1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
van den Berg W, Gupta BP. Genome-Wide Temporal Gene Expression Reveals a Post-Reproductive Shift in the Nematode Caenorhabditis briggsae. Genome Biol Evol 2025; 17:evaf057. [PMID: 40171711 PMCID: PMC11992569 DOI: 10.1093/gbe/evaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The nematodes Caenorhabditis briggsae and its well-known cousin Caenorhabditis elegans offer many features for comparative investigations of genetic pathways that affect physiological processes. Reproduction is one such process that directly impacts longevity due to its significant energetic demands. To study gene expression changes during reproductive and post-reproductive phases in both these nematodes, we conducted whole-genome transcriptome profiling at various adult stages. The results revealed that the majority of differentially expressed (DE) genes were downregulated during the reproductive period in both species. Interestingly, in C. briggsae, this trend reversed during post-reproduction, with three-quarters of the DE genes becoming upregulated. Additionally, a smaller set of DE genes showed an opposite expression trend, i.e. upregulation followed by post-reproductive downregulation. Overall, we termed this phenomenon the "post-reproductive shift". In contrast, the post-reproductive shift was much less pronounced in C. elegans. In C. briggsae, DE genes were enriched in processes related to the matrisome, muscle development and function during the reproductive period. Post-reproductive downregulated genes were enriched in DNA damage repair, stress response, and immune response. Additionally, terms related to fatty acid metabolism, catabolism, and transcriptional regulation exhibited complex patterns. Experimental manipulations in C. briggsae to affect their reproductive status predictably altered gene expression, providing in vivo support for the post-reproductive shift. Overall, our study reveals novel gene expression patterns during reproductive and post-reproductive changes in C. briggsae. The data provide a valuable resource for cross-sectional comparative studies in nematodes and other animal models to understand evolution of genetic pathways affecting reproduction and aging.
Collapse
Affiliation(s)
- Wouter van den Berg
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| |
Collapse
|
3
|
Marian AJ. Causes and consequences of DNA double-stranded breaks in cardiovascular disease. Mol Cell Biochem 2025; 480:2043-2064. [PMID: 39404936 DOI: 10.1007/s11010-024-05131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/29/2024] [Indexed: 04/02/2025]
Abstract
The genome, whose stability is essential for survival, is incessantly exposed to internal and external stressors, which introduce an estimated 104 to 105 lesions, such as oxidation, in the nuclear genome of each mammalian cell each day. A delicate homeostatic balance between the generation and repair of DNA lesions maintains genomic stability. To initiate transcription, DNA strands unwind to form a transcription bubble and provide a template for the RNA polymerase II (RNAPII) complex to synthesize nascent RNA. The process generates DNA supercoils and introduces torsional stress. To enable RNAPII processing, the supercoils are released by topoisomerases by introducing strand breaks, including double-stranded breaks (DSBs). Thus, DSBs are intrinsic genomic features of gene expression. The breaks are quickly repaired upon processing of the transcription. DNA lesions and damaged proteins involved in transcription could impede the integrity and efficiency of RNAPII processing. The impediment, which is referred to as transcription stress, not only could lead to the generation of aberrant RNA species but also the accumulation of DSBs. The latter is particularly the case when topoisomerase processing and/or the repair mechanisms are compromised. The DSBs activate the DNA damage response (DDR) pathways to repair the damaged DNA and/or impose cell cycle arrest and cell death. In addition, the release of DSBs into the cytosol activates the cytosolic DNA-sensing proteins (CDSPs), which along with the nuclear DDR pathways induce the expression of senescence-associated secretory phenotype (SASP), cell cycle arrest, senescence, cell death, inflammation, and aging. The primary stimulus in hereditary cardiomyopathies is a mutation(s) in genes encoding the protein constituents of cardiac myocytes; however, the phenotype is the consequence of intertwined complex interactions among numerous stressors and the causal mutation(s). Increased internal DNA stressors, such as oxidation, alkylation, and cross-linking, are expected to be common in pathological conditions, including in hereditary cardiomyopathies. In addition, dysregulation of gene expression also imposes transcriptional stress and collectively with other stressors provokes the generation of DSBs. In addition, the depletion of nicotinamide adenine dinucleotide (NAD), which occurs in pathological conditions, impairs the repair mechanism and further facilitates the accumulation of DSBs. Because DSBs activate the DDR pathways, they are expected to contribute to the pathogenesis of cardiomyopathies. Thus, interventions to reduce the generation of DSBs, enhance their repair, and block the deleterious DDR pathways would be expected to impart salubrious effects not only in pathological states, as in hereditary cardiomyopathies but also aging.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetic Studies, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Zhou Y, Chen L, Wang M, Yang Y, Hu B, Li G, Wei F. Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans. GeroScience 2024:10.1007/s11357-024-01492-7. [PMID: 39729241 DOI: 10.1007/s11357-024-01492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C. elegans) and elucidated the underlying mechanisms. The results showed that paroxetine can prolong lifespan concomitant extension of healthspan as indicated by increasing mobility and reducing lipofuscin accumulation, as well as confer protection to nematodes against different abiotic stresses. Paroxetine upregulated ser-7 expression and downregulated dop-4 expression. dop-4 RNA interference (RNAi) mimicked the beneficial effect of paroxetine on lifespan. Conversely, ser-7 RNAi abolished paroxetine-induced lifespan extension and the expression changes of dop-4 and genes related to insulin/insulin-like growth factor 1 signaling (IIS). Moreover, paroxetine exhibited a comparable lifespan extension effect to that observed in daf-2 or age-1 mutants; however, this effect was abolished in daf-16 mutant. Taken together, these results suggest that paroxetine promotes health and longevity in C. elegans through the ser-7-dop-4-IIS pathway, underscoring its potential as a geroprotector.
