1
|
Liu Y, Weng K, Li G, Wang H, Tan Y, He D. Genetic and metabolic mechanisms underlying webbed feet pigmentation in geese: Insights from histological, transcriptomic, and metabolomic analyses. Poult Sci 2025; 104:105233. [PMID: 40367570 DOI: 10.1016/j.psj.2025.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
This study systematically investigated the genetic and metabolic mechanisms underlying pigmentation in goose webbed feet by integrating histological, transcriptomic, and metabolomic analyses. Histological examinations revealed significant differences in melanin deposition among webbed feet of varying colors. Dark black webbed feet exhibited the highest melanin content, light black webbed feet showed moderate levels, and colorless webbed feet lacked detectable melanin. Transcriptomic analysis identified substantial variations in the expression levels of key genes involved in melanin biosynthesis, including TYRP1, PMEL, DCT, TYR, OCA2, MC1R, RAB38, WNT16, CAMK2A, and MLANA, between pigmented and colorless webbed feet. Notably, the OCA2 gene exhibited significantly higher expression in dark black webbed feet compared to light black webbed feet, underscoring its pivotal role in regulating pigmentation intensity. Enrichment analysis emphasized the importance of pathways related to tyrosine metabolism, melanin production, and amino acid biosynthesis in determining pigmentation differences. Metabolomic profiling supported these findings, revealing that L-tyrosine and 5,6-dihydroxyindole-2-carboxylic acid are critical metabolites in the melanin biosynthesis pathway. Specifically, elevated levels of L-tyrosine were detected in colorless webbed feet, likely due to inhibited melanin synthesis, whereas 5,6-dihydroxyindole-2-carboxylic acid levels were highest in dark black webbed feet, reflecting active melanin production. Correlation analysis between transcriptomic and metabolomic data further validated the central role of tyrosine metabolism and melanin biosynthesis pathways in pigmentation. In conclusion, this study employed multi-omics approaches to elucidate the critical role of the OCA2-centered genetic-metabolic regulatory network in melanin deposition of goose webbed feet, providing important insights into the molecular mechanisms of avian pigmentation and valuable references for poultry breeding.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kaiqi Weng
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiying Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Tan
- Hunan Wugang Tong Geese Agricultural Development Co. Ltd., Hunan, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
2
|
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025; 15:548. [PMID: 40305359 PMCID: PMC12024907 DOI: 10.3390/biom15040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Forensic DNA phenotyping (FDP) has emerged as an essential tool in criminal investigations, enabling the prediction of physical traits based on genetic information. This review explores the genetic factors influencing skin pigmentation, particularly within Asian populations, with a focus on Thailand. Key genes such as Oculocutaneous Albinism II (OCA2), Dopachrome Tautomerase (DCT), KIT Ligand (KITLG), and Solute Carrier Family 24 Member 2 (SLC24A2) are examined for their roles in melanin production and variations that lead to different skin tones. The OCA2 gene is highlighted for its role in transporting ions that help stabilize melanosomes, while specific variants in the DCT gene, including single nucleotide polymorphisms (SNPs) rs2031526 and rs3782974, are discussed for their potential effects on pigmentation in Asian groups. The KITLG gene, crucial for developing melanocytes, includes the SNP rs642742, which is linked to lighter skin in East Asians. Additionally, recent findings on the SLC24A2 gene are presented, emphasizing its connection to pigmentation through calcium regulation in melanin production. Finally, the review addresses the ethical considerations of using FDP in Thailand, where advances in genetic profiling raise concerns about privacy, consent, and discrimination. Establishing clear guidelines is vital to balancing the benefits of forensic DNA applications with the protection of individual rights.
Collapse
Affiliation(s)
- Gabriel Perez Palomeque
- PhD Program in Medical Sciences, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| |
Collapse
|
3
|
Huang D, Kapadia EH, Liang Y, Shriver LP, Dai S, Patti GJ, Humbel BM, Laudet V, Parichy DM. Agouti and BMP signaling drive a naturally occurring fate conversion of melanophores to leucophores in zebrafish. Proc Natl Acad Sci U S A 2025; 122:e2424180122. [PMID: 40305763 PMCID: PMC11874323 DOI: 10.1073/pnas.2424180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 05/02/2025] Open
Abstract
The often-distinctive pigment patterns of vertebrates are varied in form and function and depend on several types of pigment cells derived from embryonic neural crest or latent stem cells of neural crest origin. These cells and the patterns they produce have been useful for uncovering features of differentiation and morphogenesis that underlie adult phenotypes, and they offer opportunities to discover how patterns and the cell types themselves have diversified. In zebrafish, a body pattern of stripes arises by self-organizing interactions among three types of pigment cells. Yet these fish also exhibit white ornamentation on their fins that depends on the transdifferentiation of black melanophores to white cells, "melanoleucophores." To identify mechanisms underlying this conversion we used ultrastructural, transcriptomic, mutational, and other approaches. We show that melanophore-melanoleucophore transition depends on regional BMP signals transduced through noncanonical receptors (Rgmb-Neo1a-Lrig2) as well as BMP-dependent signaling by Agouti genes, asip1 and asip2b. These signals lead to expression of transcription factor genes including foxd3 and runx3 that are necessary to induce loss of melanin, curtail new melanin production, and deploy a pathway for accumulating guanine crystals that, together, confer a white phenotype. These analyses uncover an important role for positional information in specifying ornamentation in zebrafish and show how tissue environmental cues and an altered gene regulatory program have allowed terminal addition of a distinct phenotype to a preexisting cell type.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Emaan H. Kapadia
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Leah P. Shriver
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Shengkun Dai
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Bruno M. Humbel
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - David M. Parichy
- Department of Biology, University of Virginia, Charlottesville, VA22903
- Department of Cell Biology, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
4
|
Xing Y, Boswell W, Parker J, Du K, Schartl M, Lu Y. A Recessive oca2 Mutation Underlies Albinism in Xiphophorus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633999. [PMID: 39896652 PMCID: PMC11785110 DOI: 10.1101/2025.01.20.633999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oculocutaneous albinism (OCA) is a group of genetic disorders characterized by impaired melanin production, leading to reduced pigmentation in the skin, hair, and eyes. Xiphophorus , a genus of small freshwater fish, has been a pivotal model organism in pigmentation disorder research, providing key findings in the genetic pathways governing physiological and pathological pigment cell biology. Leveraging the well-established research framework provided by Xiphophorus , we have identified a spontaneously occurring albinism phenotype in swordtail fish Xiphophorus hellerii . Genetic mapping of albino fish showed that albinism is associated with a recessive mutation in the oca2 gene. This discovery provides a novel opportunity to explore functions of oca2 gene in pigment cell differentiation, pigment synthesis, melanosome assembly and transportation function and amelanotic melanoma development.
