1
|
Montilla‐Rojo J, Eleveld TF, van Soest M, Hillenius S, Timmerman DM, Gillis AJM, Roelen BAJ, Mummery CL, Looijenga LHJ, Salvatori DCF. Depletion of TP53 in Human Pluripotent Stem Cells Triggers Malignant-Like Behavior. Adv Biol (Weinh) 2025; 9:e2400538. [PMID: 39760438 PMCID: PMC12001006 DOI: 10.1002/adbi.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Human pluripotent stem cells (hPSCs) tend to acquire genetic aberrations upon culture in vitro. Common aberrations are mutations in the tumor suppressor TP53, suspected to confer a growth-advantage to the mutant cells. However, their full impact in the development of malignant features and safety of hPSCs for downstream applications is yet to be elucidated. Here, TP53 is knocked out in hPSCs using CRISPR-Cas9 and compared them with isogenic wild-type hPSCs and human germ cell tumor lines as models of malignancy. While no major changes in proliferation, pluripotency, and transcriptomic profiles are found, mutant lines display aberrations in some of the main chromosomal hotspots for genetic abnormalities in hPSCs. Additionally, enhanced clonogenic and anchorage-free growth, alongside resistance to chemotherapeutic compounds is observed. The results indicate that common TP53-depleting mutations in hPSCs, although potentially overlooked by standard analyses, can impact their behavior and safety in a clinical setting.
Collapse
Affiliation(s)
- Joaquin Montilla‐Rojo
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Thomas F. Eleveld
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | - Marnix van Soest
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Sanne Hillenius
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | | | - Ad J. M. Gillis
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | - Bernard A. J. Roelen
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeiden2333 ZCThe Netherlands
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
- Department of PathologyUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Daniela C. F. Salvatori
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| |
Collapse
|
2
|
Kaatsch HL, Kubitscheck L, Wagner S, Hantke T, Preiss M, Ostheim P, Nestler T, Piechotka J, Overhoff D, Brockmann MA, Waldeck S, Port M, Ullmann R, Becker BV. Routine CT Diagnostics Cause Dose-Dependent Gene Expression Changes in Peripheral Blood Cells. Int J Mol Sci 2025; 26:3185. [PMID: 40243988 PMCID: PMC11989232 DOI: 10.3390/ijms26073185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The increasing use of computed tomography (CT) has led to a rise in cumulative radiation dose due to medical imaging, raising concerns about potential long-term adverse effects. Large-scale epidemiological studies indicate a higher tumor incidence associated with CT examinations, but the underlying biological mechanisms remain largely unexplained. To gain further insights into the cellular response triggered by routine CT diagnostics, we investigated CT-induced changes of gene expression in peripheral blood cells using whole transcriptome sequencing. RNA was isolated from peripheral blood cells of 40 male patients with asymptomatic microhematuria, sampled before and after multi-phase abdominal CT (CTDIvol: 3.75-26.95 mGy, median: 6.55 mGy). On average, 22.11 million sequence reads (SD 5.71) per sample were generated to identify differentially expressed genes 6 h post-exposure by means of DESeq2. To assess the dose dependency of CT-induced effects, we additionally divided samples into three categories: low exposure (≤6.55 mGy, n = 20), medium exposure (>6.55 mGy and <12 mGy, n = 16), and high exposure (≥12 mGy, n = 4), and repeated gene expression analysis for each subset and their corresponding prae-exposure sample. CT exposure caused consistent and dose-dependent upregulation of six genes (EDA2R, AEN, FDXR, DDB2, PHLDA3, and MIR34AHG; padj < 0.1). These genes share several functional commonalities, including regulation by TP53 and involvement in the DNA damage response. The biological pathways highlighted by Gene Set Enrichment Analysis (GSEA) suggest a dose-dependent increase of cellular damage and metabolic particularities in the low-exposure subset, which may be related to a potential adaptive cellular response to low-dose irradiation. Irrespective of applied dose, AEN emerged as the most robust biomarker for CT exposure among all genes. Routine abdominal CT scans cause dose-dependent gene deregulation in association with DNA damage in peripheral blood cells after in vivo exposure. Regarding risk assessment of CT, our results support the commonly applied "As Low-As -Reasonably Achievable (ALARA)" principle. Evidence of additional gene expression changes associated with metabolic processes indicates a rather complex molecular response beyond DNA damage after CT exposure, and emphasizes the need for further targeted investigations.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Laura Kubitscheck
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Simon Wagner
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Thomas Hantke
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Maximilian Preiss
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Tim Nestler
- Department of Urology, Bundeswehr Central Hospital, 56072 Koblenz, Germany
| | - Joel Piechotka
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Benjamin V. Becker
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Camps-Fajol C, Cavero D, Minguillón J, Surrallés J. Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment. Pharmacol Res 2025; 211:107544. [PMID: 39667542 DOI: 10.1016/j.phrs.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases. Despite the development of PPI modulators is challenging, advances in the genetic, proteomic and computational level have facilitated their discovery and optimization. Focusing on anticancer drugs, in the last years several PPI modulators have entered clinical trials and venetoclax, which targets Bcl-2 family proteins, has been approved for treating different types of leukemia. This review discusses the clinical development status of drugs modulating several PPIs, such as MDM2-4/p53, Hsp90/Hsp90, Hsp90/CDC37, c-Myc/Max, KRAS/SOS1, CCR5/CCL5, CCR2/CCL2 or Smac/XIAP, in cancer drug discovery.
Collapse
Affiliation(s)
- Cristina Camps-Fajol
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Debora Cavero
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Jordi Minguillón
- CIBERER-ISCIII, IdiPAZ-CNIO Translational Research Unit in Pediatric Hemato-Oncology, La Paz University Hospital Research Institute; Spanish National Cancer Center, Madrid, Spain; Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Jordi Surrallés
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
4
|
Li Q, Zhang Y, Luo S, Zhang Z, Oberg AL, Kozono DE, Lu H, Sarkaria JN, Ma L, Wang L. Identify Non-mutational p53 Functional Deficiency in Human Cancers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae064. [PMID: 39325855 PMCID: PMC11702981 DOI: 10.1093/gpbjnl/qzae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
An accurate assessment of p53's functional statuses is critical for cancer genomic medicine. However, there is a significant challenge in identifying tumors with non-mutational p53 inactivation which is not detectable through DNA sequencing. These undetected cases are often misclassified as p53-normal, leading to inaccurate prognosis and downstream association analyses. To address this issue, we built the support vector machine (SVM) models to systematically reassess p53's functional statuses in TP53 wild-type (TP53WT) tumors from multiple The Cancer Genome Atlas (TCGA) cohorts. Cross-validation demonstrated the good performance of the SVM models with a mean area under the receiver operating characteristic curve (AUROC) of 0.9822, precision of 0.9747, and recall of 0.9784. Our study revealed that a significant proportion (87%-99%) of TP53WT tumors actually had compromised p53 function. Additional analyses uncovered that these genetically intact but functionally impaired (termed as predictively reduced function of p53 or TP53WT-pRF) tumors exhibited genomic and pathophysiologic features akin to TP53-mutant tumors: heightened genomic instability and elevated levels of hypoxia. Clinically, patients with TP53WT-pRF tumors experienced significantly shortened overall survival or progression-free survival compared to those with predictively normal function of p53 (TP53WT-pN) tumors, and these patients also displayed increased sensitivity to platinum-based chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Qianpeng Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sicheng Luo
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ann L Oberg
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - David E Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lina Ma
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Wang
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, MN 55904, USA
| |
Collapse
|
5
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
6
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
7
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
8
|
Fito-Lopez B, Salvadores M, Alvarez MM, Supek F. Prevalence, causes and impact of TP53-loss phenocopying events in human tumors. BMC Biol 2023; 21:92. [PMID: 37095494 PMCID: PMC10127307 DOI: 10.1186/s12915-023-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND TP53 is a master tumor suppressor gene, mutated in approximately half of all human cancers. Given the many regulatory roles of the corresponding p53 protein, it is possible to infer loss of p53 activity - which may occur due to alterations in trans - from gene expression patterns. Several such alterations that phenocopy p53 loss are known, however additional ones may exist, but their identity and prevalence among human tumors are not well characterized. RESULTS We perform a large-scale statistical analysis on transcriptomes of ~ 7,000 tumors and ~ 1,000 cell lines, estimating that 12% and 8% of tumors and cancer cell lines, respectively, phenocopy TP53 loss: they are likely deficient in the activity of the p53 pathway, while not bearing obvious TP53 inactivating mutations. While some of these cases are explained by amplifications in the known phenocopying genes MDM2, MDM4 and PPM1D, many are not. An association analysis of cancer genomic scores jointly with CRISPR/RNAi genetic screening data identified an additional common TP53-loss phenocopying gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment in 2.9-7.6% of breast, bladder, lung, liver and stomach tumors, and have comparable effect size to MDM4 amplifications. Additionally, in the known copy number alteration (CNA) segment harboring MDM2, we identify an additional co-amplified gene (CNOT2) that may cooperatively boost the TP53 functional inactivation effect of MDM2. An analysis of cancer cell line drug screens using phenocopy scores suggests that TP53 (in)activity commonly modulates associations between anticancer drug effects and various genetic markers, such as PIK3CA and PTEN mutations, and should thus be considered as a drug activity modifying factor in precision medicine. As a resource, we provide the drug-genetic marker associations that differ depending on TP53 functional status. CONCLUSIONS Human tumors that do not bear obvious TP53 genetic alterations but that phenocopy p53 activity loss are common, and the USP28 gene deletions are one likely cause.
