 10.1186/s12887-019-1436-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
Background Hereditary spherocytosis (HS) is a type of hemolytic anemia caused by abnormal red cell membrane skeletal proteins with few unique clinical manifestations in the neonate and infant. An ANK1 gene mutation is the most common cause of HS. Case presentation The patient was a 11-month-old boy who suffered from anemia and needed a regular transfusion therapy at an interval of 2–3 months. Hematological investigations showed moderate anemia (Hb80 g/L). Red cells displayed microcytosis (MCV76.4 fl, MCH25.6 pg, MCHC335 g/L). The reticulocytes were elevated (4.8%) and the spherocytes were increased (10%). Direct antiglobulin test was negative. Biochemical test indicated a slight elevation of bilirubin, mainly indirect reacting (TBIL32.5 μmol/L, IBIL24 μmol/L). The neonatal HS ratio is 4.38, obviously up the threshold. Meanwhile, a de novo ANK1 mutation (exon 25:c.2693dupC:p.A899Sfs*11) was identified by next-generation sequencing (NGS). Thus, hereditary spherocytosis was finally diagnosed. Conclusions Gene detection should be considered in some hemolytic anemia which is difficult to diagnose by routine means. We identified a novel de novo ANK1 heterozygous frameshift mutation in a Yi nationality patient while neither of his parents carried this mutation. Electronic supplementary material The online version of this article (10.1186/s12887-019-1436-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ti-Long Huang
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Bao-Hua Sang
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Qing-Ling Lei
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Chun-Yan Song
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Yun-Bi Lin
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Yu Lv
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Chun-Hui Yang
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Na Li
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Yue-Huang Yang
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Xian-Wen Zhang
- Medical Faculty, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China.
| | - Xin Tian
- Department of Hematology, Kunming Children's Hospital, Kunming, China.
| |
Collapse
|
33
|
Pepper RE, Pitman KA, Cullen CL, Young KM. How Do Cells of the Oligodendrocyte Lineage Affect Neuronal Circuits to Influence Motor Function, Memory and Mood? Front Cell Neurosci 2018; 12:399. [PMID: 30524235 PMCID: PMC6262292 DOI: 10.3389/fncel.2018.00399] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are immature cells in the central nervous system (CNS) that can rapidly respond to changes within their environment by modulating their proliferation, motility and differentiation. OPCs differentiate into myelinating oligodendrocytes throughout life, and both cell types have been implicated in maintaining and modulating neuronal function to affect motor performance, cognition and emotional state. However, questions remain about the mechanisms employed by OPCs and oligodendrocytes to regulate circuit function, including whether OPCs can only influence circuits through their generation of new oligodendrocytes, or can play other regulatory roles within the CNS. In this review, we detail the molecular and cellular mechanisms that allow OPCs, newborn oligodendrocytes and pre-existing oligodendrocytes to regulate circuit function and ultimately influence behavioral outcomes.
Collapse
Affiliation(s)
- Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
34
|
Wang CC, Ortiz-González XR, Yum SW, Gill SM, White A, Kelter E, Seaver LH, Lee S, Wiley G, Gaffney PM, Wierenga KJ, Rasband MN. βIV Spectrinopathies Cause Profound Intellectual Disability, Congenital Hypotonia, and Motor Axonal Neuropathy. Am J Hum Genet 2018; 102:1158-1168. [PMID: 29861105 PMCID: PMC5992132 DOI: 10.1016/j.ajhg.2018.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
βIV spectrin links ankyrinG (AnkG) and clustered ion channels at axon initial segments (AISs) and nodes of Ranvier to the axonal cytoskeleton. Here, we report bi-allelic pathogenic SPTBN4 variants (three homozygous and two compound heterozygous) that cause a severe neurological syndrome that includes congenital hypotonia, intellectual disability, and motor axonal and auditory neuropathy. We introduced these variants into βIV spectrin, expressed these in neurons, and found that 5/7 were loss-of-function variants disrupting AIS localization or abolishing phosphoinositide binding. Nerve biopsies from an individual with a loss-of-function variant had reduced nodal Na+ channels and no nodal KCNQ2 K+ channels. Modeling the disease in mice revealed that although ankyrinR (AnkR) and βI spectrin can cluster Na+ channels and partially compensate for the loss of AnkG and βIV spectrin at nodes of Ranvier, AnkR and βI spectrin cannot cluster KCNQ2- and KCNQ3-subunit-containing K+ channels. Our findings define a class of spectrinopathies and reveal the molecular pathologies causing nervous-system dysfunction.
