1
|
Li Y, Lu T, Dong P, Chen J, Zhao Q, Wang Y, Xiao T, Wu H, Zhao Q, Huang H. A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification. Nat Commun 2024; 15:2019. [PMID: 38448482 PMCID: PMC10917797 DOI: 10.1038/s41467-024-46455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The Drosophila tracheal system is a favorable model for investigating the program of tubular morphogenesis. This system is established in the embryo by post-mitotic cells, but also undergoes remodeling by adult stem cells. Here, we provide a comprehensive cell atlas of Drosophila trachea using the single-cell RNA-sequencing (scRNA-seq) technique. The atlas documents transcriptional profiles of tracheoblasts within the Drosophila airway, delineating 9 major subtypes. Further evidence gained from in silico as well as genetic investigations highlight a set of transcription factors characterized by their capacity to switch cell fate. Notably, the transcription factors Pebbled, Blistered, Knirps, Spalt and Cut are influenced by Notch signaling and determine tracheal cell identity. Moreover, Notch signaling orchestrates transcriptional activities essential for tracheoblast differentiation and responds to protein glycosylation that is induced by high sugar diet. Therefore, our study yields a single-cell transcriptomic atlas of tracheal development and regeneration, and suggests a glycosylation-responsive Notch signaling in cell fate determination.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Jian Chen
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Qiang Zhao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yuying Wang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianheng Xiao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Honggang Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China.
| |
Collapse
|
2
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
3
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
4
|
Bossen J, Prange R, Kühle JP, Künzel S, Niu X, Hammel JU, Krieger L, Knop M, Ehrhardt B, Uliczka K, Krauss-Etschmann S, Roeder T. Adult and Larval Tracheal Systems Exhibit Different Molecular Architectures in Drosophila. Int J Mol Sci 2023; 24:ijms24065628. [PMID: 36982710 PMCID: PMC10052349 DOI: 10.3390/ijms24065628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly Drosophila melanogaster using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line breathless (btl)-Gal4 is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.
Collapse
Affiliation(s)
- Judith Bossen
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
| | - Ruben Prange
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jan-Philip Kühle
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Xiao Niu
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jörg U. Hammel
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, 21502 Geesthacht, Germany
| | - Laura Krieger
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Birte Ehrhardt
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Karin Uliczka
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Susanne Krauss-Etschmann
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
- Institute for Experimental Medicine, Kiel University, 24118 Kiel, Germany
| | - Thomas Roeder
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-880-81
| |
Collapse
|
5
|
Li Y, Dong P, Yang Y, Guo T, Zhao Q, Miao D, Li H, Lu T, Xia F, Lyu J, Ma J, Kornberg TB, Zhang Q, Huang H. Metabolic control of progenitor cell propagation during Drosophila tracheal remodeling. Nat Commun 2022; 13:2817. [PMID: 35595807 PMCID: PMC9122933 DOI: 10.1038/s41467-022-30492-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Adult progenitor cells in the trachea of Drosophila larvae are activated and migrate out of niches when metamorphosis induces tracheal remodeling. Here we show that in response to metabolic deficiency in decaying tracheal branches, signaling by the insulin pathway controls the progenitor cells by regulating Yorkie (Yki)-dependent proliferation and migration. Yki, a transcription coactivator that is regulated by Hippo signaling, promotes transcriptional activation of cell cycle regulators and components of the extracellular matrix in tracheal progenitor cells. These findings reveal that regulation of Yki signaling by the insulin pathway governs proliferation and migration of tracheal progenitor cells, thereby identifying the regulatory mechanism by which metabolic depression drives progenitor cell activation and cell division that underlies tracheal remodeling. Tracheal remodeling is a key step during Drosophila metamorphosis. Here they report that tracheal progenitor cells are activated through Yorkie-dependent proliferation and migration, which is induced by metabolic deficit and insulin signaling.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Yang Yang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Tianyu Guo
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Quanyi Zhao
- National Center for Cardiovascular Disease, Fuwai Hospital, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Dan Miao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Huanle Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Fanning Xia
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jialan Lyu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jun Ma
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.,Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Qiang Zhang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China. .,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
6
|
A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. Int J Mol Sci 2021; 22:ijms22115618. [PMID: 34070691 PMCID: PMC8198827 DOI: 10.3390/ijms22115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin β1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2′-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin β1.