Collapse
Affiliation(s)
- Bruno Fito-Lopez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marina Salvadores
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Miguel-Martin Alvarez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Schüle S, Hackenbroch C, Beer M, Muhtadi R, Hermann C, Stewart S, Schwanke D, Ostheim P, Port M, Scherthan H, Abend M. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int J Radiat Biol 2023; 99:1584-1594. [PMID: 36988552 DOI: 10.1080/09553002.2023.2194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Daniel Schwanke
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
10
|
Szwarc MM, Guarnieri AL, Joshi M, Duc HN, Laird MC, Pandey A, Khanal S, Dohm E, Bui AK, Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. FAM193A is a positive regulator of p53 activity. Cell Rep 2023; 42:112230. [PMID: 36897777 PMCID: PMC10164416 DOI: 10.1016/j.celrep.2023.112230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna L Guarnieri
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison C Laird
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dohm
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aimee K Bui
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Stein EM, DeAngelo DJ, Chromik J, Chatterjee M, Bauer S, Lin CC, Suarez C, de Vos F, Steeghs N, Cassier PA, Tai D, Kiladjian JJ, Yamamoto N, Mous R, Esteve J, Minami H, Ferretti S, Guerreiro N, Meille C, Radhakrishnan R, Pereira B, Mariconti L, Halilovic E, Fabre C, Carpio C. Results from a First-in-Human Phase I Study of Siremadlin (HDM201) in Patients with Advanced Wild-Type TP53 Solid Tumors and Acute Leukemia. Clin Cancer Res 2022; 28:870-881. [PMID: 34862243 PMCID: PMC9377734 DOI: 10.1158/1078-0432.ccr-21-1295] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE This phase I, dose-escalation study investigated the recommended dose for expansion (RDE) of siremadlin, a p53-MDM2 inhibitor, in patients with wild-type TP53 advanced solid or hematologic cancers. PATIENTS AND METHODS Initial dosing regimens were: 1A (day 1; 21-day cycle; dose 12.5-350 mg) and 2A (days 1-14; 28-day cycle; dose 1-20 mg). Alternative regimens included 1B (days 1 and 8; 28-day cycle) and 2C (days 1-7; 28-day cycle). The primary endpoint was incidence of dose-limiting toxicities (DLT) during cycle 1. RESULTS Overall, 115 patients with solid tumors and 93 with hematologic malignancies received treatment. DLTs occurred in 8/92 patients with solid tumors and 10/53 patients with hematologic malignancies. In solid tumors, an RDE of 120 mg was defined in 1B. In hematologic tumors, RDEs were defined in 1A: 250 mg, 1B: 120 mg, and 2C: 45 mg. More patients with hematologic malignancies compared with solid tumors experienced grade 3/4 treatment-related adverse events (71% vs. 45%), most commonly resulting from myelosuppression. These were more frequent and severe in patients with hematologic malignancies; 22 patients exhibited tumor lysis syndrome. Overall response rates at the RDEs were 10.3% [95% confidence interval (CI), 2.2-27.4] in solid tumors and 4.2% (95% CI, 0.1-21.1), 20% (95% CI, 4.3-48.1), and 22.2% (95% CI, 8.6-42.3) in acute myeloid leukemia (AML) in 1B, 1A, and 2C, respectively. CONCLUSIONS A common safety profile was identified and preliminary activity was noted, particularly in AML. Comprehensive investigation of dosing regimens yielded recommended doses/regimens for future combination studies.
Collapse
Affiliation(s)
- Eytan M. Stein
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Author: Eytan M. Stein, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, David H. Koch Center for Cancer Care, 530 East 74th Street, New York, NY 10021. Phone: 646-608-3749; Fax: 212-772-8550; E-mail:
| | - Daniel J. DeAngelo
- Division of Leukemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jörg Chromik
- Department of Medical Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Consortium of Translational Cancer Research (DKTK), Essen, Germany
| | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | - Cristina Suarez
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Filip de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - David Tai
- National Cancer Center Singapore, Singapore
| | | | | | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Hironobu Minami
- Kobe University Graduate School of Medicine and Hospital, Japan
| | | | | | | | | | - Bernard Pereira
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Luisa Mariconti
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Claire Fabre
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cecilia Carpio
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Kung CP, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022; 10:818744. [PMID: 35155432 PMCID: PMC8833255 DOI: 10.3389/fcell.2022.818744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies’ greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| | - Jason D. Weber
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| |
Collapse
|
13
|
Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat Biotechnol 2022; 40:896-905. [DOI: 10.1038/s41587-021-01160-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
|
14
|
Chamberlain V, Drew Y, Lunec J. Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53 WT Uterine Leiomyosarcoma. Cancers (Basel) 2021; 14:cancers14010014. [PMID: 35008180 PMCID: PMC8750798 DOI: 10.3390/cancers14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
As there is no optimal therapeutic strategy defined for women with advanced or recurrent uLMS, there is an urgent need for the discovery of novel, targeted approaches. One such area of interest is the pharmacological inhibition of the MDM2-p53 interaction with small-molecular-weight MDM2 inhibitors. Growth inhibition and cytotoxic assays were used to evaluate uLMS cell line responses to MDM2 inhibitors as single agents and in combination, qRT-PCR to assess transcriptional changes and Caspase-Glo 3/7 assay to detect apoptosis. RG7388 and HDM201 are potent, selective antagonists of the MDM2-p53 interaction that can effectively stabilise and activate p53 in a dose-dependent manner. GSK2830371, a potent and selective WIP1 phosphatase inhibitor, was shown to significantly potentiate the growth inhibitory effects of RG7388 and HDM201, and significantly increase the mRNA expression of p53 transcriptional target genes in a p53WT cell line at a concentration that has no growth inhibitory effects as a single agent. RG7388, HDM201 and GSK2830371 failed to induce apoptosis as single agents; however, a combination treatment tipped cells into apoptosis from senescence. These data present the possibility of MDM2 and WIP1 inhibitor combinations as a potential treatment option for p53WT uLMS patients that warrants further investigation.