Collapse
|
5
|
Yang Q, Wang Y, Wang Z, Lv S, Hao Z, Wei A, Li W. Curation of OCA2 Variants of Uncertain Significance From Chinese Oculocutaneous Albinism Patients Based on Multiplex Assays. Pigment Cell Melanoma Res 2025; 38:e13212. [PMID: 39636647 DOI: 10.1111/pcmr.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Oculocutaneous albinism type 2 (OCA-2, OMIM: 203200) is associated with variants in the OCA2 gene. In this study, we aimed to re-classify variants of uncertain significance (VUS) in OCA2 by evaluating subcellular localization and channel activity through multiplex assays of variant effect (MAVEs). Following the ClinGen guidelines for PS3 evidence, we selected 13 OCA2 variants from ClinVar (6 benign/likely benign [B/LB] and 7 pathogenic/likely pathogenic [P/LP]) for OddsPath analysis. The P/LP variants exhibited abnormal functions, while the B/LB variants demonstrated normal functions, supporting the application of "PS3_moderate" evidence for VUS re-classification. In our functional evaluation of 30 VUS identified in 38 individuals with suspected OCA-2 by trio whole-exome sequencing, we observed 6 VUS with abnormal localization and 11 with abnormal channel activity. Based on PS3_moderate evidence, 8 VUS were re-classified as LP, while 22 remained VUS. Consequently, 7 out of 38 previously undiagnosed patients received a molecular diagnosis of OCA-2. These MAVEs offer a robust approach for curating OCA2 VUS, enhancing diagnostic accuracy, and informing genetic counseling. Additionally, this variant cohort is a valuable resource for public databases.
Collapse
Affiliation(s)
- Qingsong Yang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yizhen Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zengge Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shushu Lv
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenhua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Diallo M, Sylla O, Sidibé MK, Plaisant C, Mercier E, Sequeira A, Javerzat S, Hadid A, Lasseaux E, Michaud V, Arveiler B. Genotypic spectrum of albinism in Mali. Pigment Cell Melanoma Res 2024; 37:752-761. [PMID: 38720644 DOI: 10.1111/pcmr.13175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 10/29/2024]
Abstract
Albinism is a phenotypically and genetically heterogeneous condition characterized by a variable degree of hypopigmentation and by ocular features leading to reduced visual acuity. Whereas numerous genotypic studies have been conducted throughout the world, very little is known about the genotypic spectrum of albinism in Africa and especially in sub-Saharan Western Africa. Here we report the analysis of all known albinism genes in a series a 23 patients originating from Mali. Four were diagnosed with OCA 1 (oculocutaneous albinism type 1), 17 with OCA 2, and two with OCA 4. OCA2 variant NM_000275.3:c.819_822delinsGGTC was most frequently encountered. Four novel variants were identified (two in TYR, two in OCA2). A deep intronic variant was found to alter splicing of the OCA2 RNA by inclusion of a pseudo exon. Of note, the OCA2 exon 7 deletion commonly found in eastern, central, and southern Africa was absent from this series. African patients with OCA 1 and OCA 4 had only been reported twice and once, respectively, in previous publications. This study constitutes the first report of the genotypic spectrum of albinism in a western sub-Saharan country.
Collapse
Affiliation(s)
- Modibo Diallo
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
| | | | | | | | - Elina Mercier
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
| | - Angèle Sequeira
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
| | - Sophie Javerzat
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
| | | | | | - Vincent Michaud
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
- Service de Génétique Médicale, CHU, Bordeaux, France
| | - Benoit Arveiler
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University INSERM U1211, Bordeaux, France
- Service de Génétique Médicale, CHU, Bordeaux, France
| |
Collapse
|
7
|
Cho E, Hyung KE, Choi YH, Chun H, Kim D, Jun SH, Kang NG. Modulating OCA2 Expression as a Promising Approach to Enhance Skin Brightness and Reduce Dark Spots. Biomolecules 2024; 14:1284. [PMID: 39456217 PMCID: PMC11506640 DOI: 10.3390/biom14101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The oculocutaneous albinism II (OCA2) gene encodes a melanosomal transmembrane protein involved in melanogenesis. Recent genome-wide association studies have identified several single nucleotide polymorphisms within OCA2 genes that are involved in skin pigmentation. Nevertheless, there have been no attempts to modulate this gene to improve skin discoloration. Accordingly, our aim was to identify compounds that can reduce OCA2 expression and to develop a formula that can improve skin brightness and reduce hyperpigmented spots. In this study, we investigated the effects of OCA2 expression reduction on melanin levels, melanosome pH, and autophagy induction through siRNA knockdown. Additionally, we identified several bioactives that effectively reduce OCA2 expression. Ultimately, in a clinical trial, we demonstrated that topical application of those compounds significantly improved skin tone and dark spots compared to vitamin C, a typical brightening agent. These findings demonstrate that OCA2 is a promising target for the development of efficacious cosmetics and therapeutics designed to treat hyperpigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Hyun Jun
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| |
Collapse
|
8
|
Green DJ, Michaud V, Lasseaux E, Plaisant C, Fitzgerald T, Birney E, Black GC, Arveiler B, Sergouniotis PI. The co-occurrence of genetic variants in the TYR and OCA2 genes confers susceptibility to albinism. Nat Commun 2024; 15:8436. [PMID: 39349469 PMCID: PMC11443028 DOI: 10.1038/s41467-024-52763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Although rare genetic conditions are mostly caused by DNA sequence alterations that functionally disrupt individual genes, large-scale studies using genome sequencing have started to unmask additional complexity. Understanding how combinations of variants in different genes shape human phenotypes is expected to provide important insights into the clinical and genetic heterogeneity of rare disorders. Here, we use albinism, an archetypal rare condition associated with hypopigmentation, as an exemplar for the study of genetic interactions. We analyse data from the Genomics England 100,000 Genomes Project alongside a cohort of 1120 individuals with albinism, and investigate the effect of dual heterozygosity for the combination of two established albinism-related variants: TYR:c.1205 G > A (p.Arg402Gln) [rs1126809] and OCA2:c.1327 G > A (p.Val443Ile) [rs74653330]. As each of these changes alone is insufficient to cause disease when present in the heterozygous state, we sought evidence of synergistic effects. We show that, when both variants are present, the probability of receiving a diagnosis of albinism is significantly increased (odds ratio 12.8; 95% confidence interval 6.0 - 24.7; p-value 2.1 ×10-8). Further analyses in an independent cohort, the UK Biobank, support this finding and highlight that heterozygosity for the TYR:c.1205 G > A and OCA2:c.1327 G > A variant combination is associated with statistically significant alterations in visual acuity and central retinal thickness (traits that are considered albinism endophenotypes). The approach discussed in this report opens up new avenues for the investigation of oligogenic patterns in apparently Mendelian disorders.