Collapse
|
7
|
Multiple Requirements for Rab GTPases in the Development of Drosophila Tracheal Dorsal Branches and Terminal Cells. G3-GENES GENOMES GENETICS 2020; 10:1099-1112. [PMID: 31980432 PMCID: PMC7056964 DOI: 10.1534/g3.119.400967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tracheal epithelium in fruit fly larvae is a popular model for multi- and unicellular migration and morphogenesis. Like all epithelial cells, tracheal cells use Rab GTPases to organize their internal membrane transport, resulting in the specific localization or secretion of proteins on the apical or basal membrane compartments. Some contributions of Rabs to junctional remodelling and governance of tracheal lumen contents are known, but it is reasonable to assume that they play important further roles in morphogenesis. This pertains in particular to terminal tracheal cells, specialized branch-forming cells that drastically reshape both their apical and basal membrane during the larval stages. We performed a loss-of-function screen in the tracheal system, knocking down endogenously tagged alleles of 26 Rabs by targeting the tag via RNAi. This revealed that at least 14 Rabs are required to ensure proper cell fate specification and migration of the dorsal branches, as well as their epithelial fusion with the contralateral dorsal branch. The screen implicated four Rabs in the subcellular morphogenesis of terminal cells themselves. Further tests suggested residual gene function after knockdown, leading us to discuss the limitations of this approach. We conclude that more Rabs than identified here may be important for tracheal morphogenesis, and that the tracheal system offers great opportunities for studying several Rabs that have barely been characterized so far.
Collapse
|
8
|
Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, Ouyang D, Wong C, Ramond EJV, Rhiner C, Moreno E, Lemaitre B, Geissmann F, Brückner K. Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Dev Cell 2019; 51:787-803.e5. [PMID: 31735669 PMCID: PMC7263735 DOI: 10.1016/j.devcel.2019.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/08/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The use of adult Drosophila melanogaster as a model for hematopoiesis or organismal immunity has been debated. Addressing this question, we identify an extensive reservoir of blood cells (hemocytes) at the respiratory epithelia (tracheal air sacs) of the thorax and head. Lineage tracing and functional analyses demonstrate that the majority of adult hemocytes are phagocytic macrophages (plasmatocytes) from the embryonic lineage that parallels vertebrate tissue macrophages. Surprisingly, we find no sign of adult hemocyte expansion. Instead, hemocytes play a role in relaying an innate immune response to the blood cell reservoir: through Imd signaling and the Jak/Stat pathway ligand Upd3, hemocytes act as sentinels of bacterial infection, inducing expression of the antimicrobial peptide Drosocin in respiratory epithelia and colocalizing fat body domains. Drosocin expression in turn promotes animal survival after infection. Our work identifies a multi-signal relay of organismal humoral immunity, establishing adult Drosophila as model for inter-organ immunity.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Leire Herboso
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katrina S Gold
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Baginsky
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katelyn Kukar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Sean Corcoran
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Thea Jacobs
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Debra Ouyang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Corinna Wong
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Frederic Geissmann
- King's College London, London, UK; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Hsu KJ, Lin YY, Chiang AS, Chu SW. Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1627-1637. [PMID: 31086697 PMCID: PMC6484994 DOI: 10.1364/boe.10.001627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Drosophila is widely used in connectome studies due to its small brain size, sophisticated genetic tools, and the most complete single-neuron-based anatomical brain map. Surprisingly, even the brain thickness is only 200-μm, common Ti:sapphire-based two-photon excitation cannot penetrate, possibly due to light aberration/scattering of trachea. Here we quantitatively characterized scattering and light distortion of trachea-filled tissues, and found that trachea-induced light distortion dominates at long wavelength by comparing one-photon (488-nm), two-photon (920-nm), and three-photon (1300-nm) excitations. Whole-Drosophila-brain imaging is achieved by reducing tracheal light aberration/scattering via brain-degassing or long-wavelength excitation at 1300-nm. Our work paves the way toward constructing whole-brain connectome in a living Drosophila.