Collapse
Affiliation(s)
- Chih-Chuan Wang
- Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xilma R Ortiz-González
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sabrina W Yum
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara M Gill
- Department of Audiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amy White
- Department of Audiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erin Kelter
- Women and Children's Hospital of Buffalo, Buffalo, NY 14203, USA
| | - Laurie H Seaver
- Spectrum Health Medical Genetics, MSU College of Human Medicine, Department of Pediatrics and Human Development, Grand Rapids, MI 49503, USA
| | - Sansan Lee
- Hawai'i Community Genetics, Honolulu, HI 96814, USA
| | - Graham Wiley
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Patrick M Gaffney
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Klaas J Wierenga
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Matthew N Rasband
- Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Smith KR, Penzes P. Ankyrins: Roles in synaptic biology and pathology. Mol Cell Neurosci 2018; 91:131-139. [PMID: 29730177 DOI: 10.1016/j.mcn.2018.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Malley KR, Koroleva O, Miller I, Sanishvili R, Jenkins CM, Gross RW, Korolev S. The structure of iPLA 2β reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat Commun 2018; 9:765. [PMID: 29472584 PMCID: PMC5823874 DOI: 10.1038/s41467-018-03193-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Calcium-independent phospholipase A2β (iPLA2β) regulates important physiological processes including inflammation, calcium homeostasis and apoptosis. It is genetically linked to neurodegenerative disorders including Parkinson’s disease. Despite its known enzymatic activity, the mechanisms underlying iPLA2β-induced pathologic phenotypes remain poorly understood. Here, we present a crystal structure of iPLA2β that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. They are surrounded by ankyrin repeat domains that adopt an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. The structure and additional solution studies suggest that both catalytic domains can be bound and allosterically inhibited by a single calmodulin. These features suggest mechanisms of iPLA2β cellular localization and activity regulation, providing a basis for inhibitor development. Furthermore, the structure provides a framework to investigate the role of neurodegenerative mutations and the function of iPLA2β in the brain. Calcium-independent phospholipase A2β (iPLA2β) is involved in many physiological and pathological processes but the underlying mechanisms are largely unknown. Here, the authors present the structure of dimeric iPLA2β, providing insights into the regulation of its activity and cellular localization.
Collapse
Affiliation(s)
- Konstantin R Malley
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Olga Koroleva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Ian Miller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Ruslan Sanishvili
- GM/CA@APS, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, Saint Louis, MO, 63110, USA
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, Saint Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Chemistry, Washington University, Saint Louis, MO, 63130, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
37
|
The Axon Initial Segment: An Updated Viewpoint. J Neurosci 2018; 38:2135-2145. [PMID: 29378864 DOI: 10.1523/jneurosci.1922-17.2018] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the base of axons sits a unique compartment called the axon initial segment (AIS). The AIS generates and shapes the action potential before it is propagated along the axon. Neuronal excitability thus depends crucially on the AIS composition and position, and these adapt to developmental and physiological conditions. The AIS also demarcates the boundary between the somatodendritic and axonal compartments. Recent studies have brought insights into the molecular architecture of the AIS and how it regulates protein trafficking. This Viewpoints article summarizes current knowledge about the AIS and highlights future challenges in understanding this key actor of neuronal physiology.
Collapse
|
38
|
Pan W, Sun K, Tang K, Xiao Q, Ma C, Yu C, Wei Z. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion. J Biol Chem 2017; 293:1944-1956. [PMID: 29217769 DOI: 10.1074/jbc.m117.815779] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/29/2017] [Indexed: 01/25/2023] Open
Abstract
Kidney ankyrin repeat-containing proteins (KANK1/2/3/4) belong to a family of scaffold proteins, playing critical roles in cytoskeleton organization, cell polarity, and migration. Mutations in KANK proteins are implicated in cancers and genetic diseases, such as nephrotic syndrome. KANK proteins can bind various target proteins through different protein regions, including a highly conserved ankyrin repeat domain (ANKRD). However, the molecular basis for target recognition by the ANKRD remains elusive. In this study, we solved a high-resolution crystal structure of the ANKRD of KANK1 in complex with a short sequence of the motor protein kinesin family member 21A (KIF21A), revealing that the highly specific target-binding mode of the ANKRD involves combinatorial use of two interfaces. Mutations in either interface disrupted the KANK1-KIF21A interaction. Cellular immunofluorescence localization analysis indicated that binding-deficient mutations block recruitment of KIF21A to focal adhesions by KANK1. In conclusion, our structural study provides mechanistic explanations for the ANKRD-mediated recognition of KIF21A and for many disease-related mutations identified in human KANK proteins.