Collapse
Affiliation(s)
- Yiming Zhou
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Lijuan Chen
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Meijing Wang
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Yang Yang
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Bin Hu
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Guolin Li
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Fang Wei
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China.
| |
Collapse
|
5
|
Papantonis A, Antebi A, Partridge L, Beyer A. Age-associated changes in transcriptional elongation and their effects on homeostasis. Trends Cell Biol 2024:S0962-8924(24)00247-2. [PMID: 39706758 DOI: 10.1016/j.tcb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Cellular homeostasis declines with age due to the declining fidelity of biosynthetic processes and the accumulation of molecular damage. Yet, it remains largely elusive how individual processes are affected during aging and what their specific contribution to age-related functional decline is. This review discusses a series of recent publications that has shown that transcription elongation is compromised during aging due to increasing DNA damage, stalling of RNA polymerase II (RNAPII), erroneous transcription initiation in gene bodies, and accelerated RNAPII elongation. Importantly, several of these perturbations likely arise from changes in chromatin organization with age. Thus, taken together, this work establishes a network of interlinked processes contributing to age-related decline in the quantity and quality of RNA production.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andreas Beyer
- Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Schiksnis E, Nicastro I, Pasquinelli A. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. Nucleic Acids Res 2024; 52:13896-13913. [PMID: 39558169 PMCID: PMC11662692 DOI: 10.1093/nar/gkae1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing (RNA-seq) and Oxford Nanopore Technologies direct RNA-seq over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity. Finally, we identify thousands of inosine and hundreds of pseudouridine edits genome-wide. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C Schiksnis
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A Nicastro
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
7
|
Kong W, Gu G, Dai T, Chen B, Wang Y, Zeng Z, Pu M. ELO-6 expression predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Commun 2024; 15:9470. [PMID: 39488532 PMCID: PMC11531548 DOI: 10.1038/s41467-024-53887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Variations of individual lifespans within genetically identical populations in homogenous environments are remarkable, with the cause largely unknown. Here, we show the expression dynamic of the Caenorhabditis elegans fatty acid elongase ELO-6 during aging predicts individual longevity in isogenic populations. elo-6 expression is reduced with age. ELO-6 expression level exhibits obvious variation between individuals in mid-aged worms and is positively correlated with lifespan and health span. Interventions that prolong longevity enhance ELO-6 expression stability during aging, indicating ELO-6 is also a populational lifespan predictor. Differentially expressed genes between short-lived and long-lived isogenic worms regulate lifespan and are enriched for PQM-1 binding sites. pqm-1 in young to mid-aged adults causes individual ELO-6 expression heterogeneity and restricts health span and life span. Thus, our study identifies ELO-6 as a predictor of individual and populational lifespan and reveals the role of pqm-1 in causing individual health span variation in the mid-aged C. elegans.
Collapse
Affiliation(s)
- Weilin Kong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Gu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tong Dai
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Beibei Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yanli Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng Zeng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mintie Pu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
8
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
9
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
10
|
Coler-Reilly A, Pincus Z, Scheller EL, Civitelli R. Six drivers of aging identified among genes differentially expressed with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606402. [PMID: 39149379 PMCID: PMC11326176 DOI: 10.1101/2024.08.02.606402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (csp-3/CASP1 and spch-2/RSRC1) and four age-downregulated genes (C42C1.8/DIRC2, ost-1/SPARC, fzy-1/CDC20, and cah-3/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.