Collapse
Affiliation(s)
- Kuo-Jen Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Yin Lin
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan
- Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093-0526, USA
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Du L, Sohr A, Yan G, Roy S. Feedback regulation of cytoneme-mediated transport shapes a tissue-specific FGF morphogen gradient. eLife 2018; 7:38137. [PMID: 30328809 PMCID: PMC6224196 DOI: 10.7554/elife.38137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
Gradients of signaling proteins are essential for inducing tissue morphogenesis. However, mechanisms of gradient formation remain controversial. Here we characterized the distribution of fluorescently-tagged signaling proteins, FGF and FGFR, expressed at physiological levels from the genomic knock-in alleles in Drosophila. FGF produced in the larval wing imaginal-disc moves to the air-sac-primordium (ASP) through FGFR-containing cytonemes that extend from the ASP to contact the wing-disc source. The number of FGF-receiving cytonemes extended by ASP cells decreases gradually with increasing distance from the source, generating a recipient-specific FGF gradient. Acting as a morphogen in the ASP, FGF activates concentration-dependent gene expression, inducing pointed-P1 at higher and cut at lower levels. The transcription-factors Pointed-P1 and Cut antagonize each other and differentially regulate formation of FGFR-containing cytonemes, creating regions with higher-to-lower numbers of FGF-receiving cytonemes. These results reveal a robust mechanism where morphogens self-generate precise tissue-specific gradient contours through feedback regulation of cytoneme-mediated dispersion. When an embryo develops, its cells must work together and ‘talk’ with each other so they can build the tissues and organs of the body. A cell can communicate with its neighbors by producing a signal, also known as a morphogen, which will tell the receiving cells what to do. Once outside the cell, a morphogen spreads through the surrounding tissue and forms a gradient: there is more of the molecule closer to the signaling cells and less further away. The cells that receive the message respond differently depending on how much morphogen they get, and therefore on where they are placed in the embryo. How morphogens move in tissues to create gradients is still poorly understood. One hypothesis is that, once released, they spread passively through the space between cells. Instead, recent research has shown that some morphogens travel through long, thin cellular extensions known as cytonemes. These structures directly connect the cells that produce a morphogen with the ones that receive the molecule. Yet, it is still unclear how cytonemes can help to form gradients. Du et al. aimed to resolve this question by following a morphogen called Branchless as it traveled through fruit fly embryos. Branchless is important for sculpting the embryonic airway tissue into a delicate network of branched tubes which supply oxygen to the cells of an adult fly. However, no one knew how cells communicate Branchless, whether or not Branchless formed a gradient, and if it did, how this gradient was created to set up the plan to form airway tubes. It was assumed that the molecule would diffuse passively to reach airway cells – but this is not what the experiments by Du et al. showed. To directly observe how Branchless moves among cells, insects were genetically engineered to produce Branchless molecules attached to a fluorescent ‘tag’. Microscopy experiments using these flies revealed that Branchless did not diffuse passively; instead, airway cells used cytonemes to ‘reach’ towards the cells that produced the molecule, collecting the signal directly from its source. The gradient was created because the airway cells near the cells that make Branchless had more cytonemes, and therefore received more of the molecule compared to the cells that were placed further away. Genetic analysis of the airway tissue showed that Branchless acts as a morphogen to switch on different genes in the receiving cells placed in different locations. The target genes activated by the gradient instruct the receiving cells on how many cytonemes need to be extended, which helps the gradient to maintain itself over time. Du et al. demonstrate for the first time how cytonemes can relay a signal to establish a gradient in a developing tissue. Dissecting how cells exchange information to create an organism could help to understand how this communication fails and leads to disorders.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, United States
| | - Alex Sohr
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, United States
| | - Ge Yan
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, United States
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, United States
| |
Collapse
|
11
|
Powers N, Srivastava A. The Air Sac Primordium of Drosophila: A Model for Invasive Development. Int J Mol Sci 2018; 19:ijms19072074. [PMID: 30018198 PMCID: PMC6073991 DOI: 10.3390/ijms19072074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
The acquisition of invasive properties preceding tumor metastasis is critical for cancer progression. This phenomenon may result from mutagenic disruption of typical cell function, but recent evidence suggests that cancer cells frequently co-opt normal developmental programs to facilitate invasion as well. The signaling cascades that have been implicated present an obstacle to identifying effective therapeutic targets because of their complex nature and modulatory capacity through crosstalk with other pathways. Substantial efforts have been made to study invasive behavior during organogenesis in several organisms, but another model found in Drosophilamelanogaster has not been thoroughly explored. The air sac primordium (ASP) appears to be a suitable candidate for investigating the genes and morphogens required for invasion due to the distinct overlap in the events that occur during its normal growth and the development of metastatic tumor cells. Among these events are the conversion of larval cells in the trachea into a population of mitotically active cells, reduced cell–cell contact along the leading edge of the ASP, and remodeling of the extracellular matrix (ECM) that surrounds the structure. Here, we summarize the development of ASPs and invasive behavior observed therein.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| |