Collapse
Affiliation(s)
- Wenfei Pan
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Kang Sun
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Kun Tang
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,College of Life Sciences, Nankai University, 300071 Tianjin, China, and
| | - Qingpin Xiao
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau Special Administrative Region, China
| | - Chenxue Ma
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cong Yu
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Zhiyi Wei
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China,
| |
Collapse
|
39
|
Guo Q, Liao S, Zhu Z, Li Y, Li F, Xu C. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins. J Biol Chem 2017; 293:557-566. [PMID: 29183992 DOI: 10.1074/jbc.m117.817494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
A well-controlled microtubule organization is essential for intracellular transport, cytoskeleton maintenance, and cell development. KN motif and ankyrin repeat domain-containing protein 1 (KANK1), a member of KANK family, recruits kinesin family member 21A (KIF21A) to the cell cortex to control microtubule growth via its C-terminal ankyrin domain. However, how the KANK1 ankyrin domain recognizes KIF21A and whether other KANK proteins can also bind KIF21A remain unknown. Here, using a combination of structural, site-directed mutagenesis, and biochemical studies, we found that a stretch of ∼22 amino acids in KIF21A is sufficient for binding to KANK1 and its close homolog KANK2. We further solved the complex structure of the KIF21A peptide with either the KANK1 ankyrin domain or the KANK2 ankyrin domain. In each complex, KIF21A is recognized by two distinct pockets of the ankyrin domain and adopts helical conformations upon binding to the ankyrin domain. The elucidated KANK structures may advance our understanding of the role of KANK1 as a scaffolding molecule in controlling microtubule growth at the cell periphery.
Collapse
Affiliation(s)
- Qiong Guo
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhongliang Zhu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Chao Xu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| |
Collapse
|
40
|
Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na +,K +-ATPase Membrane Diffusion. Biophys J 2017; 113:2249-2260. [PMID: 28988699 DOI: 10.1016/j.bpj.2017.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
The Na+,K+-ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na+,K+-ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na+,K+-ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na+,K+-ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na+,K+-ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na+,K+-ATPase mutations and provide information about the interaction of Na+,K+-ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes.
Collapse
|
41
|
Swayne LA, Murphy NP, Asuri S, Chen L, Xu X, McIntosh S, Wang C, Lancione PJ, Roberts JD, Kerr C, Sanatani S, Sherwin E, Kline CF, Zhang M, Mohler PJ, Arbour LT. Novel Variant in the ANK2 Membrane-Binding Domain Is Associated With Ankyrin-B Syndrome and Structural Heart Disease in a First Nations Population With a High Rate of Long QT Syndrome. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001537. [PMID: 28196901 DOI: 10.1161/circgenetics.116.001537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Long QT syndrome confers susceptibility to ventricular arrhythmia, predisposing to syncope, seizures, and sudden death. While rare globally, long QT syndrome is ≈15× more common in First Nations of Northern British Columbia largely because of a known mutation in KCNQ1. However, 2 large multigenerational families were affected, but negative for the known mutation. METHODS AND RESULTS Long QT syndrome panel testing was carried out in the index case of each family, and clinical information was collected. Cascade genotyping was performed. Biochemical and myocyte-based assays were performed to evaluate the identified gene variant for loss-of-function activity. Index cases in these 2 families harbored a novel ANK2 c.1937C>T variant (p.S646F). An additional 16 carriers were identified, including 2 with structural heart disease: one with cardiomyopathy resulting in sudden death and the other with congenital heart disease. For all carriers of this variant, the average QTc was 475 ms (±40). Although ankyrin-B p.S646F is appropriately folded and expressed in bacteria, the mutant polypeptide displays reduced expression in cultured H9c2 cells and aberrant localization in primary cardiomyocytes. Furthermore, myocytes expressing ankyrin-B p.S646F lack normal membrane targeting of the ankyrin-binding partner, the Na/Ca exchanger. Thus, ankyrin-B p.S646F is a loss-of-function variant. CONCLUSIONS We identify the first disease-causing ANK2 variant localized to the membrane-binding domain resulting in reduced ankyrin-B expression and abnormal localization. Further study is warranted on the potential association of this variant with structural heart disease given the role of ANK2 in targeting and stabilization of key structural and signaling molecules in cardiac cells.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Nathaniel P Murphy
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Sirisha Asuri
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Lena Chen
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Xiaoxue Xu
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Sarah McIntosh
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Chao Wang
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Peter J Lancione
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Jason D Roberts
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Charles Kerr
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Shubhayan Sanatani
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Elizabeth Sherwin
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Crystal F Kline
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Mingjie Zhang
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Peter J Mohler
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Laura T Arbour
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.).