Collapse
Affiliation(s)
- Ariella Coler-Reilly
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Eder M, Martin OMF, Oswal N, Sedlackova L, Moutinho C, Del Carmen-Fabregat A, Menendez Bravo S, Sebé-Pedrós A, Heyn H, Stroustrup N. Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell 2024; 187:3919-3935.e19. [PMID: 38908368 DOI: 10.1016/j.cell.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
Collapse
Affiliation(s)
- Matthias Eder
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Olivier M F Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucia Sedlackova
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cátia Moutinho
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Andrea Del Carmen-Fabregat
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Menendez Bravo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
12
|
Matsuzaki T, Weistuch C, de Graff A, Dill KA, Balázsi G. Transcriptional drift in aging cells: A global decontroller. Proc Natl Acad Sci U S A 2024; 121:e2401830121. [PMID: 39012826 PMCID: PMC11287169 DOI: 10.1073/pnas.2401830121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
As cells age, they undergo a remarkable global change: In transcriptional drift, hundreds of genes become overexpressed while hundreds of others become underexpressed. Using archetype modeling and Gene Ontology analysis on data from aging Caenorhabditis elegans worms, we find that the up-regulated genes code for sensory proteins upstream of stress responses and down-regulated genes are growth- and metabolism-related. We observe similar trends within human fibroblasts, suggesting that this process is conserved in higher organisms. We propose a simple mechanistic model for how such global coordination of multiprotein expression levels may be achieved by the binding of a single factor that concentrates with age in C. elegans. A key implication is that a cell's own responses are part of its aging process, so unlike wear-and-tear processes, intervention might be able to modulate these effects.
Collapse
Affiliation(s)
- Tyler Matsuzaki
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | | | - Ken A. Dill
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
| | - Gábor Balázsi
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
- Department of Biomedical Engineering, Stony Brook University, New York, NY11794
- Stony Brook Cancer Center, Stony Brook University, New York, NY11794
| |
Collapse
|
13
|
Avchaciov K, Clay KJ, Denisov K, Burmistrova O, Petrascheck M, Fedichev P. Multiple Targets, One Goal: Compounding life-extending effects through Polypharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600269. [PMID: 38979167 PMCID: PMC11230182 DOI: 10.1101/2024.06.23.600269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Analysis of lifespan-extending compounds suggested the most effective geroprotectors target multiple biogenic amine receptors. To test this hypothesis, we used graph neural networks to predict such polypharmacological compounds and evaluated them in C. elegans. Over 70% of the selected compounds extended lifespan, with effect sizes in the top 5% compared to the DrugAge database. This reveals that rationally designing polypharmacological compounds enables the design of geroprotectors with exceptional efficacy.
Collapse
Affiliation(s)
- K. Avchaciov
- Gero PTE, 60 Paya Lebar Road # 05-40B, Paya Lebar Square, 409051, Singapore
| | - K. J. Clay
- Department of Molecular and Cellular Biology, Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | | | - O. Burmistrova
- Gero PTE, 60 Paya Lebar Road # 05-40B, Paya Lebar Square, 409051, Singapore
| | - M. Petrascheck
- Department of Molecular and Cellular Biology, Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - P. Fedichev
- Gero PTE, 60 Paya Lebar Road # 05-40B, Paya Lebar Square, 409051, Singapore
| |
Collapse
|
14
|
Schiksnis EC, Nicastro IA, Pasquinelli AE. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599640. [PMID: 38948813 PMCID: PMC11213008 DOI: 10.1101/2024.06.18.599640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing and Nanopore direct RNA sequencing over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity and a rise in inosine and pseudouridine editing events in transcripts from older animals. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C. Schiksnis
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A. Nicastro
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E. Pasquinelli
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
15
|
Meyer DH, Schumacher B. Aging clocks based on accumulating stochastic variation. NATURE AGING 2024; 4:871-885. [PMID: 38724736 PMCID: PMC11186771 DOI: 10.1038/s43587-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Aging clocks have provided one of the most important recent breakthroughs in the biology of aging, and may provide indicators for the effectiveness of interventions in the aging process and preventive treatments for age-related diseases. The reproducibility of accurate aging clocks has reinvigorated the debate on whether a programmed process underlies aging. Here we show that accumulating stochastic variation in purely simulated data is sufficient to build aging clocks, and that first-generation and second-generation aging clocks are compatible with the accumulation of stochastic variation in DNA methylation or transcriptomic data. We find that accumulating stochastic variation is sufficient to predict chronological and biological age, indicated by significant prediction differences in smoking, calorie restriction, heterochronic parabiosis and partial reprogramming. Although our simulations may not explicitly rule out a programmed aging process, our results suggest that stochastically accumulating changes in any set of data that have a ground state at age zero are sufficient for generating aging clocks.