Collapse
Affiliation(s)
- Victoria Chamberlain
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
| | - Yvette Drew
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- BC Cancer Centre Vancouver and Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 4EH, Canada
| | - John Lunec
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- Correspondence:
| |
Collapse
|
15
|
Abdul Razak AR, Bauer S, Suarez C, Lin CC, Quek R, Hütter-Krönke ML, Cubedo R, Ferretti S, Guerreiro N, Jullion A, Orlando EJ, Clementi G, Sand Dejmek J, Halilovic E, Fabre C, Blay JY, Italiano A. Co-Targeting of MDM2 and CDK4/6 with Siremadlin and Ribociclib for the Treatment of Patients with Well-Differentiated or Dedifferentiated Liposarcoma: Results From a Proof-of-Concept, Phase Ib Study. Clin Cancer Res 2021; 28:1087-1097. [PMID: 34921024 DOI: 10.1158/1078-0432.ccr-21-1291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are characterized by co-amplification of the murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) oncogenes. Siremadlin, a p53-MDM2 inhibitor, was combined with ribociclib, a CDK4/6 inhibitor, in patients with locally advanced/metastatic WDLPS or DDLPS who had radiologically progressed on, or despite, prior systemic therapy. METHODS In this proof-of-concept, phase Ib, dose-escalation study, patients received siremadlin and ribociclib across different regimens until unacceptable toxicity, disease progression, and/or treatment discontinuation: Regimen A (4-week cycle: siremadlin once daily [QD] and ribociclib QD, [2 weeks on, 2 weeks off]); Regimen B (3-week cycle: siremadlin once every 3 weeks; ribociclib QD [2 weeks on, 1 week off]); Regimen C (4-week cycle: siremadlin once every 4 weeks; ribociclib QD [2 weeks on, 2 weeks off]). The primary objective was to determine the maximum tolerated dose and/or recommended dose for expansion (RDE) of siremadlin plus ribociclib in one or more regimens. RESULTS As of 16 October 2019 (last patient last visit), 74 patients had enrolled. Median duration of exposure was 13 (range, 1-174) weeks. Dose-limiting toxicities occurred in 10 patients, most of which were Grade 3/4 hematologic events. The RDE was siremadlin 120 mg every 3 weeks plus ribociclib 200 mg QD (Regimen B). Three patients achieved a partial response, and 38 achieved stable disease. One patient (Regimen C) died as a result of treatment-related hematotoxicity. CONCLUSION Siremadlin plus ribociclib demonstrated manageable toxicity and early signs of antitumor activity in patients with advanced WDLPS or DDLPS.
Collapse
Affiliation(s)
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany; DKTK partner site Essen and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Cristina Suarez
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO)
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital
| | | | | | - Ricardo Cubedo
- Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda
| | | | | | | | | | - Giorgia Clementi
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | | | | | | | - Jean-Yves Blay
- Medecine, Centre Leon Bérard, Univ Claude Bernard, Unicancer
| | | |
Collapse
|
16
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
17
|
Bauer S, Demetri GD, Halilovic E, Dummer R, Meille C, Tan DSW, Guerreiro N, Jullion A, Ferretti S, Jeay S, Van Bree L, Hourcade-Potelleret F, Wuerthner JU, Fabre C, Cassier PA. Pharmacokinetic-pharmacodynamic guided optimisation of dose and schedule of CGM097, an HDM2 inhibitor, in preclinical and clinical studies. Br J Cancer 2021; 125:687-698. [PMID: 34140638 PMCID: PMC8405607 DOI: 10.1038/s41416-021-01444-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND CGM097 inhibits the p53-HDM2 interaction leading to downstream p53 activation. Preclinical in vivo studies support clinical exploration while providing preliminary evidence for dosing regimens. This first-in-human phase I study aimed at assessing the safety, MTD, PK/PD and preliminary antitumor activity of CGM097 in advanced solid tumour patients (NCT01760525). METHODS Fifty-one patients received oral treatment with CGM097 10-400 mg 3qw (n = 31) or 300-700 mg 3qw 2 weeks on/1 week off (n = 20). Choice of dose regimen was guided by PD biomarkers, and quantitative models describing the effect of CGM097 on circulating platelet and PD kinetics. RESULTS No dose-limiting toxicities were reported in any regimens. The most common treatment-related grade 3/4 AEs were haematologic events. PK/PD models well described the time course of platelet and serum GDF-15 changes, providing a tool to predict response to CGM097 for dose-limiting thrombocytopenia and GDF-15 biomarker. The disease control rate was 39%, including one partial response and 19 patients in stable disease. Twenty patients had a cumulative treatment duration of >16 weeks, with eight patients on treatment for >32 weeks. The MTD was not determined. CONCLUSIONS Despite delayed-onset thrombocytopenia frequently observed, the tolerability of CGM097 appears manageable. This study provided insights on dosing optimisation for next-generation HDM2 inhibitors. TRANSLATIONAL RELEVANCE Haematologic toxicity with delayed thrombocytopenia is a well-known on-target effect of HDM2 inhibitors. Here we have developed a PK/PD guided approach to optimise the dose and schedule of CGM097, a novel HDM2 inhibitor, using exposure, platelets and GDF-15, a known p53 downstream target to predict patients at higher risk to develop thrombocytopenia. While CGM097 had shown limited activity, with disease control rate of 39% and only one patient in partial response, the preliminary data from the first-in-human escalation study together with the PK/PD modeling provide important insights on how to optimize dosing of next generation HDM2 inhibitors to mitigate hematologic toxicity.
Collapse
Affiliation(s)
- Sebastian Bauer
- grid.5718.b0000 0001 2187 5445Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - George D. Demetri
- grid.38142.3c000000041936754XDana-Farber Cancer Institute and Ludwig Center at Harvard Medical School, Boston, MA USA
| | - Ensar Halilovic
- grid.418424.f0000 0004 0439 2056Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA USA
| | - Reinhard Dummer
- grid.412004.30000 0004 0478 9977University Hospital Zurich, Zurich, Switzerland
| | - Christophe Meille
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Daniel S. W. Tan
- grid.410724.40000 0004 0620 9745National Cancer Center Singapore, Singapore, Singapore
| | - Nelson Guerreiro
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.417570.00000 0004 0374 1269Present Address: F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Astrid Jullion
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Stephane Ferretti
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Sebastien Jeay
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.508389.f0000 0004 6414 2411Present Address: Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Laurence Van Bree
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Jens U. Wuerthner
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.508900.40000 0004 4910 8549Present Address: ADC Therapeutics, Epalinges, Switzerland
| | - Claire Fabre
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Philippe A. Cassier
- grid.418116.b0000 0001 0200 3174Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
18
|
Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, Zhao Y. Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. J Med Chem 2021; 64:10621-10640. [PMID: 34286973 DOI: 10.1021/acs.jmedchem.1c00940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MDM4 is a homologue of MDM2, serving cooperatively as the negative regulator of tumor suppressor p53. Under the shadow of MDM2 inhibitors, limited efforts had been put into the discovery of MDM4 modulators. Recent studies of the experimental drug ALRN-6924, a dual MDM4 and MDM2 inhibitor, suggest that concurrent inhibition of MDM4 and MDM2 might be beneficial over only MDM2 inhibition. In view of the present research progress, we summarized published inhibitors of MDM4/p53 interactions including both peptide-based compounds and small molecules. Cocrystal structures of ligand/MDM4 complexes have been examined, and their structural features were compiled and compared in order to show the molecular basis required for high MDM4 binding affinities. Representative examples of small-molecule MDM4 inhibitors were discussed, followed by clinical results of ALRN-6924, together, providing a consolidated reference for further development of MDM4 inhibitors, either dual or selective.