| |
Collapse
|
42
|
Lemonidis K, MacLeod R, Baillie GS, Chamberlain LH. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. J Biol Chem 2017; 292:17190-17202. [PMID: 28882895 PMCID: PMC5655499 DOI: 10.1074/jbc.m117.799650] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
zDHHC S-acyltransferases are enzymes catalyzing protein S-acylation, a common post-translational modification on proteins frequently affecting their membrane targeting and trafficking. The ankyrin repeat (AR) domain of zDHHC17 (HIP14) and zDHHC13 (HIP14L) S-acyltransferases, which is involved in both substrate recruitment and S-acylation-independent functions, was recently shown to bind at least six proteins, by specific recognition of a consensus sequence in them. To further refine the rules governing binding to the AR of zDHHC17, we employed peptide arrays based on zDHHC AR-binding motif (zDABM) sequences of synaptosomal-associated protein 25 (SNAP25) and cysteine string protein α (CSPα). Quantitative comparisons of the binding preferences of 400 peptides allowed us to construct a position-specific scoring matrix (PSSM) for zDHHC17 AR binding, with which we predicted and subsequently validated many putative zDHHC17 interactors. We identified 95 human zDABM sequences with unexpected versatility in amino acid usage; these sequences were distributed among 90 proteins, of which 62 have not been previously implicated in zDHHC17/13 binding. These zDABM-containing proteins included all family members of the SNAP25, sprouty, cornifelin, ankyrin, and SLAIN-motif containing families; seven endogenous Gag polyproteins sharing the same binding sequence; and several proteins involved in cytoskeletal organization, cell communication, and regulation of signaling. A dozen of the zDABM-containing proteins had more than one zDABM sequence, whereas isoform-specific binding to the AR of zDHHC17 was identified for the Ena/VASP-like protein. The large number of zDABM sequences within the human proteome suggests that zDHHC17 may be an interaction hub regulating many cellular processes.
Collapse
Affiliation(s)
- Kimon Lemonidis
- From The Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE and
| | - Ruth MacLeod
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Wolfson Link Building, Glasgow G12 8QQ, Scotland, United Kingdom
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Wolfson Link Building, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Luke H Chamberlain
- From The Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE and
| |
Collapse
|
43
|
Frank RA, Grant SG. Supramolecular organization of NMDA receptors and the postsynaptic density. Curr Opin Neurobiol 2017; 45:139-147. [PMID: 28577431 PMCID: PMC5557338 DOI: 10.1016/j.conb.2017.05.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 01/21/2023]
Abstract
The postsynaptic density (PSD) of all vertebrate species share a highly complex proteome with ∼1000 conserved proteins that function as sophisticated molecular computational devices. Here, we review recent studies showing that this complexity can be understood in terms of the supramolecular organization of proteins, which self-assemble within a hierarchy of different length scales, including complexes, supercomplexes and nanodomains. We highlight how genetic and biochemical approaches in mice are being used to uncover the native molecular architecture of the synapse, revealing hitherto unknown molecular structures, including highly selective mechanisms for specifying the assembly of NMDAR-MAGUK supercomplexes. We propose there exists a logical framework that precisely dictates the subunit composition of synaptic complexes, supercomplexes, and nanodomains in vivo.