Collapse
Affiliation(s)
- David H Meyer
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
17
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
18
|
Liang Y, Zhou Y, Zhou C, Cai X, Liu L, Wei F, Li G. Sertraline Promotes Health and Longevity in Caenorhabditis elegans. Gerontology 2024; 70:408-417. [PMID: 38228128 DOI: 10.1159/000536227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION While several antidepressants have been identified as potential geroprotectors, the effect and mechanism of sertraline on healthspan remain to be elucidated. Here, we explored the role of sertraline in the lifespan and healthspan of Caenorhabditis elegans. METHODS The optimal effect concentration of sertraline was first screened in wild-type N2 worms under heat stress conditions. Then, we examined the effects of sertraline on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the expression of serotonin signaling and aging-related genes was investigated to explore the underlying mechanism, and the lifespan assays were performed in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. RESULTS Sertraline extended the lifespan in C. elegans with concomitant extension of healthspan as indicated by increasing mobility and reducing fertility and lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanistically, ser-7 orchestrated sertraline-induced longevity via the regulation of insulin and AMPK pathways, and sertraline-induced lifespan extension in nematodes was abolished in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. CONCLUSION Sertraline promotes health and longevity in C. elegans through ser-7-insulin/AMPK pathways.
Collapse
Affiliation(s)
- Yu Liang
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiming Zhou
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Can Zhou
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinqi Cai
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Liu
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang Wei
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guolin Li
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Matsuzaki T, Weistuch C, de Graff A, Dill KA, Balázsi G. Transcriptional drift in aging cells: A global de-controller. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568122. [PMID: 38045342 PMCID: PMC10690170 DOI: 10.1101/2023.11.21.568122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
As cells age, they undergo a remarkable global change: In transcriptional drift, hundreds of genes become overexpressed while hundreds of others become underexpressed. Using archetype modeling and Gene Ontology analysis on data from aging Caenorhabditis elegans worms, we find that the upregulated genes code for sensory proteins upstream of stress responses and downregulated genes are growth- and metabolism-related. We propose a simple mechanistic model for how such global coordination of multi-protein expression levels may be achieved by the binding of a single ligand that concentrates with age. A key implication is that a cell's own responses are part of its aging process, so unlike for wear-and-tear processes, intervention might be able to modulate these effects.
Collapse
|
20
|
Zane F, Bouzid H, Sosa Marmol S, Brazane M, Besse S, Molina JL, Cansell C, Aprahamian F, Durand S, Ayache J, Antoniewski C, Todd N, Carré C, Rera M. Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature. Aging Cell 2023; 22:e13946. [PMID: 37822253 PMCID: PMC10652310 DOI: 10.1111/acel.13946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Hayet Bouzid
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | - Mira Brazane
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | | | - Céline Cansell
- Université Paris‐Saclay, AgroParisTech, INRAE, UMR PNCAPalaiseauFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Jessica Ayache
- Institut Jacques Monod, CNRS UMR 7592, Université Paris CitéParisFrance
| | | | - Nicolas Todd
- Eco‐Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRSUniversité de Paris, Musée de l'HommeParisFrance
| | - Clément Carré
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Michael Rera
- Université Paris Cité, INSERM UMR U1284ParisFrance
| |
Collapse
|
21
|
Culberson JW, Kopel J, Sehar U, Reddy PH. Urgent needs of caregiving in ageing populations with Alzheimer's disease and other chronic conditions: Support our loved ones. Ageing Res Rev 2023; 90:102001. [PMID: 37414157 PMCID: PMC10756323 DOI: 10.1016/j.arr.2023.102001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The ageing process begins at birth. It is a life-long process, and its exact origins are still unknown. Several hypotheses attempt to describe the normal ageing process, including hormonal imbalance, formation of reactive oxygen species, DNA methylation & DNA damage accumulation, loss of proteostasis, epigenetic alterations, mitochondrial dysfunction, senescence, inflammation, and stem cell depletion. With increased lifespan in elderly individuals, the prevalence of age-related diseases including, cancer, diabetes, obesity, hypertension, Alzheimer's, Alzheimer's disease and related dementias, Parkinson's, and other mental illnesses are increased. These increased age-related illnesses, put tremendous pressure & burden on caregivers, family members, and friends who are living with patients with age-related diseases. As medical needs evolve, the caregiver is expected to experience an increase in duties and challenges, which may result in stress on themselves, and impact their own family life. In the current article, we assess the biological mechanisms of ageing and its effect on body systems, exploring lifestyle and ageing, with a specific focus on age-related disorders. We also discussed the history of caregiving and specific challenges faced by caregivers in the presence of multiple comorbidities. We also assessed innovative approaches to funding caregiving, and efforts to improve the medical system to better organize chronic care efforts, while improving the skill and efficiency of both informal and formal caregivers. We also discussed the role of caregiving in end-of-life care. Our critical analysis strongly suggests that there is an urgent need for caregiving in aged populations and support from local, state, and federal agencies.