Collapse
Affiliation(s)
- Shiyan Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Mancini F, Giorgini L, Teveroni E, Pontecorvi A, Moretti F. Role of Sex in the Therapeutic Targeting of p53 Circuitry. Front Oncol 2021; 11:698946. [PMID: 34307167 PMCID: PMC8298065 DOI: 10.3389/fonc.2021.698946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Sex profoundly affects cancer incidence and susceptibility to therapy, with sex hormones highly contributing to this disparity. Various studies and omics data suggest a relationship between sex and the oncosuppressor p53 circuitry, including its regulators MDM2 and MDM4. Association of this network with genetic variation underlies sex-related altered cancer risk, age of onset, and cancer sensitivity to therapy. Moreover, sex-related factors, mainly estrogenic hormones, can affect the levels and/or function of the p53 network both in hormone-dependent and independent cancer. Despite this evidence, preclinical and clinical studies aimed to evaluate p53 targeted therapy rarely consider sex and related factors. This review summarizes the studies reporting the relationship between sex and the p53 circuitry, including its associated regulators, MDM2 and MDM4, with particular emphasis on estrogenic hormones. Moreover, we reviewed the evaluation of sex/hormone in preclinical studies and clinical trials employing p53-target therapies, and discuss how patients’ sex and hormonal status could impact these therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Mancini
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Ludovica Giorgini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy.,Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Emanuela Teveroni
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
20
|
Kaatsch HL, Becker BV, Schüle S, Ostheim P, Nestler K, Jakobi J, Schäfer B, Hantke T, Brockmann MA, Abend M, Waldeck S, Port M, Scherthan H, Ullmann R. Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra. Sci Rep 2021; 11:12060. [PMID: 34103547 PMCID: PMC8187728 DOI: 10.1038/s41598-021-91023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Dual-energy CT provides enhanced diagnostic power with similar or even reduced radiation dose as compared to single-energy CT. Its principle is based on the distinct physical properties of low and high energetic photons, which, however, may also affect the biological effectiveness and hence the extent of CT-induced cellular damage. Therefore, a comparative analysis of biological effectiveness of dual- and single-energy CT scans with focus on early gene regulation and frequency of radiation-induced DNA double strand breaks (DSBs) was performed. Blood samples from three healthy individuals were irradiated ex vivo with single-energy (80 kV and 150 kV) and dual-energy tube voltages (80 kV/Sn150kV) employing a modern dual source CT scanner resulting in Volume Computed Tomography Dose Index (CTDIvol) of 15.79-18.26 mGy and dose length product (DLP) of 606.7-613.8 mGy*cm. Non-irradiated samples served as a control. Differential gene expression in peripheral blood mononuclear cells was analyzed 6 h after irradiation using whole transcriptome sequencing. DSB frequency was studied by 53BP1 + γH2AX co-immunostaining and microscopic evaluation of their focal accumulation at DSBs. Neither the analysis of gene expression nor DSB frequency provided any evidence for significantly increased biological effectiveness of dual-energy CT in comparison to samples irradiated with particular single-energy CT spectra. Relative to control, irradiated samples were characterized by a significantly higher rate of DSBs (p < 0.001) and the shared upregulation of five genes, AEN, BAX, DDB2, FDXR and EDA2R, which have already been suggested as radiation-induced biomarkers in previous studies. Despite steadily decreasing doses, CT diagnostics remain a genotoxic stressor with impact on gene regulation and DNA integrity. However, no evidence was found that varying X-ray spectra of CT impact the extent of cellular damage.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Benjamin Valentin Becker
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany.
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Kai Nestler
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Julia Jakobi
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Barbara Schäfer
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Thomas Hantke
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Stephan Waldeck
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
21
|
Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel) 2021; 13:2125. [PMID: 33924934 PMCID: PMC8125348 DOI: 10.3390/cancers13092125] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.
Collapse
Affiliation(s)
- Magdalena C. Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | |
Collapse
|
22
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Kono M, Kumai T, Hayashi R, Yamaki H, Komatsuda H, Wakisaka R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Kobayashi H, Harabuchi Y. Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy through antigen-presenting machinery. Cancer Immunol Immunother 2021; 70:3421-3434. [PMID: 33866408 DOI: 10.1007/s00262-021-02940-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Identification of immunogenic tumor antigens, their corresponding T cell epitopes and the selection of effective adjuvants are prerequisites for developing effective cancer immunotherapies such as therapeutic vaccines. Murine double minute 2 (MDM2) is an E3 ubiquitin-protein ligase that negatively regulates tumor suppressor p53. Because MDM2 overexpression serves as a poor prognosis factor in various types of tumors, it would be beneficial to develop MDM2-targeted cancer vaccines. In this report, we identified an MDM2-derived peptide epitope (MDM232-46) that elicited antigen-specific and tumor-reactive CD4+ T cell responses. These CD4+ T cells directly killed tumor cells via granzyme B. MDM2 is expressed in head and neck cancer patients with poor prognosis, and the T cells that recognize this MDM2 peptide were present in these patients. Notably, Nutlin-3 (MDM2-p53 blocker), inhibited tumor cell proliferation, was shown to augment antitumor T cell responses by increasing MDM2 expression, HLA-class I and HLA-DR through class II transactivator (CIITA). These results suggest that the use of this MDM2 peptide as a therapeutic vaccine combined with MDM2 inhibitors could represent an effective immunologic strategy to treat cancer.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan. .,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
24
|
miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia 2021; 35:1933-1948. [PMID: 33262524 PMCID: PMC8257503 DOI: 10.1038/s41375-020-01095-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
Pharmacological inhibition of MDM2/4, which activates the critical tumor suppressor p53, has been gaining increasing interest as a strategy for the treatment of acute myeloid leukemia (AML). While clinical trials of MDM2 inhibitors have shown promise, responses have been confined to largely molecularly undefined patients, indicating that new biomarkers and optimized treatment strategies are needed. We previously reported that the microRNA miR-10a is strongly overexpressed in some AML, and demonstrate here that it modulates several key members of the p53/Rb network, including p53 regulator MDM4, Rb regulator RB1CC1, p21 regulator TFAP2C, and p53 itself. The expression of both miR-10a and its downstream targets were strongly predictive of MDM2 inhibitor sensitivity in cell lines, primary AML specimens, and correlated to response in patients treated with both MDM2 inhibitors and cytarabine. Furthermore, miR-10a inhibition induced synergy between MDM2 inhibitor Nutlin-3a and cytarabine in both in vitro and in vivo AML models. Mechanistically this synergism primarily occurs via the p53-mediated activation of cytotoxic apoptosis at the expense of cytoprotective autophagy. Together these findings demonstrate that miR-10a may be useful as both a biomarker to identify patients most likely to respond to cytarabine+MDM2 inhibition and also a druggable target to increase their efficacy.