Collapse
Affiliation(s)
- René Aw Frank
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK.
| |
Collapse
|
44
|
Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 2017; 547:118-122. [PMID: 28658211 DOI: 10.1038/nature22981] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the bacterial MscL channel and certain eukaryotic potassium channels. The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force-induced gating, which could serve as a paradigm of the tether model. NOMPC fulfils all the criteria that apply to mechanotransduction channels and has 29 ankyrin repeats, the largest number among TRP channels. A key question is how the long ankyrin repeat domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of Drosophila NOMPC determined by single-particle electron cryo-microscopy. Structural analysis suggests that the ankyrin repeat domain of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel. The NOMPC architecture underscores the basis of translating mechanical force into an electrical signal within a cell.
Collapse
|
45
|
Nelson AD, Jenkins PM. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier. Front Cell Neurosci 2017; 11:136. [PMID: 28536506 PMCID: PMC5422562 DOI: 10.3389/fncel.2017.00136] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS) and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of Ranvier, and how abnormalities in these processes may contribute to disease.
Collapse
Affiliation(s)
- Andrew D Nelson
- Department of Pharmacology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical SchoolAnn Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
46
|
Leterrier C, Clerc N, Rueda-Boroni F, Montersino A, Dargent B, Castets F. Ankyrin G Membrane Partners Drive the Establishment and Maintenance of the Axon Initial Segment. Front Cell Neurosci 2017; 11:6. [PMID: 28184187 PMCID: PMC5266712 DOI: 10.3389/fncel.2017.00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) is a highly specialized neuronal compartment that plays a key role in neuronal development and excitability. It concentrates multiple membrane proteins such as ion channels and cell adhesion molecules (CAMs) that are recruited to the AIS by the scaffold protein ankyrin G (ankG). The crucial function of ankG in the anchoring of AIS membrane components is well established, but a reciprocal role of membrane partners in ankG targeting and stabilization remained elusive. In rat cultured hippocampal neurons and cortical organotypic slices, we found that shRNA-mediated knockdown of ankG membrane partners (voltage-gated sodium channels (Nav) or neurofascin-186) led to a decrease of ankG concentration and perturbed the AIS formation and maintenance. These effects were rescued by expressing a recombinant AIS-targeted Nav or by a minimal construct containing the ankyrin-binding domain of Nav1.2 and a membrane anchor (mABD). Moreover, overexpressing mABD in mature neurons led to ankG mislocalization. Altogether, these results demonstrate that a tight and precocious association of ankG with its membrane partners is a key step for the establishment and maintenance of the AIS.
Collapse
Affiliation(s)
| | - Nadine Clerc
- CNRS, CRN2M, Aix Marseille University Marseille, France
| | | | | | | | | |
Collapse
|
47
|
Chen K, Li J, Wang C, Wei Z, Zhang M. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions. eLife 2017; 6:29150. [PMID: 28841137 PMCID: PMC5779224 DOI: 10.7554/elife.29150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins.
Collapse
Affiliation(s)
- Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Chao Wang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui, China
| | - Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Department of BiologySouth University of Science and Technology of ChinaShenzhenChina
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Center of Systems Biology and Human Health, Institute for Advanced StudyHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
48
|
Abstract
KCNQ2/3 (Kv7.2/7.3) channels and voltage-gated sodium channels (VGSCs) are enriched in the axon initial segment (AIS) where they bind to ankyrin-G and coregulate membrane potential in central nervous system neurons. The molecular mechanisms supporting coordinated regulation of KCNQ and VGSCs and the cellular mechanisms governing KCNQ trafficking to the AIS are incompletely understood. Here, we show that fibroblast growth factor 14 (FGF14), previously described as a VGSC regulator, also affects KCNQ function and localization. FGF14 knockdown leads to a reduction of KCNQ2 in the AIS and a reduction in whole-cell KCNQ currents. FGF14 positively regulates KCNQ2/3 channels in a simplified expression system. FGF14 interacts with KCNQ2 at a site distinct from the FGF14-VGSC interaction surface, thus enabling the bridging of NaV1.6 and KCNQ2. These data implicate FGF14 as an organizer of channel localization in the AIS and provide insight into the coordination of KCNQ and VGSC conductances in the regulation of membrane potential.