Collapse
Affiliation(s)
- John W Culberson
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
22
|
Roux AE, Yuan H, Podshivalova K, Hendrickson D, Kerr R, Kenyon C, Kelley D. Individual cell types in C. elegans age differently and activate distinct cell-protective responses. Cell Rep 2023; 42:112902. [PMID: 37531250 DOI: 10.1016/j.celrep.2023.112902] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Aging is characterized by a global decline in physiological function. However, by constructing a complete single-cell gene expression atlas, we find that Caenorhabditis elegans aging is not random in nature but instead is characterized by coordinated changes in functionally related metabolic, proteostasis, and stress-response genes in a cell-type-specific fashion, with downregulation of energy metabolism being the only nearly universal change. Similarly, the rates at which cells age differ significantly between cell types. In some cell types, aging is characterized by an increase in cell-to-cell variance, whereas in others, variance actually decreases. Remarkably, multiple resilience-enhancing transcription factors known to extend lifespan are activated across many cell types with age; we discovered new longevity candidates, such as GEI-3, among these. Together, our findings suggest that cells do not age passively but instead react strongly, and individualistically, to events that occur during aging. This atlas can be queried through a public interface.
Collapse
Affiliation(s)
| | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | - Rex Kerr
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - David Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Becker F, Behrends MM, Rudolph KL. Evolution, mechanism and limits of dietary restriction induced health benefits & longevity. Redox Biol 2023; 63:102725. [PMID: 37257276 DOI: 10.1016/j.redox.2023.102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Dietary restriction (DR) is the most powerful intervention to enhance health and lifespan across species. However, recent findings indicate that DR started in late life has limited capacity to induce health benefits. Age-dependent changes that impair DR at old age remain to be delineated. This requires a better mechanistic understanding of the different aspects that constitute DR, how they act independently and in concert. Current research efforts aim to tackle these questions: Are fasting periods needed for the induction of DR's health benefits? Does the improvement of cellular and organismal functions depend on the reduction of specific dietary components like proteins or even micronutrients and/or vitamins? How is the aging process intervening with DR-mediated responses? Understanding the evolutionary benefits of nutrient stress responses in driving molecular and cellular adaptation in response to nutrient deprivation is likely providing answers to some of these questions. Cellular memory of early life may lead to post-reproductive distortions of gene regulatory networks and metabolic pathways that inhibit DR-induced stress responses and health benefits when the intervention is started at old age. Inhere we discuss new insights into mechanisms of DR-mediated health benefits and how evolutionary selection for fitness in early life may limit DR-mediated improvements at old age.
Collapse
Affiliation(s)
- Friedrich Becker
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Marthe M Behrends
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - K Lenhard Rudolph
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| |
Collapse
|
24
|
Debès C, Papadakis A, Grönke S, Karalay Ö, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A, Brusius I, Sofiadis K, Lamprousi M, Lu YX, Huang W, Esmaillie R, Kubacki T, Späth MR, Schermer B, Benzing T, Müller RU, Antebi A, Partridge L, Papantonis A, Beyer A. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023; 616:814-821. [PMID: 37046086 PMCID: PMC10132977 DOI: 10.1038/s41586-023-05922-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.
Collapse
Affiliation(s)
- Cédric Debès
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Antonios Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Özlem Karalay
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hahn
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carina Weigelt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Isabell Brusius
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Konstantinos Sofiadis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mantha Lamprousi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Reza Esmaillie
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Adam Antebi
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Linda Partridge
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Gyenis A, Chang J, Demmers JJPG, Bruens ST, Barnhoorn S, Brandt RMC, Baar MP, Raseta M, Derks KWJ, Hoeijmakers JHJ, Pothof J. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat Genet 2023; 55:268-279. [PMID: 36658433 PMCID: PMC9925383 DOI: 10.1038/s41588-022-01279-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.
Collapse
Affiliation(s)
- Akos Gyenis
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany
| | - Jiang Chang
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Serena T Bruens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marjolein P Baar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marko Raseta
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kasper W J Derks
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics and School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Borbolis F, Ranti D, Papadopoulou MD, Dimopoulou S, Malatras A, Michalopoulos I, Syntichaki P. Selective Destabilization of Transcripts by mRNA Decapping Regulates Oocyte Maturation and Innate Immunity Gene Expression during Ageing in C. elegans. BIOLOGY 2023; 12:biology12020171. [PMID: 36829450 PMCID: PMC9952881 DOI: 10.3390/biology12020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Removal of the 5' cap structure of RNAs (termed decapping) is a pivotal event in the life of cytoplasmic mRNAs mainly catalyzed by a conserved holoenzyme, composed of the catalytic subunit DCP2 and its essential cofactor DCP1. While decapping was initially considered merely a step in the general 5'-3' mRNA decay, recent data suggest a great degree of selectivity that plays an active role in the post-transcriptional control of gene expression, and regulates multiple biological functions. Studies in Caenorhabditis elegans have shown that old age is accompanied by the accumulation of decapping factors in cytoplasmic RNA granules, and loss of decapping activity shortens the lifespan. However, the link between decapping and ageing remains elusive. Here, we present a comparative microarray study that was aimed to uncover the differences in the transcriptome of mid-aged dcap-1/DCP1 mutant and wild-type nematodes. Our data indicate that DCAP-1 mediates the silencing of spermatogenic genes during late oogenesis, and suppresses the aberrant uprise of immunity gene expression during ageing. The latter is achieved by destabilizing the mRNA that encodes the transcription factor PQM-1 and impairing its nuclear translocation. Failure to exert decapping-mediated control on PQM-1 has a negative impact on the lifespan, but mitigates the toxic effects of polyglutamine expression that are involved in human disease.