Collapse
|
25
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
26
|
Zhang M, Chen XY, Dong XD, Wang JQ, Feng W, Teng QX, Cui Q, Li J, Li XQ, Chen ZS. NVP-CGM097, an HDM2 Inhibitor, Antagonizes ATP-Binding Cassette Subfamily B Member 1-Mediated Drug Resistance. Front Oncol 2020; 10:1219. [PMID: 32793491 PMCID: PMC7390918 DOI: 10.3389/fonc.2020.01219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) is a major challenge in the treatment of tumors. It refers to cancer cells become resistant to not only the therapeutic drug, but also cross-resistant to multiple drugs with distinct structures and mechanisms of action when they are exposed to a drug for a period of time. An essential mechanism of MDR is the aberrant expression and function of ATP-binding cassette (ABC) transporters. Therefore, blocking the function of ABC transporters has the therapeutic potential in reversing MDR. The hdm2 oncogene product, HDM2 (also known as MDM2), is an important negative regulator of the p53 tumor suppressor. NVP-CGM097 is an HDM2 inhibitor that can inhibit the proliferation of tumor cells and is currently under clinical trials. In this study, we evaluate whether NVP-CGM097 could reverse ABCB1-mediated MDR. The results of reversal experiment showed that NVP-CGM097 remarkably reversed ABCB1-mediated MDR but not ABCG2-mediated MDR. The results of Western blot and immunofluorescence suggested that the level of expression and subcellular localization of ABCB1 protein were not significantly altered by NVP-CGM097. Mechanism studies indicated that NVP-CGM097 could reverse ABCB1-mediated MDR by directly blocking the ABCB1-mediated drug efflux and raising the accumulation of chemotherapeutic drugs in cancer cells. ATPase analysis showed that low concentration NVP-CGM097 activates ABCB1 ATPase activity while high concentration NVP-CGM097 inhibited ABCB1-associated ATPase. Docking study indicated that NVP-CGM097 tended to bind to the inhibitory site, which led to slight but critical conformational changes in the transporter and reduced the ATPase activity. Overall, our study demonstrates that NVP-CGM097 can be used in conjunction with chemotherapeutic drugs to counteract MDR and improve the antitumor responses.
Collapse
Affiliation(s)
- Meng Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Weiguo Feng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiang-Qi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
27
|
Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat Commun 2020; 11:3296. [PMID: 32620799 PMCID: PMC7335104 DOI: 10.1038/s41467-020-17090-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in precision oncology. To optimize patient-specific therapeutic strategies, here we couple pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensitivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of pathways in helping to achieve the goal of precision medicine by uncovering dozens of predictive biomarkers.
Collapse
|
28
|
Kaatsch HL, Majewski M, Schrock G, Obermair R, Seidel J, Nestler K, Abend M, Waldeck S, Port M, Ullmann R, Becker BV. CT Irradiation-induced Changes of Gene Expression within Peripheral Blood Cells. HEALTH PHYSICS 2020; 119:44-51. [PMID: 32167501 DOI: 10.1097/hp.0000000000001231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Computed tomography (CT) is a crucial element of medical imaging diagnostics. The widespread application of this technology has made CT one of the major contributors to medical radiation burden, despite the fact that doses per individual CT scan steadily decrease due to the advancement of technology. Epidemiological risk assessment of CT exposure is hampered by the fact that moderate adverse effects triggered by low doses of CT exposure are likely masked by statistical fluctuations. In light of these limitations, there is need of further insights into the biological processes induced by CT scans to complement the existing knowledge base of risk assessment. This prompted us to investigate the early transcriptomic response of ex vivo irradiated peripheral blood of three healthy individuals. Samples were irradiated employing a modern dual-source-CT-scanner with a tube voltage of 150 kV, resulting in an estimated effective dose of 9.6 mSv. RNA was isolated 1 h and 6 h after exposure, respectively, and subsequently analyzed by RNA deep sequencing. Differential gene expression analysis revealed shared upregulation of AEN, FDXR, and DDB2 6 h after exposure in all three probands. All three genes have previously been discussed as radiation responsive genes and have already been implicated in DNA damage response and cell cycle control after DNA damage. In summary, we substantiated the usefulness of AEN, FDXR, and DDB2 as RNA markers of low dose irradiation. Moreover, the upregulation of genes associated with DNA damage reminds one of the genotoxic nature of CT diagnostics even with the low doses currently applied.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Matthäus Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Gerrit Schrock
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Richard Obermair
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Jillyen Seidel
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Kai Nestler
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Stephan Waldeck
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Benjamin Valentin Becker
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| |
Collapse
|
29
|
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020; 10:1253-1278. [PMID: 32874827 PMCID: PMC7452049 DOI: 10.1016/j.apsb.2020.01.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Blocking the MDM2/X–P53 protein–protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2–P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure–activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.
Collapse
|
30
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
31
|
Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol 2019; 11:586-599. [PMID: 31310659 PMCID: PMC6735775 DOI: 10.1093/jmcb/mjz075] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.
Collapse
Affiliation(s)
- Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| |
Collapse
|
32
|
Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel) 2019; 11:E1014. [PMID: 31331108 PMCID: PMC6678622 DOI: 10.3390/cancers11071014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.
Collapse
Affiliation(s)
- Justyna Kocik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Machula
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Wisniewska
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
33
|
Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 2019; 176:92-104. [PMID: 31100649 DOI: 10.1016/j.ejmech.2019.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
The p53 gene, a well-known tumor suppressor gene, plays a crucial role in cell cycle regulation, DNA repair, cell differentiation, and apoptosis. MDM2 exerts p53-dependent activity mainly by binding to p53 protein to form MDM2-p53 negative feedback loop. In addition, MDM2 is involved in a number of pathways that regulate cell proliferation and apoptosis, playing a p53-independent role. The p53 binding domain of MDMX bind to p53 transcriptional activation domain, inhibiting the transcriptional activity of p53 on its downstream genes, but does not mediate the degradation of p53. The anti-tumor effect is exerted by inhibiting the interaction between the MDM2/MDMX protein and the p53 protein by a small-molecule or by restoring the activity of the p53 protein. This review describes in the structural features, biological functions and mechanisms of p53-MDM2/MDMX, and summarizes small-molecule targeting p53-MDM2/MDMX.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Xiaohui Wang
- Department of Pharmacy, Naval Authorities Clinic, Beijing, 100841, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
34
|
Skalniak L, Surmiak E, Holak TA. A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opin Ther Pat 2019; 29:151-170. [DOI: 10.1080/13543776.2019.1582645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Tad A. Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| |
Collapse
|
35
|
Howard TP, Arnoff TE, Song MR, Giacomelli AO, Wang X, Hong AL, Dharia NV, Wang S, Vazquez F, Pham MT, Morgan AM, Wachter F, Bird GH, Kugener G, Oberlick EM, Rees MG, Tiv HL, Hwang JH, Walsh KH, Cook A, Krill-Burger JM, Tsherniak A, Gokhale PC, Park PJ, Stegmaier K, Walensky LD, Hahn WC, Roberts CWM. MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Res 2019; 79:2404-2414. [PMID: 30755442 DOI: 10.1158/0008-5472.can-18-3066] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/28/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Malignant rhabdoid tumors (MRT) are highly aggressive pediatric cancers that respond poorly to current therapies. In this study, we screened several MRT cell lines with large-scale RNAi, CRISPR-Cas9, and small-molecule libraries to identify potential drug targets specific for these cancers. We discovered MDM2 and MDM4, the canonical negative regulators of p53, as significant vulnerabilities. Using two compounds currently in clinical development, idasanutlin (MDM2-specific) and ATSP-7041 (MDM2/4-dual), we show that MRT cells were more sensitive than other p53 wild-type cancer cell lines to inhibition of MDM2 alone as well as dual inhibition of MDM2/4. These compounds caused significant upregulation of the p53 pathway in MRT cells, and sensitivity was ablated by CRISPR-Cas9-mediated inactivation of TP53. We show that loss of SMARCB1, a subunit of the SWI/SNF (BAF) complex mutated in nearly all MRTs, sensitized cells to MDM2 and MDM2/4 inhibition by enhancing p53-mediated apoptosis. Both MDM2 and MDM2/4 inhibition slowed MRT xenograft growth in vivo, with a 5-day idasanutlin pulse causing marked regression of all xenografts, including durable complete responses in 50% of mice. Together, these studies identify a genetic connection between mutations in the SWI/SNF chromatin-remodeling complex and the tumor suppressor gene TP53 and provide preclinical evidence to support the targeting of MDM2 and MDM4 in this often-fatal pediatric cancer. SIGNIFICANCE: This study identifies two targets, MDM2 and MDM4, as vulnerabilities in a deadly pediatric cancer and provides preclinical evidence that compounds inhibiting these proteins have therapeutic potential.