Collapse
|
49
|
Jegla T, Nguyen MM, Feng C, Goetschius DJ, Luna E, van Rossum DB, Kamel B, Pisupati A, Milner ES, Rolls MM. Bilaterian Giant Ankyrins Have a Common Evolutionary Origin and Play a Conserved Role in Patterning the Axon Initial Segment. PLoS Genet 2016; 12:e1006457. [PMID: 27911898 PMCID: PMC5135030 DOI: 10.1371/journal.pgen.1006457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/03/2016] [Indexed: 12/03/2022] Open
Abstract
In vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling. We re-examined AIS evolution through phylogenomic analysis of ankyrins and by testing the role of ankyrins in proximal axon organization in a model multipolar Drosophila neuron (ddaE). We find giant isoforms of ankyrin in all major bilaterian phyla, and present evidence in favor of a single common origin for giant ankyrins and the corresponding long exon in a bilaterian ancestor. This finding raises the question of whether giant ankyrin isoforms play a conserved role in AIS organization throughout the Bilateria. We examined this possibility by looking for conserved ankyrin-dependent AIS features in Drosophila ddaE neurons via live imaging. We found that ddaE neurons have an axonal diffusion barrier proximal to the cell body that requires a giant isoform of the neuronal ankyrin Ank2. Furthermore, the potassium channel shal concentrates in the proximal axon in an Ank2-dependent manner. Our results indicate that the giant ankyrin-based cytoskeleton of the AIS may have evolved prior to the radiation of extant bilaterian lineages, much earlier than previously thought. The axon initial segment (AIS) is currently thought to be a distinguishing feature of vertebrate neurons that adapts them for rapid, precise signaling. It serves as a hub for the regulation of neuronal excitability as the site of action potential initiation and also acts as the boundary between the highly-specialized axon and the rest of the cell. Here we show that the giant ankyrins that structurally organize the AIS, and were thought to be vertebrate-specific, instead have an ancient origin in a bilaterian ancestor. We further show the presence of a giant ankyrin-dependent AIS-like plasma membrane boundary between the axon and soma in a Drosophila sensory neuron. These results suggest that the cytoskeletal backbone for the AIS is not unique to vertebrates, but instead may be an evolutionarily conserved feature of bilaterian neurons.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MMR); (TJ)
| | - Michelle M. Nguyen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chengye Feng
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel J. Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Esteban Luna
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Damian B. van Rossum
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bishoy Kamel
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aditya Pisupati
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elliott S. Milner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Melissa M. Rolls
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MMR); (TJ)
| |
Collapse
|
50
|
Qi W, Vaughan L, Katharios P, Schlapbach R, Seth-Smith HMB. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biol Evol 2016; 8:1672-89. [PMID: 27190004 PMCID: PMC4943182 DOI: 10.1093/gbe/evw111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/24/2022] Open
Abstract
Advances in single-cell and mini-metagenome sequencing have enabled important investigations into uncultured bacteria. In this study, we applied the mini-metagenome sequencing method to assemble genome drafts of the uncultured causative agents of epitheliocystis, an emerging infectious disease in the Mediterranean aquaculture species gilthead seabream. We sequenced multiple cyst samples and constructed 11 genome drafts from a novel beta-proteobacterial lineage, Candidatus Ichthyocystis. The draft genomes demonstrate features typical of pathogenic bacteria with an obligate intracellular lifestyle: a reduced genome of up to 2.6 Mb, reduced G + C content, and reduced metabolic capacity. Reconstruction of metabolic pathways reveals that Ca Ichthyocystis genomes lack all amino acid synthesis pathways, compelling them to scavenge from the fish host. All genomes encode type II, III, and IV secretion systems, a large repertoire of predicted effectors, and a type IV pilus. These are all considered to be virulence factors, required for adherence, invasion, and host manipulation. However, no evidence of lipopolysaccharide synthesis could be found. Beyond the core functions shared within the genus, alignments showed distinction into different species, characterized by alternative large gene families. These comprise up to a third of each genome, appear to have arisen through duplication and diversification, encode many effector proteins, and are seemingly critical for virulence. Thus, Ca Ichthyocystis represents a novel obligatory intracellular pathogenic beta-proteobacterial lineage. The methods used: mini-metagenome analysis and manual annotation, have generated important insights into the lifestyle and evolution of the novel, uncultured pathogens, elucidating many putative virulence factors including an unprecedented array of novel gene families.
Collapse
Affiliation(s)
- Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| | - Pantelis Katharios
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Helena M B Seth-Smith
- Functional Genomics Center Zurich, University of Zurich, Switzerland Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| |
Collapse
|