Collapse
Affiliation(s)
- Fivos Borbolis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitra Ranti
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Sofia Dimopoulou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Apostolos Malatras
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| |
Collapse
|
27
|
Alnafisah RS, Reigle J, Eladawi MA, O'Donovan SM, Funk AJ, Meller J, Mccullumsmith RE, Shukla R. Assessing the effects of antipsychotic medications on schizophrenia functional analysis: a postmortem proteome study. Neuropsychopharmacology 2022; 47:2033-2041. [PMID: 35354897 PMCID: PMC9556610 DOI: 10.1038/s41386-022-01310-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Antipsychotic drugs (APDs) are effective in treating positive symptoms of schizophrenia (SCZ). However, they have a substantial impact on postmortem studies. As most cohorts lack samples from drug-naive patients, many studies, rather than understanding SCZ pathophysiology, are analyzing the drug effects. We hypothesized that comparing SCZ-altered and APD-influenced signatures derived from the same cohort can provide better insight into SCZ pathophysiology. For this, we performed LCMS-based proteomics on dorsolateral prefrontal cortex (DLPFC) samples from control and SCZ subjects and used statistical approaches to identify SCZ-altered and APD-influenced proteomes, validated experimentally using independent cohorts and published datasets. Functional analysis of both proteomes was contrasted at the biological-pathway, cell-type, subcellular-synaptic, and drug-target levels. In silico validation revealed that the SCZ-altered proteome was conserved across several studies from the DLPFC and other brain areas. At the pathway level, SCZ influenced changes in homeostasis, signal-transduction, cytoskeleton, and dendrites, whereas APD influenced changes in synaptic-signaling, neurotransmitter-regulation, and immune-system processes. At the cell-type level, the SCZ-altered and APD-influenced proteomes were associated with two distinct striatum-projecting layer-5 pyramidal neurons regulating dopaminergic-secretion. At the subcellular synaptic level, compensatory pre- and postsynaptic events were observed. At the drug-target level, dopaminergic processes influenced the SCZ-altered upregulated-proteome, whereas nondopaminergic and a diverse array of non-neuromodulatory mechanisms influenced the downregulated-proteome. Previous findings were not independent of the APD effect and thus require re-evaluation. We identified a hyperdopaminergic cortex and drugs targeting the cognitive SCZ-symptoms and discussed their influence on SCZ pathology in the context of the cortico-striatal pathway.
Collapse
Affiliation(s)
- Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - James Reigle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Adam J Funk
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jaroslaw Meller
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
28
|
Ham S, Kim SS, Park S, Kim EJE, Kwon S, Park HEH, Jung Y, Lee SJV. Systematic transcriptome analysis associated with physiological and chronological aging in Caenorhabditis elegans. Genome Res 2022; 32:2003-2014. [PMID: 36351769 PMCID: PMC9808617 DOI: 10.1101/gr.276515.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
29
|
Loose JA, Amrit FRG, Patil T, Yanowitz JL, Ghazi A. Meiotic dysfunction accelerates somatic aging in Caenorhabditis elegans. Aging Cell 2022; 21:e13716. [PMID: 36176234 PMCID: PMC9649607 DOI: 10.1111/acel.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
An expanding body of evidence, from studies in model organisms to human clinical data, reveals that reproductive health influences organismal aging. However, the impact of germline integrity on somatic aging is poorly understood. Moreover, assessing the causal relationship of such an impact is challenging to address in human and vertebrate models. Here, we demonstrate that disruption of meiosis, a germline restricted process, shortened lifespan, impaired individual aspects of healthspan, and accelerated somatic aging in Caenorhabditis elegans. Young meiotic mutants exhibited transcriptional profiles that showed remarkable overlap with the transcriptomes of old worms and shared similarities with transcriptomes of aging human tissues as well. We found that meiosis dysfunction caused increased expression of functionally relevant longevity determinants whose inactivation enhanced the lifespan of normal animals. Further, meiotic mutants manifested destabilized protein homeostasis and enhanced proteasomal activity partially rescued the associated lifespan defects. Our study demonstrates a role for meiotic integrity in controlling somatic aging and reveals proteostasis control as a potential mechanism through which germline status impacts overall organismal health.