Collapse
|
12
|
Kizhedathu A, Bagul AV, Guha A. Negative regulation of G2-M by ATR (mei-41)/Chk1(Grapes) facilitates tracheoblast growth and tracheal hypertrophy in Drosophila. eLife 2018; 7:29988. [PMID: 29658881 PMCID: PMC5953539 DOI: 10.7554/elife.29988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
Imaginal progenitors in Drosophila are known to arrest in G2 during larval stages and proliferate thereafter. Here we investigate the mechanism and implications of G2 arrest in progenitors of the adult thoracic tracheal epithelium (tracheoblasts). We report that tracheoblasts pause in G2 for ~48–56 h and grow in size over this period. Surprisingly, tracheoblasts arrested in G2 express drivers of G2-M like Cdc25/String (Stg). We find that mechanisms that prevent G2-M are also in place in this interval. Tracheoblasts activate Checkpoint Kinase 1/Grapes (Chk1/Grp) in an ATR/mei-41-dependent manner. Loss of ATR/Chk1 led to precocious mitotic entry ~24–32 h earlier. These divisions were apparently normal as there was no evidence of increased DNA damage or cell death. However, induction of precocious mitoses impaired growth of tracheoblasts and the tracheae they comprise. We propose that ATR/Chk1 negatively regulate G2-M in developing tracheoblasts and that G2 arrest facilitates cellular and hypertrophic organ growth. Every organism begins as a single cell. That cell, and all the other cells it generates over time, need to divide at the right time and in the right place to develop into an adult. As they do so, they pass through the stages of the cell cycle. As cells prepare to divide they enter into the first growth phase, G1, ramping up their metabolic activity. They then enter S phase, duplicate their DNA, and subsequently a second growth phase G2. Finally, during the mitotic phase, the chromosome separate and cells undergo cytokinesis to form new cells. Dividing cells can pause at certain stages of the cell cycle to assess whether the conditions are suitable to proceed. The length of the pause depends on the stage of development and the cell type. Signals around the cell provide the cues that it needs to make the decision. The fruit fly Drosophila melanogaster, for example, undergoes metamorphosis during development, meaning it transforms from a larva into an adult. The larva contains small patches of ‘progenitor’ cells that form the adult tissue. These remain paused for various intervals during larval life and restart their cell cycle as the animal develops. A key challenge in biology is to understand how these progenitors pause and what makes them start dividing again. Here, Kizhedathu, Bagul and Guha uncover a new mechanism that pauses the cell cycle in developing animal cells. Progenitors of the respiratory system in the adult fruit fly pause at the G2 stage of the cell cycle during larval life. Some of these progenitors, from a part of the larva called the dorsal trunk, go on to form the structures of the adult respiratory system. By counting the cells and tracking their dynamics with fluorescent labels, Kizhedathu et al. revealed that the progenitor cells pause for between 48 and to 56 hours. Previous research suggested that this pause happens because the cells lack a protein essential for mitosis called Cdc25/String. However, these progenitors were producing Cdc25/String. They stopped dividing because they also made another protein, known as Checkpoint Kinase 1/Grapes (Chk1/Grp). Chk1 is known to add a chemical modification to Cdc25, which dampens its activity and stops the cell cycle from progressing. This is likely what allow the flies to co-ordinate their development and give the cells more time to grow. When Chk1 was experimentally removed, it reactivated the paused cells sooner, resulting in smaller cells and a smaller respiratory organ. This work extends our understanding of stem cell dynamics and growth during development. Previous work has shown that cells that give rise to muscles and the neural tube (the precursor of the central nervous system) also pause their cell cycle in G2. Understanding more about how this happens could open new avenues for research into developmental disease.
Collapse
Affiliation(s)
- Amrutha Kizhedathu
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Archit V Bagul
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Arjun Guha
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
13
|
Chen W, Huang H, Hatori R, Kornberg TB. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc. Development 2017; 144:3134-3144. [PMID: 28743798 PMCID: PMC5611956 DOI: 10.1242/dev.149856] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023]
Abstract
Morphogen concentration gradients that extend across developmental fields form by dispersion from source cells. In the Drosophila wing disc, Hedgehog (Hh) produced by posterior compartment cells distributes in a concentration gradient to adjacent cells of the anterior compartment. We monitored Hh:GFP after pulsed expression, and analyzed the movement and colocalization of Hh, Patched (Ptc) and Smoothened (Smo) proteins tagged with GFP or mCherry and expressed at physiological levels from bacterial artificial chromosome transgenes. Hh:GFP moved to basal subcellular locations prior to release from posterior compartment cells that express it, and was taken up by basal cytonemes that extend to the source cells. Hh and Ptc were present in puncta that moved along the basal cytonemes and formed characteristic apical-basal distributions in the anterior compartment cells. The basal cytonemes required diaphanous, SCAR, Neuroglian and Synaptobrevin, and both the Hh gradient and Hh signaling declined under conditions in which the cytonemes were compromised. These findings show that in the wing disc, Hh distributions and signaling are dependent upon basal release and uptake, and on cytoneme-mediated movement. No evidence for apical dispersion was obtained.
Collapse
Affiliation(s)
- Weitao Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Ryo Hatori
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Huang H, Kornberg TB. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 2015; 4:e06114. [PMID: 25951303 PMCID: PMC4423120 DOI: 10.7554/elife.06114] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|