Collapse
Affiliation(s)
- David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Benoît Arveiler
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
9
|
Michaud V, Sequeira A, Mercier E, Lasseaux E, Plaisant C, Hadj-Rabia S, Whalen S, Bonneau D, Dieux-Coeslier A, Morice-Picard F, Coursimault J, Arveiler B, Javerzat S. Unsuspected consequences of synonymous and missense variants in OCA2 can be detected in blood cell RNA samples of patients with albinism. Pigment Cell Melanoma Res 2024; 37:534-545. [PMID: 37650133 DOI: 10.1111/pcmr.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Oculocutaneous albinism type 2 (OCA2) is the second most frequent form of albinism and represents about 30% of OCA worldwide. As with all types of OCA, patients present with hypopigmentation of hair and skin, as well as severe visual abnormalities. We focused on a subgroup of 29 patients for whom genetic diagnosis was pending because at least one of their identified variants in or around exon 10 of OCA2 is of uncertain significance (VUS). By minigene assay, we investigated the effect of these VUS on exon 10 skipping and showed that not only intronic but also some synonymous variants can result in enhanced exon skipping. We further found that excessive skipping of exon 10 could be detected directly on blood samples of patients and of their one parent with the causal variant, avoiding invasive skin biopsies. Moreover, we show that variants, which result in lack of detectable OCA2 mRNA can be identified from blood samples as well, as shown for the most common OCA2 pathogenic missense variant c.1327G>A/p.(Val443Ile). In conclusion, blood cell RNA analysis allows testing the potential effect of any OCA2 VUS on transcription products. This should help to elucidate yet unsolved OCA2 patients and improve genetic counseling.
Collapse
Affiliation(s)
- Vincent Michaud
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, Bordeaux, France
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Angèle Sequeira
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, Bordeaux, France
| | - Elina Mercier
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), INSERM U1163, University of Paris, Imagine Institute, AP-HP5, Necker-Enfants Malades Hospital, Paris, France
| | - Sandra Whalen
- Clinical Genetics, Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, APHP, Sorbonne University, Hospital Armand Trousseau, Paris, France
| | | | - Anne Dieux-Coeslier
- Clinical Genetics Department, Reference Center for Developmental Anomalies, CHU Lille, Lille, France
| | - Fanny Morice-Picard
- Pediatric Dermatology Unit, National Center for Rare Skin Disorders, University Hospital of Bordeaux, Bordeaux, France
| | - Juliette Coursimault
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, Rouen, France
| | - Benoît Arveiler
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, Bordeaux, France
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Sophie Javerzat
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, Bordeaux, France
| |
Collapse
|
10
|
Zhou D, Eraslan Z, Miller D, Taylor I, You J, Grondin SJ, Vega M, Manga P, Goff PS, Sviderskaya EV, Gross SS, Chen Q, Zippin JH. Two-pore channel 2 is required for soluble adenylyl cyclase-dependent regulation of melanosomal pH and melanin synthesis. Pigment Cell Melanoma Res 2024; 37:656-666. [PMID: 38844435 PMCID: PMC11479823 DOI: 10.1111/pcmr.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Melanosomal pH is important for the synthesis of melanin as the rate-limiting enzyme, tyrosinase, is very pH-sensitive. The soluble adenylyl cyclase (sAC) signaling pathway was recently identified as a regulator of melanosomal pH in melanocytes; however, the melanosomal proteins critical for sAC-dependent regulation of melanosomal pH were undefined. We now systematically examine four well-characterized melanosomal membrane proteins to determine whether any of them are required for sAC-dependent regulation of melanosomal pH. We find that OA1, OCA2, and SLC45A2 are dispensable for sAC-dependent regulation of melanosomal pH. In contrast, TPC2 activity is required for sAC-dependent regulation of melanosomal pH and melanin synthesis. In addition, activation of TPC2 by NAADP-AM rescues melanosomal pH alkalinization and reduces melanin synthesis following pharmacologic or genetic inhibition of sAC signaling. These studies establish TPC2 as a critical melanosomal protein for sAC-dependent regulation of melanosomal pH and pigmentation.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zuhal Eraslan
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Isobel Taylor
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Jaewon You
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Samuel J Grondin
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Martha Vega
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Philip S Goff
- Cell Biology Research Section, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Elena V Sviderskaya
- Cell Biology Research Section, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
11
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
12
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
13
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
14
|
Yuan X, Dang Q, Li XL. Functional analysis of two mutation sites in the OCA2 gene. Sci Rep 2024; 14:14789. [PMID: 38926510 PMCID: PMC11208167 DOI: 10.1038/s41598-024-64782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To analyse the genetic aetiology of a child with oculocutaneous albinism and to explore the effects of two mutation sites on the function of the OCA2 protein at the mRNA and protein levels via the use of recombinant carriers in vitro. Whole-exome sequencing (WES) and Sanger sequencing were used to analyse the pathogenic genes of the child and validate the mutations in the parents. pEGFP and phage vectors carrying wild-type and mutant OCA2 were constructed using the coding DNA sequence (CDS) of the whole gene-synthesized OCA2 as a template and transfected into HEK293T cells, after which expression analysis was performed. The child in this study was born with white skin, hair, eyelashes, and eyebrows and exhibited nystagmus. Genetic analysis indicated that the child carried two heterozygous mutations: c.1079C > T (p.Ser360Phe) of maternal origin and c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) of paternal origin, conforming to an autosomal recessive inheritance pattern. In vitro analysis showed that the expression of the c.1079C > T (p.Ser360Phe) mutant did not significantly change at the mRNA level but did increase at the protein level, suggesting that the mutation may lead to enhanced protein stability, and the c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) mutation resulted in the loss of three amino acids in exon 10, producing a truncated protein. In vitro expression analysis also revealed that the expression of the mutant gene was significantly downregulated at both the mRNA and protein levels, suggesting that the mutation can simultaneously produce truncated proteins and lead to protein degradation. This case study enriches the phenotypic spectrum of OCA2 gene disease. In vitro expression analysis confirmed that both mutations affect protein expression, providing a theoretical basis for analysing the pathogenicity of these two mutations.