Collapse
Affiliation(s)
- Julia A. Loose
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Francis R. G. Amrit
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Thayjas Patil
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee‐Womens Research InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Arjumand Ghazi
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Developmental Biology, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Cell Biology & PhysiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
30
|
Smail MA, Chandrasena SS, Zhang X, Reddy V, Kelley C, Herman JP, Sherif M, McCullumsmith RE, Shukla R. Differential vulnerability of anterior cingulate cortex cell types to diseases and drugs. Mol Psychiatry 2022; 27:4023-4034. [PMID: 35754044 PMCID: PMC9875728 DOI: 10.1038/s41380-022-01657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
In psychiatric disorders, mismatches between disease states and therapeutic strategies are highly pronounced, largely because of unanswered questions regarding specific vulnerabilities of different cell types and therapeutic responses. Which cellular events (housekeeping or salient) are most affected? Which cell types succumb first to challenges, and which exhibit the strongest response to drugs? Are these events coordinated between cell types? How does disease and drug effect this coordination? To address these questions, we analyzed single-nucleus-RNAseq (sn-RNAseq) data from the human anterior cingulate cortex-a region involved in many psychiatric disorders. Density index, a metric for quantifying similarities and dissimilarities across functional profiles, was employed to identify common or salient functional themes across cell types. Cell-specific signatures were integrated with existing disease and drug-specific signatures to determine cell-type-specific vulnerabilities, druggabilities, and responsiveness. Clustering of functional profiles revealed cell types jointly participating in these events. SST and VIP interneurons were found to be most vulnerable, whereas pyramidal neurons were least. Overall, the disease state is superficial layer-centric, influences cell-specific salient themes, strongly impacts disinhibitory neurons, and influences astrocyte interaction with a subset of deep-layer pyramidal neurons. In absence of disease, drugs profiles largely recapitulate disease profiles, offering a possible explanation for drug side effects. However, in presence of disease, drug activities, are deep layer-centric and involve activating a distinct subset of deep-layer pyramidal neurons to circumvent the disease state's disinhibitory circuit malfunction. These findings demonstrate a novel application of sn-RNAseq data to explain drug and disease action at a systems level.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | | | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Vineet Reddy
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Science University, Brooklyn, NY, USA
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Mohamed Sherif
- Department of Psychiatry and Human Behavior, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
31
|
Liu D, Zhang X, Chiqin F, Nyamwasa I, Cao Y, Yin J, Zhang S, Feng H, Li K. Octopamine modulates insect mating and Oviposition. J Chem Ecol 2022; 48:628-640. [PMID: 35687218 DOI: 10.1007/s10886-022-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xinxin Zhang
- Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Fang Chiqin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yazhong Cao
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Honglin Feng
- Boyce Thompson Institute, 14853, Ithaca, NewYork, USA.
| | - Kebin Li
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
32
|
Machiela E, Rudich PD, Traa A, Anglas U, Soo SK, Senchuk MM, Van Raamsdonk JM. Targeting Mitochondrial Network Disorganization is Protective in C. elegans Models of Huntington's Disease. Aging Dis 2021; 12:1753-1772. [PMID: 34631219 PMCID: PMC8460302 DOI: 10.14336/ad.2021.0404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the HTT gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used C. elegans models to elucidate the role of mitochondrial dynamics in HD. We found that expression of a disease-length polyglutamine tract in body wall muscle, either with or without exon 1 of huntingtin, results in mitochondrial fragmentation and mitochondrial network disorganization. While mitochondria in young HD worms form elongated tubular networks as in wild-type worms, mitochondrial fragmentation occurs with age as expanded polyglutamine protein forms aggregates. To correct the deficit in mitochondrial morphology, we reduced levels of DRP-1, the GTPase responsible for mitochondrial fission. Surprisingly, we found that disrupting drp-1 can have detrimental effects, which are dependent on how much expression is decreased. To avoid potential negative side effects of disrupting drp-1, we examined whether decreasing mitochondrial fragmentation by targeting other genes could be beneficial. Through this approach, we identified multiple genetic targets that rescue movement deficits in worm models of HD. Three of these genetic targets, pgp-3, F25B5.6 and alh-12, increased movement in the HD worm model and restored mitochondrial morphology to wild-type morphology. This work demonstrates that disrupting the mitochondrial fission gene drp-1 can be detrimental in animal models of HD, but that decreasing mitochondrial fragmentation by targeting other genes can be protective. Overall, this study identifies novel therapeutic targets for HD aimed at improving mitochondrial health.