Collapse
Affiliation(s)
- Thomas P Howard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Taylor E Arnoff
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Melinda R Song
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew L Hong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Su Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | | | - Minh-Tam Pham
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ann M Morgan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Elaine M Oberlick
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew G Rees
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Hong L Tiv
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Katherine H Walsh
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - April Cook
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Charles W M Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts. .,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
36
|
Skalniak L, Kocik J, Polak J, Skalniak A, Rak M, Wolnicka-Glubisz A, Holak TA. Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers (Basel) 2018; 10:cancers10110396. [PMID: 30352966 PMCID: PMC6266412 DOI: 10.3390/cancers10110396] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
The protein p53 protects the organism against carcinogenic events by the induction of cell cycle arrest and DNA repair program upon DNA damage. Virtually all cancers inactivate p53 either by mutations/deletions of the TP53 gene or by boosting negative regulation of p53 activity. The overexpression of MDM2 protein is one of the most common mechanisms utilized by p53wt cancers to keep p53 inactive. Inhibition of MDM2 action by its antagonists has proved its anticancer potential in vitro and is now tested in clinical trials. However, the prolonged treatment of p53wt cells with MDM2 antagonists leads to the development of secondary resistance, as shown first for Nutlin-3a, and later for three other small molecules. In the present study, we show that secondary resistance occurs also after treatment of p53wt cells with idasanutlin (RG7388, RO5503781), which is the only MDM2 antagonist that has passed phase II and entered phase III clinical trials, so far. Idasanutlin strongly activates p53, as evidenced by the induction of p21 expression and potent cell cycle arrest in all the three cell lines tested, i.e., MCF-7, U-2 OS, and SJSA-1. Notably, apoptosis was induced only in SJSA-1 cells, while MCF-7 and U-2 OS cells were able to restore the proliferation upon the removal of idasanutlin. Moreover, idasanutlin-treated U-2 OS cells could be cultured for long time periods in the presence of the drug. This prolonged treatment led to the generation of p53-mutated resistant cell populations. This resistance was generated de novo, as evidenced by the utilization of monoclonal U-2 OS subpopulations. Thus, although idasanutlin presents much improved activities compared to its precursor, it displays the similar weaknesses, which are limited elimination of cancer cells and the generation of p53-mutated drug-resistant subpopulations.
Collapse
Affiliation(s)
- Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Kocik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Polak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Anna Skalniak
- Department of Endocrinology, Medical Faculty, Jagiellonian University Medical College, Kopernika 17, 31-501 Krakow, Poland.
| | - Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
37
|
Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat Commun 2018; 9:3931. [PMID: 30258081 PMCID: PMC6158291 DOI: 10.1038/s41467-018-05805-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
There are considerable challenges in directly targeting the mutant p53 protein, given the large heterogeneity of p53 mutations in the clinic. An alternative approach is to exploit the altered fitness of cells imposed by loss-of-wild-type p53. Here we identify niclosamide through a HTS screen for compounds selectively killing p53-deficient cells. Niclosamide impairs the growth of p53-deficient cells and of p53 mutant patient-derived ovarian xenografts. Metabolome profiling reveals that niclosamide induces mitochondrial uncoupling, which renders mutant p53 cells susceptible to mitochondrial-dependent apoptosis through preferential accumulation of arachidonic acid (AA), and represents a first-in-class inhibitor of p53 mutant tumors. Wild-type p53 evades the cytotoxicity by promoting the transcriptional induction of two key lipid oxygenation genes, ALOX5 and ALOX12B, which catalyzes the dioxygenation and breakdown of AA. Therefore, we propose a new paradigm for targeting cancers defective in the p53 pathway, by exploiting their vulnerability to niclosamide-induced mitochondrial uncoupling. Several challenges are involved in direct targeting of mutant p53, while targeting altered fitness of cells with loss of wild type p53 is an alternative approach. Here they identify niclosamide to be selectively toxic to p53 deficient cells through a previously unknown mitochondrial uncoupling mechanism.
Collapse
|
38
|
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, Gannon HS, Hurhula B, Sharpe T, Goodale A, Fritchman B, Steelman S, Vazquez F, Tsherniak A, Aguirre AJ, Doench JG, Piccioni F, Roberts CWM, Meyerson M, Getz G, Johannessen CM, Root DE, Hahn WC. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 2018; 50:1381-1387. [PMID: 30224644 PMCID: PMC6168352 DOI: 10.1038/s41588-018-0204-y] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
Unlike most tumor suppressor genes, the most common genetic alterations in TP53 are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers, and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3–8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53-wild-type and -null cell lines. We found that loss or dominant-negative inhibition of p53 function reliably enhanced cellular fitness. By integrating these data with the COSMIC mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.
Collapse
Affiliation(s)
- Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Marc Duby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas P Howard
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David Y Takeda
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eejung Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hugh S Gannon
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Hurhula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Francisca Vazquez
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles W M Roberts
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Center for Cancer Research, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
39
|
Jeay S, Ferretti S, Holzer P, Fuchs J, Chapeau EA, Wartmann M, Sterker D, Romanet V, Murakami M, Kerr G, Durand EY, Gaulis S, Cortes-Cros M, Ruetz S, Stachyra TM, Kallen J, Furet P, Würthner J, Guerreiro N, Halilovic E, Jullion A, Kauffmann A, Kuriakose E, Wiesmann M, Jensen MR, Hofmann F, Sellers WR. Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53-MDM2 Inhibitor HDM201. Cancer Res 2018; 78:6257-6267. [PMID: 30135191 DOI: 10.1158/0008-5472.can-18-0338] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.
Collapse
Affiliation(s)
- Sébastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Philipp Holzer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jeanette Fuchs
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Emilie A Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Wartmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dario Sterker
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eric Y Durand
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marta Cortes-Cros
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephan Ruetz
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Joerg Kallen
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens Würthner
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelson Guerreiro
- PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ensar Halilovic
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Emil Kuriakose
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Marion Wiesmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
40
|
Li XL, Subramanian M, Jones MF, Chaudhary R, Singh DK, Zong X, Gryder B, Sindri S, Mo M, Schetter A, Wen X, Parvathaneni S, Kazandjian D, Jenkins LM, Tang W, Elloumi F, Martindale JL, Huarte M, Zhu Y, Robles AI, Frier SM, Rigo F, Cam M, Ambs S, Sharma S, Harris CC, Dasso M, Prasanth KV, Lal A. Long Noncoding RNA PURPL Suppresses Basal p53 Levels and Promotes Tumorigenicity in Colorectal Cancer. Cell Rep 2018; 20:2408-2423. [PMID: 28877474 DOI: 10.1016/j.celrep.2017.08.041] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Basal p53 levels are tightly suppressed under normal conditions. Disrupting this regulation results in elevated p53 levels to induce cell cycle arrest, apoptosis, and tumor suppression. Here, we report the suppression of basal p53 levels by a nuclear, p53-regulated long noncoding RNA that we termed PURPL (p53 upregulated regulator of p53 levels). Targeted depletion of PURPL in colorectal cancer cells results in elevated basal p53 levels and induces growth defects in cell culture and in mouse xenografts. PURPL associates with MYBBP1A, a protein that binds to and stabilizes p53, and inhibits the formation of the p53-MYBBP1A complex. In the absence of PURPL, MYBBP1A interacts with and stabilizes p53. Silencing MYBBP1A significantly rescues basal p53 levels and proliferation in PURPL-deficient cells, suggesting that MYBBP1A mediates the effect of PURPL in regulating p53. These results reveal a p53-PURPL auto-regulatory feedback loop and demonstrate a role for PURPL in maintaining basal p53 levels.