Collapse
Affiliation(s)
- XiaoHua Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, China.
| | - Qun Dang
- Department of Gynaecology and Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xue Lan Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
15
|
Deng Y, Qu X, Yao Y, Li M, He C, Guo S. Investigating the impact of pigmentation variation of breast muscle on growth traits, melanin deposition, and gene expression in Xuefeng black-bone chickens. Poult Sci 2024; 103:103691. [PMID: 38598910 PMCID: PMC11017053 DOI: 10.1016/j.psj.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.
Collapse
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaling Yao
- Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418200, Hunan, China
| | - Meichun Li
- Hunan Yunfeifeng Agriculture Co. Ltd., Huaihua 418200, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
16
|
Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Harris ML, Ungvari Z. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience 2024; 46:3105-3122. [PMID: 38182857 PMCID: PMC11009199 DOI: 10.1007/s11357-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Tamas Kiss
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
18
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
19
|
Ghosh Roy S, Bakhrat A, Abdu M, Afonso S, Pereira P, Carneiro M, Abdu U. Mutations in SLC45A2 lead to loss of melanin in parrot feathers. G3 (BETHESDA, MD.) 2024; 14:jkad254. [PMID: 37943814 PMCID: PMC10849330 DOI: 10.1093/g3journal/jkad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.
Collapse
Affiliation(s)
- Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Moty Abdu
- ST Lab Hashita 240, Sede Tzvi 85340, Israel
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
20
|
Wang Y, Chang Y, Gao M, Zang W, Liu X. Genetic analysis of albinism caused by compound heterozygous mutations of the OCA2 gene in a Chinese family. Hereditas 2024; 161:8. [PMID: 38317267 PMCID: PMC10845747 DOI: 10.1186/s41065-024-00312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a group of rare genetic disorders characterized by a reduced or complete lack of melanin in the skin, hair, and eyes. Patients present with colorless retina, pale pink iris, and pupil, and fear of light. The skin, eyebrows, hair, and other body hair are white or yellowish-white. These conditions are caused by mutations in specific genes necessary for the production of melanin. OCA is divided into eight clinical types (OCA1-8), each with different clinical phenotypes and potential genetic factors. This study aimed to identify the genetic causes of non-syndromic OCA in a Chinese Han family. METHODS We performed a comprehensive clinical examination of family members, screened for mutation loci using whole exome sequencing (WES) technology, and predicted mutations using In silico tools. RESULTS The patient's clinical manifestations were white skin, yellow hair, a few freckles on the cheeks and bridge of the nose, decreased vision, blue iris, poorly defined optic disk borders, pigmentation of the fundus being insufficient, and significant vascular exposure. The WES test results indicate that the patient has compound heterozygous mutations in the OCA2 gene (c.1258G > A (p.G420R), c.1441G > A (p.A481T), and c.2267-2 A > C), respectively, originating from her parents. Among them, c.1258G > A (p.G420R) is a de novo mutation with pathogenic. Our analysis suggests that compound heterozygous mutations in the OCA2 gene are the primary cause of the disease in this patient. CONCLUSIONS The widespread application of next-generation sequencing technologies such as WES in clinical practice can effectively replace conventional detection methods and assist in the diagnosis of clinical diseases more quickly and accurately. The newly discovered c.1258G > A (p.G420R) mutation can update and expand the gene mutation spectrum of OCA2-type albinism.
Collapse
Affiliation(s)
- Yanan Wang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China.
| | - Yujie Chang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Mingya Gao
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Weiwei Zang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Xiaofei Liu
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| |
Collapse
|
21
|
Nagy N, Pal M, Kun J, Galik B, Urban P, Medvecz M, Fabos B, Neller A, Abdolreza A, Danis J, Szabo V, Yang Z, Fenske S, Biel M, Gyenesei A, Adam E, Szell M. Missing Heritability in Albinism: Deep Characterization of a Hungarian Albinism Cohort Raises the Possibility of the Digenic Genetic Background of the Disease. Int J Mol Sci 2024; 25:1271. [PMID: 38279271 PMCID: PMC10817051 DOI: 10.3390/ijms25021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Albinism is characterized by a variable degree of hypopigmentation affecting the skin and the hair, and causing ophthalmologic abnormalities. Its oculocutaneous, ocular and syndromic forms follow an autosomal or X-linked recessive mode of inheritance, and 22 disease-causing genes are implicated in their development. Our aim was to clarify the genetic background of a Hungarian albinism cohort. Using a 22-gene albinism panel, the genetic background of 11 of the 17 Hungarian patients was elucidated. In patients with unidentified genetic backgrounds (n = 6), whole exome sequencing was performed. Our investigations revealed a novel, previously unreported rare variant (N687S) of the two-pore channel two gene (TPCN2). The N687S variant of the encoded TPC2 protein is carried by a 15-year-old Hungarian male albinism patient and his clinically unaffected mother. Our segregational analysis and in vitro functional experiments suggest that the detected novel rare TPCN2 variant alone is not a disease-causing variant in albinism. Deep genetic analyses of the family revealed that the patient also carries a phenotype-modifying R305W variant of the OCA2 protein, and he is the only family member harboring this genotype. Our results raise the possibility that this digenic combination might contribute to the observed differences between the patient and the mother, and found the genetic background of the disease in his case.
Collapse
Affiliation(s)
- Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Margit Pal
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Jozsef Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Bence Galik
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Peter Urban
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Marta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1095 Budapest, Hungary;
- ERN-Skin Reference Centre, Semmelweis University, 1095 Budapest, Hungary
| | - Beata Fabos
- Mor Kaposi Teaching Hospital of Somogy County, 7400 Kaposvar, Hungary;
| | - Alexandra Neller
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
| | - Aliasgari Abdolreza
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
| | - Judit Danis
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary;
- Department of Immunology, University of Szeged, 6720 Szeged, Hungary
| | - Viktoria Szabo
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Zhuo Yang
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany (M.B.)
| | - Attila Gyenesei
- Hungarian Centre for Genomics and Bioinformatics, Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (J.K.); (B.G.); (P.U.); (A.G.)
| | - Eva Adam
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| | - Marta Szell
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (M.P.); (A.N.); (A.A.); (E.A.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetic Research Group, 6720 Szeged, Hungary
| |
Collapse
|
22
|
Jiang B, Zhang H, Kan Y, Gao X, Du Z, Liu Q. Novel compound heterozygous mutations in OCA2 gene were identified in a Chinese family with oculocutaneous albinism. Mol Genet Genomic Med 2024; 12:e2297. [PMID: 37882226 PMCID: PMC10767448 DOI: 10.1002/mgg3.2297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a group of rare autosomal recessive disorders characterized by clinical genetic heterogeneity. OCA type II (OMIM: 203200) is the most common subtype among African and African Americans, primarily caused by pathogenic variants in the OCA2 (HGNC ID: 8101) gene. In this study, we presented a Chinese family with OCA and reported two novel variants in the OCA2 gene. METHODS Whole-exome sequencing (WES) was performed to identify pathogenic variants in the proband. The candidate variants were subsequently validated using Sanger sequencing and QPCR assay. Additionally, bioinformatics analyses were employed to predict the deleteriousness and conservation of the identified mutations. RESULTS In the 16-year-old male proband, two novel compound heterozygous OCA2 variants, NM_000275.3: c.1640T>G (NP_000266.2: p.L547R) and an exons 10-19 deletion variant, were identified. Meanwhile, a reported heterozygous variant c.1441G>A/p.A481T (NM_000275.3, NP_000266.2) in the OCA2 gene was also found in the proband. Sanger sequencing confirmed that the two variants c.1441G>A/p.A481T and c.1640T>G/p.L547R were inherited from his father. Moreover, qPCR assay revealed that the exons 10-19 deletion was inherited from the mother, his sister also carried this variant. Fortunately, the variant was not detected in the amniotic fluid of the proband's sister. Multiple online bioinformatics tools predicted the variant c.1640T>G to be damaging, leading to the replacement of a highly conserved leucine with an arginine. The gross exon 10-19 deletion in the OCA2 gene resulted in a truncated, non-functional protein losing the 3-9 transmembrane α-helices domains. According to the American College of Medical Genetics and Genomics classification, these three variants in the OCA2 gene were evaluated as likely pathogenic. CONCLUSION This study has identified two novel compound variants in the OCA2 gene and a previously reported variant in a Chinese family with OCA. By expanding the mutation spectrum of the OCA2 gene, our findings contribute to a better understanding of the genetic basis of OCA.
Collapse
Affiliation(s)
- Beilei Jiang
- Prenatal Diagnosis CenterBinhu District of Hefei First People's HospitalHefeiAnhuiChina
| | - Hua Zhang
- Prenatal Diagnosis CenterBinhu District of Hefei First People's HospitalHefeiAnhuiChina
| | - Yuling Kan
- Central LaboratoryBinzhou People's HospitalBinzhouShandongChina
| | - Xueping Gao
- Yinfeng Gene Technology Co, LtdJinanShandongChina
| | - Zhaoli Du
- Yinfeng Gene Technology Co, LtdJinanShandongChina
| | - Quan Liu
- Prenatal Diagnosis CenterBinhu District of Hefei First People's HospitalHefeiAnhuiChina
| |
Collapse
|
23
|
Robinson CD, Hale MD, Wittman TN, Cox CL, John-Alder HB, Cox RM. Species differences in hormonally mediated gene expression underlie the evolutionary loss of sexually dimorphic coloration in Sceloporus lizards. J Hered 2023; 114:637-653. [PMID: 37498153 DOI: 10.1093/jhered/esad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
Collapse
Affiliation(s)
| | - Matthew D Hale
- University of Virginia, Department of Biology, Charlottesville, VA, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Tyler N Wittman
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| | - Christian L Cox
- Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
| | - Henry B John-Alder
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States
| | - Robert M Cox
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| |
Collapse
|
24
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
25
|
Yusupova M, Zhou D, You J, Gonzalez-Guzman J, Ghanta MB, Pu H, Abdel-Malek Z, Chen Q, Gross SS, D'Orazio J, Ito S, Wakamatsu K, Harris ML, Zippin JH. Distinct cAMP Signaling Microdomains Differentially Regulate Melanosomal pH and Pigmentation. J Invest Dermatol 2023; 143:2019-2029.e3. [PMID: 37142186 PMCID: PMC10524761 DOI: 10.1016/j.jid.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
cAMP signaling is a well-established regulator of melanin synthesis. Two distinct cAMP signaling pathways-the transmembrane adenylyl cyclase pathway, activated primarily by the MC1R, and the soluble adenylyl cyclase (sAC) pathway-affect melanin synthesis. The sAC pathway affects melanin synthesis by regulating melanosomal pH, and the MC1R pathway affects melanin synthesis by regulating gene expression and post-translational modifications. However, whether MC1R genotype affects melanosomal pH is poorly understood. We now report that loss of function MC1R does not affect melanosomal pH. Thus, sAC signaling appears to be the only cAMP signaling pathway that regulates melanosomal pH. We also addressed whether MC1R genotype affects sAC-dependent regulation of melanin synthesis. Although sAC loss of function in wild-type human melanocytes stimulates melanin synthesis, sAC loss of function has no effect on melanin synthesis in MC1R nonfunctional human and mouse melanocytes or skin and hair melanin in e/e mice. Interestingly, activation of transmembrane adenylyl cyclases, which increases epidermal eumelanin synthesis in e/e mice, leads to enhanced production of eumelanin in sAC-knockout mice relative to that in sAC wild-type mice. Thus, MC1R- and sAC-dependent cAMP signaling pathways define distinct mechanisms that regulate melanosomal pH and pigmentation.