Collapse
Affiliation(s)
- Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Murugan Subramanian
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Matthew F Jones
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sivasish Sindri
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Min Mo
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Aaron Schetter
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dickran Kazandjian
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Office of Science and Technology Resources, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Maite Huarte
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 31008 Pamplona, Spain
| | - Yuelin Zhu
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 28092, USA
| | - Ana I Robles
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Maggie Cam
- Office of Science and Technology Resources, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Curtis C Harris
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Azer SA. MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:64. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Samy A Azer
- Professor of Medical Education and Gastroenterologist, The Chair of Curriculum Development and Research Unit, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
42
|
Ishizawa J, Nakamaru K, Seki T, Tazaki K, Kojima K, Chachad D, Zhao R, Heese L, Ma W, Ma MCJ, DiNardo C, Pierce S, Patel KP, Tse A, Davis RE, Rao A, Andreeff M. Predictive Gene Signatures Determine Tumor Sensitivity to MDM2 Inhibition. Cancer Res 2018; 78:2721-2731. [PMID: 29490944 DOI: 10.1158/0008-5472.can-17-0949] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Early clinical trials using murine double minute 2 (MDM2) inhibitors demonstrated proof-of-concept of p53-induced apoptosis by MDM2 inhibition in cancer cells; however, not all wild-type TP53 tumors are sensitive to MDM2 inhibition. Therefore, more potent inhibitors and biomarkers predictive of tumor sensitivity are needed. The novel MDM2 inhibitor DS-3032b is 10-fold more potent than the first-generation inhibitor nutlin-3a. TP53 mutations were predictive of resistance to DS-3032b, and allele frequencies of TP53 mutations were negatively correlated with sensitivity to DS-3032b. However, sensitivity to DS-3032b of TP53 wild-type tumors varied greatly. We thus used two methods to create predictive gene signatures. First, by comparing sensitivity to MDM2 inhibition with basal mRNA expression profiles in 240 cancer cell lines, a 175-gene signature was defined and validated in patient-derived tumor xenograft models and ex vivo human acute myeloid leukemia (AML) cells. Second, an AML-specific 1,532-gene signature was defined by performing random forest analysis with cross-validation using gene expression profiles of 41 primary AML samples. The combination of TP53 mutation status with the two gene signatures provided the best positive predictive values (81% and 82%, compared with 62% for TP53 mutation status alone). In addition, the top-ranked 50 genes selected from the AML-specific 1,532-gene signature conserved high predictive performance, suggesting that a more feasible size of gene signature can be generated through this method for clinical implementation. Our model is being tested in ongoing clinical trials of MDM2 inhibitors.Significance: This study demonstrates that gene expression profiling combined with TP53 mutational status predicts antitumor effects of MDM2 inhibitors in vitro and in vivoCancer Res; 78(10); 2721-31. ©2018 AACR.
Collapse
Affiliation(s)
- Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenji Nakamaru
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Takahiko Seki
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Koichi Tazaki
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga University, Saga, Japan
| | - Dhruv Chachad
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Heese
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man Chun John Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archie Tse
- Daiichi Sankyo, Inc., Edison, New Jersey
| | - R Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Krepler C, Sproesser K, Brafford P, Beqiri M, Garman B, Xiao M, Shannan B, Watters A, Perego M, Zhang G, Vultur A, Yin X, Liu Q, Anastopoulos IN, Wubbenhorst B, Wilson MA, Xu W, Karakousis G, Feldman M, Xu X, Amaravadi R, Gangadhar TC, Elder DE, Haydu LE, Wargo JA, Davies MA, Lu Y, Mills GB, Frederick DT, Barzily-Rokni M, Flaherty KT, Hoon DS, Guarino M, Bennett JJ, Ryan RW, Petrelli NJ, Shields CL, Terai M, Sato T, Aplin AE, Roesch A, Darr D, Angus S, Kumar R, Halilovic E, Caponigro G, Jeay S, Wuerthner J, Walter A, Ocker M, Boxer MB, Schuchter L, Nathanson KL, Herlyn M. A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Rep 2017; 21:1953-1967. [PMID: 29141225 PMCID: PMC5726788 DOI: 10.1016/j.celrep.2017.10.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 08/18/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups.
Collapse
Affiliation(s)
- Clemens Krepler
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Marilda Beqiri
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Bradley Garman
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Batool Shannan
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrea Watters
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Michela Perego
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Adina Vultur
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ioannis N Anastopoulos
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melissa A Wilson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Feldman
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Gangadhar
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David E Elder
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren E Haydu
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Jennifer A Wargo
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Michael A Davies
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Yiling Lu
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Gordon B Mills
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | | | | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Dave S Hoon
- Translational Molecular Medicine, John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| | - Michael Guarino
- Helen F. Graham Cancer Center at Christiana Care, Newark, DE 19713, USA
| | - Joseph J Bennett
- Helen F. Graham Cancer Center at Christiana Care, Newark, DE 19713, USA
| | - Randall W Ryan
- Helen F. Graham Cancer Center at Christiana Care, Newark, DE 19713, USA
| | | | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Philadelphia, PA 19107, USA
| | - Mizue Terai
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Takami Sato
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Andrew E Aplin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Alexander Roesch
- Department of Dermatology, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; German Consortium of Translational Cancer Research, Heidelberg, Germany
| | - David Darr
- Lineberger Cancer Center, University of North Carolina Chapel Hill, NC 27514, USA
| | - Steve Angus
- Lineberger Cancer Center, University of North Carolina Chapel Hill, NC 27514, USA
| | | | - Ensar Halilovic
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Sebastien Jeay
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Jens Wuerthner
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | - Matthew B Boxer
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Lynn Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Scarabelli S, Tan KT, Griss R, Hovius R, D’Alessandro PL, Vorherr T, Johnsson K. Evaluating Cellular Drug Uptake with Fluorescent Sensor Proteins. ACS Sens 2017; 2:1191-1197. [PMID: 28766337 DOI: 10.1021/acssensors.7b00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are introducing a new approach to evaluate cellular uptake of drugs and drug candidates into living cells. The approach is based on converting the protein target of a given class of compounds into a fluorescent biosensor. By measuring the binding of different compounds to their cognate biosensor in live cells and comparing these values to those measured in vitro, their cellular uptake and concentrations can be ranked. We demonstrate that our strategy enables the evaluation of the cellular uptake into the cytosol of 2 classes of inhibitors using two different sensor designs; first, sensors comprising the self-labeling protein SNAP conjugated with a chemically modified inhibitor shown for inhibitors of the enzyme human carbonic anhydrase II; and a label-free sensor for inhibitors of protein-protein interactions demonstrated for the protein pair p53-HDM2.
Collapse
Affiliation(s)
- Silvia Scarabelli
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Kui Thong Tan
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Rudolf Griss
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | | | - Thomas Vorherr
- Novartis Institutes for BioMedical Research, Basel, CH-4056, Switzerland
| | - Kai Johnsson
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
- Max-Planck-Institute for Medical Research, Department of Chemical
Biology, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Targeting apoptosis in acute myeloid leukaemia. Br J Cancer 2017; 117:1089-1098. [PMID: 29017180 PMCID: PMC5674101 DOI: 10.1038/bjc.2017.281] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease, and its incidence is increasing as the populations in Western countries age. Despite major advances in understanding the genetic landscape of AML and its impact on the biology of the disease, standard therapy has not changed significantly in the last three decades. Allogeneic haematopoietic stem cell transplantation remains the best chance for cure, but can only be offered to a minority of younger fit patients. Molecularly targeted drugs aiming at restoring apoptosis in leukaemic cells have shown encouraging activity in early clinical trials and some of these drugs are currently being evaluated in randomised controlled trials. In this review, we discuss the current development of drugs designed to trigger cell death in AML.