Collapse
Affiliation(s)
- Maftuna Yusupova
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Dalee Zhou
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Jaewon You
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Jeydi Gonzalez-Guzman
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megha B Ghanta
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hong Pu
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - John D'Orazio
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Melissa L Harris
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan H Zippin
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA; Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA; Englander Institute of Precision Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
26
|
King C, Fowler JC, Abnizova I, Sood RK, Hall MWJ, Szeverényi I, Tham M, Huang J, Young SM, Hall BA, Birgitte Lane E, Jones PH. Somatic mutations in facial skin from countries of contrasting skin cancer risk. Nat Genet 2023; 55:1440-1447. [PMID: 37537257 PMCID: PMC10484783 DOI: 10.1038/s41588-023-01468-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes.
Collapse
Affiliation(s)
| | | | | | | | - Michael W J Hall
- Wellcome Sanger Institute, Hinxton, UK
- Department of Oncology, University of Cambridge, Hutchinson Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Ildikó Szeverényi
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agricultural and Life Sciences, Keszthely, Hungary
| | - Muly Tham
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jingxiang Huang
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, University of Cambridge, Hutchinson Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
27
|
Sharma N, Sharma A, Motiani RK. A novel gain of function mutation in TPC2 reiterates pH-pigmentation interplay: Emerging role of ionic homeostasis as a master pigmentation regulator. Cell Calcium 2023; 111:102705. [PMID: 36841139 PMCID: PMC7614517 DOI: 10.1016/j.ceca.2023.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Pigmentation is a complex physiological phenomenon that protects from UV induced damage. Perturbations in pigmentation pathways lead to pigmentary disorders such as vitiligo, albinism and Darier...s disease. Emerging literature implicates a critical role of ionic homeostasis and pH in regulating pigmentation. In a recent study, Wang et al. identified a novel gain of function mutation in a non-selective cation channel "Two Pore Channel 2" (TPC2) that is responsible for albinism in a human patient. The authors demonstrate that this mutation leads to constitutive activation of TPC2 thereby modulating cellular calcium dynamics and inducing changes in the lysosomal pH. Further, authors generated a knock in mice with homologous TPC2 mutation and corroborated a causative role for this mutation in albinism. It is an exciting study that reports a novel TPC2 mutation, which is responsible for albinism in an autosomal dominant inheritance fashion. Since TPC2 is localized on melanosomes as well, going forward it would be interesting to investigate the role of this mutation on melanosomal calcium dynamics and alterations in melanosomal pH.
Collapse
Affiliation(s)
- Nutan Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, 121001, Delhi-NCR, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, 121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, 121001, Delhi-NCR, India.
| |
Collapse
|
28
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
29
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
30
|
A gain-of-function TPC2 variant R210C increases affinity to PI(3,5)P 2 and causes lysosome acidification and hypopigmentation. Nat Commun 2023; 14:226. [PMID: 36641477 PMCID: PMC9840614 DOI: 10.1038/s41467-023-35786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Albinism is a group of inherited disorders mainly affecting skin, hair and eyes. Here we identify a de novo point mutation, p.R210C, in the TPCN2 gene which encodes Two Pore Channel 2 (TPC2) from a patient with albinism. TPC2 is an endolysosome and melanosome localized non-selective cation channel involved in regulating pigment production. Through inside-out recording of plasma membrane targeted TPC2 and direct recording of enlarged endolysosomal vacuoles, we reveal that the R210C mutant displays constitutive channel activation and markedly increased affinity to PI(3,5)P2. Mice harboring the homologous mutation, R194C, also exhibit hypopigmentation in the fur and skin, as well as less pigment and melanosomes in the retina in a dominant inheritance manner. Moreover, mouse embryonic fibroblasts carrying the R194C mutation show enlarged endolysosomes, enhanced lysosomal Ca2+ release and hyper-acidification. Our data suggest that R210C is a pathogenic gain-of-function TPC2 variant that underlies an unusual dominant type of albinism.
Collapse
|
31
|
You J, Yusupova M, Zippin JH. The potential impact of melanosomal pH and metabolism on melanoma. Front Oncol 2022; 12:887770. [PMID: 36483028 PMCID: PMC9723380 DOI: 10.3389/fonc.2022.887770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Melanin is synthesized in melanocytes and is transferred into keratinocytes to block the effects of ultraviolet (UV) radiation and is important for preventing skin cancers including melanoma. However, it is known that after melanomagenesis and melanoma invasion or metastases, melanin synthesis still occurs. Since melanoma cells are no longer involved in the sun tanning process, it is unclear why melanocytes would maintain melanin synthesis after melanomagenesis has occurred. Aside from blocking UV-induced DNA mutation, melanin may provide other metabolic functions that could benefit melanoma. In addition, studies have suggested that there may be a selective advantage to melanin synthesis in melanoma; however, mechanisms regulating melanin synthesis outside the epidermis or hair follicle is unknown. We will discuss how melanosomal pH controls melanin synthesis in melanocytes and how melanosomal pH control of melanin synthesis might function in melanoma. We will also discuss potential reasons why melanin synthesis might be beneficial for melanoma cellular metabolism and provide a rationale for why melanin synthesis is not limited to benign melanocytes.
Collapse
|
32
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
33
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS, The BIO306W Consortium. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
34
|
Zhong Z, Zhou Z, Chen J, Zhang J. Identification of 12 OCA Cases in Chinese Population and Two Novel Variants. Front Genet 2022; 13:926511. [PMID: 35923705 PMCID: PMC9340472 DOI: 10.3389/fgene.2022.926511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
OCA (oculocutaneous albinism) refers to a group of heterogeneous congenital disorders of which the common manifestations are variable degrees of cutaneous hypopigmentation and significant visual impairment, including poor visual acuity, photophobia, and nystagmus. Molecular analysis may elucidate its pathogenesis and be in favor of accurate diagnosis. High-throughput sequencing and Sanger sequencing were performed to detect mutational alleles and in silico analysis was performed for prediction of variant pathogenicity. Ten TYR-related and two OCA2-related patients were identified with 16 different variants with potential pathogenicity. Two novel missense variants [TYR: c.623T > G, p(Leu208Arg) and OCA2: c.1325A > G, p(Asn442Ser)] are identified in this study, and three OCA cases are reported for the first time in Chinese population based on their associated variants. Analysis of crystal structures of TYR ortholog and its paralog TYRP1 suggests that the substitution of Leu208 may have an impact on protein stability. This study may facilitate OCA diagnosis by expanding the mutational spectrum of TYR and OCA2 as well as further basic studies about these two genes.
Collapse
Affiliation(s)
- Zilin Zhong
- Birth Defect Group, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Chen
- Birth Defect Group, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jianjun Chen, Jun Zhang,
| | - Jun Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jianjun Chen, Jun Zhang,
| |
Collapse
|
35
|
Liu Y, Chi W, Tao L, Wang G, Deepak RK, Sheng L, Chen T, Feng Y, Cao X, Cheng L, Zhao X, Liu X, Deng H, Fan H, Jiang P, Chen L. Ablation of H+/glucose Exporter SLC45A2 Enhances Melanosomal Glycolysis to Inhibit Melanin Biosynthesis and Promote Melanoma Metastasis. J Invest Dermatol 2022; 142:2744-2755.e9. [DOI: 10.1016/j.jid.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023]
|
36
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
37
|
In vitro disease modeling of oculocutaneous albinism type 1 and 2 using human induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Reports 2022; 17:173-186. [PMID: 35021041 PMCID: PMC8758966 DOI: 10.1016/j.stemcr.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Oculocutaneous albinism (OCA) encompasses a set of autosomal recessive genetic conditions that affect pigmentation in the eye, skin, and hair. OCA patients display reduced best-corrected visual acuity, reduced to absent ocular pigmentation, abnormalities in fovea development, and/or abnormal decussation of optic nerve fibers. It has been hypothesized that improving eye pigmentation could prevent or rescue some of the vision defects. The goal of the present study was to develop an in vitro model for studying pigmentation defects in human retinal pigment epithelium (RPE). We developed a “disease in a dish” model for OCA1A and OCA2 types using induced pluripotent stem cells to generate RPE. The RPE is a monolayer of cells that are pigmented, polarized, and polygonal in shape, located between the neural retina and choroid, with an important role in vision. Here we show that RPE tissue derived in vitro from OCA patients recapitulates the pigmentation defects seen in albinism, while retaining the apical-basal polarity and normal polygonal morphology of the constituent RPE cells. We established a human iPSC-based in vitro model for oculocutaneous albinism (OCA) iRPE derived from OCA-iPSC retains apical-basal polarity and polygonal morphology OCA-iRPE recapitulates the pigmentation defect seen in albinism Excess pre-melanosomes and scarce mature melanosomes are found in OCA-iRPE
Collapse
|
38
|
Sirés-Campos J, Lambertos A, Delevoye C, Raposo G, Bennett DC, Sviderskaya E, Jiménez-Cervantes C, Olivares C, García-Borrón JC. Mahogunin Ring Finger 1 regulates pigmentation by controlling the pH of melanosomes in melanocytes and melanoma cells. Cell Mol Life Sci 2021; 79:47. [PMID: 34921635 PMCID: PMC8738503 DOI: 10.1007/s00018-021-04053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.