Collapse
|
46
|
Xiong Y, Wu Y, Luo S, Gao Y, Xiong Y, Chen D, Deng H, Hao W, Liu T, Li M. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs. Sci Rep 2017; 7:9185. [PMID: 28835687 PMCID: PMC5569017 DOI: 10.1038/s41598-017-09574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor protein p53 acts as a trans-activator that negatively regulates cell division by controlling a set of genes required for cell cycle regulation, making it a tumor suppressor in different types of tumors. Because the transcriptional activity of p53 plays an important role in the occurrence and development of tumors, reactivation of p53 transcriptional activity has been sought as a novel cancer therapeutic strategy. There is great interest in developing high-throughput assays to identify inhibitors of molecules that bind the transcription-activation domain of p53, especially for wt p53-containing tumors. In the present study, taking MDM2 as an example, a novel amplified luminescent proximity homogeneous assay (AlphaLISA) was modified from a binding competition assay to detect the interactions between the transcription-activation domain of p53 and its ligands. This assay can be adapted as a high-throughput assay for screening new inhibitors. A panel of well-known p53-MDM2 binding inhibitors was used to validate this method, and demonstrated its utility, sensitivity and robustness. In summary, we have developed a novel protein-protein interaction detection immunoassay that can be used in a high-throughput format to screen new drug candidates for reactivation of p53. This assay has been successfully validated through a series of p53-MDM2 binding inhibitors.
Collapse
Affiliation(s)
- Yufeng Xiong
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yingsong Wu
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shuhong Luo
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, 5 Hebin Road, Chancheng District, Foshan, Guangdong Province, 528000, P. R. China
| | - Yang Gao
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yujing Xiong
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Daxiang Chen
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hao Deng
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Wenbo Hao
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming Li
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Teicher BA, Silvers T, Selby M, Delosh R, Laudeman J, Ogle C, Reinhart R, Parchment R, Krushkal J, Sonkin D, Rubinstein L, Morris J, Evans D. Small cell lung carcinoma cell line screen of etoposide/carboplatin plus a third agent. Cancer Med 2017; 6:1952-1964. [PMID: 28766886 PMCID: PMC5548882 DOI: 10.1002/cam4.1131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
The SCLC combination screen examined a 9-point concentration response of 180 third agents, alone and in combination with etoposide/carboplatin. The predominant effect of adding a third agent to etoposide/carboplatin was additivity. Less than additive effects occurred frequently in SCLC lines sensitive to etoposide/carboplatin. In SCLC lines with little or no response to etoposide/carboplatin, greater than additive SCLC killing occurred over the entire spectrum of SCLC lines but never occurred in all SCLC lines. Exposing SCLC lines to tubulin-targeted agents (paclitaxel or vinorelbine) simultaneously with etoposide/carboplatin resulted primarily in less than additive cell killing. As single agents, nuclear kinase inhibitors including Aurora kinase inhibitors, Kinesin Spindle Protein/EG5 inhibitors, and Polo-like kinase-1 inhibitors were potent cytotoxic agents in SCLC lines; however, simultaneous exposure of the SCLC lines to these agents along with etoposide/carboplatin, generally, resulted in less than additive cell killing. Several classes of agents enhanced the cytotoxicity of etoposide/carboplatin toward the SCLC lines. Exposure of the SCLC lines to the MDM2 inhibitor JNJ-27291199 produced enhanced killing in 80% of the SCLC lines. Chk-1 inhibitors such as rabusertib increased the cytotoxicity of etoposide/carboplatin to the SCLC lines in an additive to greater than additive manner. The combination of GSK-3β inhibitor LY-2090314 with etoposide/carboplatin increased killing in approximately 40% of the SCLC lines. Exposure to the BET bromodomain inhibitor MK-8628 increased the SCLC cell killing by etoposide/carboplatin in 20-25% of the SCLC lines. Only 10-15% of the SCLC lines had an increased response to etoposide/carboplatin when simultaneously exposed to the PARP inhibitor talazoparib.
Collapse
Affiliation(s)
- Beverly A. Teicher
- Developmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland20892
| | - Thomas Silvers
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Michael Selby
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Rene Delosh
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Julie Laudeman
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Chad Ogle
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Russell Reinhart
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Ralph Parchment
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Julia Krushkal
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Dmitriy Sonkin
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Larry Rubinstein
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Joel Morris
- Developmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland20892
| | - David Evans
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| |
Collapse
|
48
|
Wallbrecher R, Chène P, Ruetz S, Stachyra T, Vorherr T, Brock R. A critical assessment of the synthesis and biological activity of p53/human double minute 2-stapled peptide inhibitors. Br J Pharmacol 2017; 174:2613-2622. [PMID: 28436014 DOI: 10.1111/bph.13834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Helix stapling enhances the activity of peptides that interact with a target protein in a helical conformation. These staples are also supposed to change the pharmacokinetics of the molecules and promote cytoplasmic targeting. We assessed the extent to which the pharmacokinetic characteristics are a function of the staple for a peptide inhibiting the interaction of p53 with the human double minute 2 (Hdm2) protein and differ from those of the standard cationic cell-penetrating peptide nona-arginine. EXPERIMENTAL APPROACH Stapled peptides and linear counterparts were synthesized in free and fluorescently labelled forms. Activity was determined in biochemical time-resolved Förster resonance energy transfer experiments and cellular high-content assays. Cellular uptake and intracellular trafficking were visualized by confocal microscopy. KEY RESULTS Peptides showed sub-nanomolar potency. For short-time incubation, uptake efficiencies for the stapled and linear peptides were similar and both were taken up less efficiently than nona-arginine. Only for SJSA-1 cells expressing the Hdm2 target protein, the stapled peptides showed an enhanced cytoplasmic and nuclear accumulation after long-term incubation. This was also observed for the linear counterparts, albeit to a lesser degree. For HeLa cells, which lack target expression, no such accumulation was observed. CONCLUSION AND IMPLICATIONS Cytosolic and nuclear accumulation was not an intrinsic property of the stapled peptide, but resulted from capture by the target Hdm2 after endo-lysosomal release. Considering the rather poor uptake of stapled peptides, further development should focus on increasing the efficiency of uptake of these peptides.
Collapse
Affiliation(s)
- Rike Wallbrecher
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick Chène
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephan Ruetz
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Thomas Vorherr
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Wang HQ, Halilovic E, Li X, Liang J, Cao Y, Rakiec DP, Ruddy DA, Jeay S, Wuerthner JU, Timple N, Kasibhatla S, Li N, Williams JA, Sellers WR, Huang A, Li F. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models. eLife 2017; 6. [PMID: 28425916 PMCID: PMC5435462 DOI: 10.7554/elife.17137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI:http://dx.doi.org/10.7554/eLife.17137.001
Collapse
Affiliation(s)
- Hui Qin Wang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ensar Halilovic
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Xiaoyan Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jinsheng Liang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Yichen Cao
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Daniel P Rakiec
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - David A Ruddy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Sebastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens U Wuerthner
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Noelito Timple
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Shailaja Kasibhatla
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Nanxin Li
- Genomics Institute of the Novartis Research Foundation, San Diego, United States
| | - Juliet A Williams
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Alan Huang
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Fang Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| |
Collapse
|
50
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|