Collapse
Affiliation(s)
- Julia Sirés-Campos
- University of Murcia, Murcia, Spain.,Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France
| | | | - Cédric Delevoye
- Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France.,Institut Curie, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, CNRS, 75005, Paris, France
| | - Graça Raposo
- Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France.,Institut Curie, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, CNRS, 75005, Paris, France
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Elena Sviderskaya
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, SW17 0RE, UK
| | | | | | | |
Collapse
|
39
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Figon F, Hurbain I, Heiligenstein X, Trépout S, Lanoue A, Medjoubi K, Somogyi A, Delevoye C, Raposo G, Casas J. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proc Natl Acad Sci U S A 2021; 118:e2103020118. [PMID: 34433668 PMCID: PMC8536372 DOI: 10.1073/pnas.2103020118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| | - Ilse Hurbain
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | | | - Sylvain Trépout
- Institut Curie, INSERM U1196, CNRS UMR 9187, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, Équipe d'Accueil 2106, Université de Tours, 37200 Tours, France
| | | | | | - Cédric Delevoye
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| |
Collapse
|
41
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Chen Q, Zhou D, Abdel-Malek Z, Zhang F, Goff PS, Sviderskaya EV, Wakamatsu K, Ito S, Gross SS, Zippin JH. Measurement of Melanin Metabolism in Live Cells by [U- 13C]-L-Tyrosine Fate Tracing Using Liquid Chromatography-Mass Spectrometry. J Invest Dermatol 2021; 141:1810-1818.e6. [PMID: 33549605 PMCID: PMC8830938 DOI: 10.1016/j.jid.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Melanin synthesis occurs within a specialized organelle called the melanosome. Traditional methods for measuring melanin levels rely on the detection of chemical degradation products of melanin by high-performance liquid chromatography. Although these methods are robust, they are unable to distinguish between melanin synthesis and degradation and are best suited to measure melanin changes over long periods of time. We developed a method that actively measures both eumelanin and pheomelanin synthesis by fate tracing [U-13C] L-tyrosine using liquid chromatography-mass spectrometry. Using this method, we confirmed the previous reports of the differences in melanin synthesis between melanocytes derived from individuals with different skin colors and MC1R genotype and uncovered new information regarding the differential de novo synthesis of eumelanin and pheomelanin, also called mixed melanogenesis. We also revealed that distinct mechanisms that alter melanosomal pH differentially induce new eumelanin and pheomelanin synthesis. Finally, we revealed that the synthesis of L-3,4-dihydroxyphenylalanine, an important metabolite of L-tyrosine, is differentially controlled by multiple factors. Because L-tyrosine fate tracing is compatible with untargeted liquid chromatography-mass spectrometry‒based metabolomics, this approach enables the broad measurement of cellular metabolism in combination with melanin metabolism, and we anticipate that this approach will shed new light on multiple mechanisms of melanogenesis.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Dalee Zhou
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fengli Zhang
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Philip S Goff
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Steven S Gross
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA; Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
44
|
Dilshat R, Vu HN, Steingrímsson E. Epigenetic regulation during melanocyte development and homeostasis. Exp Dermatol 2021; 30:1033-1050. [PMID: 34003523 DOI: 10.1111/exd.14391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Melanocytes originate in the neural crest as precursor cells which then migrate and proliferate to reach their destination where they differentiate into pigment-producing cells. Melanocytes not only determine the colour of hair, skin and eyes but also protect against the harmful effects of UV irradiation. The establishment of the melanocyte lineage is regulated by a defined set of transcription factors and signalling pathways that direct the specific gene expression programmes underpinning melanoblast specification, survival, migration, proliferation and differentiation. In addition, epigenetic modifiers and replacement histones play key roles in regulating gene expression and its timing during the different steps of this process. Here, we discuss the evidence for the role of epigenetic regulators in melanocyte development and function and how they interact with transcription factors and signalling pathways to establish and maintain this important cell lineage.
Collapse
Affiliation(s)
- Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
45
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
46
|
Ostojić J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, Montminy M. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep 2021; 35:109136. [PMID: 34010639 DOI: 10.1016/j.celrep.2021.109136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic AMP pathway promotes melanocyte differentiation by activating CREB and the cAMP-regulated transcription co-activators 1-3 (CRTC1-3). Differentiation is dysregulated in melanomas, although the contributions of CRTC proteins is unclear. We report a selective differentiation impairment in CRTC3 KO melanocytes and melanoma cells, due to downregulation of oculo-cutaneous albinism II (OCA2) and block of melanosome maturation. CRTC3 stimulates OCA2 expression by binding to CREB on a conserved enhancer, a regulatory site for pigmentation and melanoma risk. CRTC3 is uniquely activated by ERK1/2-mediated phosphorylation at Ser391 and by low levels of cAMP. Phosphorylation at Ser391 is constitutively elevated in human melanoma cells with hyperactivated ERK1/2 signaling; knockout of CRTC3 in this setting impairs anchorage-independent growth, migration, and invasiveness, whereas CRTC3 overexpression supports cell survival in response to the mitogen-activated protein kinase (MAPK) inhibitor vemurafenib. As melanomas expressing gain-of-function mutations in CRTC3 are associated with reduced survival, our results suggest that CRTC3 inhibition may provide therapeutic benefit in this setting.
Collapse
Affiliation(s)
- Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Billy Nguyen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maxim Shokhirev
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Scales JL, Koroma DC, Oancea E. Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL. Methods Enzymol 2021; 654:315-344. [PMID: 34120720 PMCID: PMC11869214 DOI: 10.1016/bs.mie.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes. Defects in genes encoding pH-regulating melanosomal proteins result in oculocutaneous albinism, which is characterized by hypopigmentation, impaired vision, and increased susceptibility to skin and eye cancers. We recently uncovered several ion channels and transporters that modulate melanin synthesis by acidifying or neutralizing the luminal pH of melanosomes. However, our understanding of how melanosomes and other related organelles maintain their luminal pH is far from complete. The study of melanosome pH regulation requires robust imaging and quantification tools. Despite recent advances in the development of such methods, many limitations remain, particularly for quantitative analysis of individual organelle pH. In this chapter, we will provide an overview of the available methods used for melanosome pH determination, including their advantages, limitations, and challenges. To address the critical, unmet need for reliable melanosome pH quantification tools, we engineered a novel genetically encoded, ratiometric pH sensor for melanosomes that we named RpHiMEL. Here, we describe the design and optimization of RpHiMEL, and provide a pH quantification method for individual melanosomes in live cells. We demonstrate that RpHiMEL is a highly versatile tool with the potential to advance our understanding of pH regulation in melanosomes and related organelles.
Collapse
Affiliation(s)
- Jessica L Scales
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Donald C Koroma
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States.
| |
Collapse
|
48
|
Feng Y, McQuillan MA, Tishkoff SA. Evolutionary genetics of skin pigmentation in African populations. Hum Mol Genet 2021; 30:R88-R97. [PMID: 33438000 PMCID: PMC8117430 DOI: 10.1093/hmg/ddab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Skin color is a highly heritable human trait, and global variation in skin pigmentation has been shaped by natural selection, migration and admixture. Ethnically diverse African populations harbor extremely high levels of genetic and phenotypic diversity, and skin pigmentation varies widely across Africa. Recent genome-wide genetic studies of skin pigmentation in African populations have advanced our understanding of pigmentation biology and human evolutionary history. For example, novel roles in skin pigmentation for loci near MFSD12 and DDB1 have recently been identified in African populations. However, due to an underrepresentation of Africans in human genetic studies, there is still much to learn about the evolutionary genetics of skin pigmentation. Here, we summarize recent progress in skin pigmentation genetics in Africans and discuss the importance of including more ethnically diverse African populations in future genetic studies. In addition, we discuss methods for functional validation of adaptive variants related to skin pigmentation.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
50
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|