Collapse
Affiliation(s)
- Emily Machiela
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Paige D Rudich
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Annika Traa
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Ulrich Anglas
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Sonja K Soo
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Megan M Senchuk
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Jeremy M Van Raamsdonk
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA.,2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada.,4Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.,5Department of Genetics, Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|
33
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
34
|
Gupta K, Yadav P, Maryam S, Ahuja G, Sengupta D. Quantification of Age-Related Decline in Transcriptional Homeostasis. J Mol Biol 2021; 433:167179. [PMID: 34339725 DOI: 10.1016/j.jmb.2021.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Age-dependent dysregulation of transcription regulatory machinery triggers modulations in the gene expression levels leading to the decline in cellular fitness. Tracking of these transcripts along the temporal axis in multiple species revealed a spectrum of evolutionarily conserved pathways, such as electron transport chain, translation regulation, DNA repair, etc. Recent shreds of evidence suggest that aging deteriorates the transcription machinery itself, indicating the hidden complexity of the aging transcriptomes. This reinforces the need for devising novel computational methods to view aging through the lens of transcriptomics. Here, we present Homeostatic Divergence Score (HDS) to quantify the extent of messenger RNA (mRNA) homeostasis by assessing the balance between spliced and unspliced mRNA repertoire in single cells. We validated its utility in two independent aging datasets, and identified sets of genes undergoing age-related breakdown of transcriptional homeostasis. Moreover, testing of our method on a subpopulation of human embryonic stem cells revealed a set of differentially processed transcripts segregating these subpopulations. Our preliminary analyses in this direction suggest that mRNA processing level information offered by single-cell RNA sequencing (scRNA-seq) data is a superior determinant of chronological age as compared to transcriptional noise.
Collapse
Affiliation(s)
- Krishan Gupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Princey Yadav
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sidrah Maryam
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
| | - Debarka Sengupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia.
| |
Collapse
|
35
|
Integrating single-cell transcriptomics and microcircuit computer modeling. Curr Opin Pharmacol 2021; 60:34-39. [PMID: 34325379 DOI: 10.1016/j.coph.2021.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Biophysically realistic computer modeling of neuronal microcircuitry has served as a testing ground for hypotheses related to the structure and function of different brain microcircuits. Recent advances in single-cell transcriptomics provide snapshots of a neuron's molecular state and have demonstrated that cell-specific genetic markers engineer the electrophysiological properties of a neuron. Integrating these molecular details with biophysical modeling can allow unprecedented mechanistic insights. In this opinion review, we consider systems biology-based strategies involving statistical deconvolution and gene ontology to integrate the two approaches. We foresee that this integration will infer the nonlinear interactions between the transcriptomically detailed neurons in different brain states. For an initial assessment of these integrative strategies, we recommend testing them on a penetrant phenotype such as epilepsy or a basic organism model such as Caenorhabditis elegans.
Collapse
|
36
|
Meyer DH, Schumacher B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 2021; 20:e13320. [PMID: 33656257 PMCID: PMC7963339 DOI: 10.1111/acel.13320] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Aging clocks dissociate biological from chronological age. The estimation of biological age is important for identifying gerontogenes and assessing environmental, nutritional, or therapeutic impacts on the aging process. Recently, methylation markers were shown to allow estimation of biological age based on age‐dependent somatic epigenetic alterations. However, DNA methylation is absent in some species such as Caenorhabditis elegans and it remains unclear whether and how the epigenetic clocks affect gene expression. Aging clocks based on transcriptomes have suffered from considerable variation in the data and relatively low accuracy. Here, we devised an approach that uses temporal scaling and binarization of C. elegans transcriptomes to define a gene set that predicts biological age with an accuracy that is close to the theoretical limit. Our model accurately predicts the longevity effects of diverse strains, treatments, and conditions. The involved genes support a role of specific transcription factors as well as innate immunity and neuronal signaling in the regulation of the aging process. We show that this binarized transcriptomic aging (BiT age) clock can also be applied to human age prediction with high accuracy. The BiT age clock could therefore find wide application in genetic, nutritional, environmental, and therapeutic interventions in the aging process.
Collapse
Affiliation(s)
- David H. Meyer
- Institute for Genome Stability in Ageing and Disease Medical Faculty University of Cologne Cologne Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing‐Associated Diseases (CECAD) Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease Medical Faculty University of Cologne Cologne Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing‐Associated Diseases (CECAD) Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
| |
Collapse
|
37
|
Principles of the Molecular and Cellular Mechanisms of Aging. J Invest Dermatol 2021; 141:951-960. [PMID: 33518357 DOI: 10.1016/j.jid.2020.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Aging can be defined as a state of progressive functional decline accompanied by an increase in mortality. Time-dependent accumulation of cellular damage, namely lesions and mutations in the DNA and misfolded proteins, impair organellar and cellular function. Ensuing cell fate alterations lead to the accumulation of dysfunctional cells and hamper homeostatic processes, thus limiting regenerative potential; trigger low-grade inflammation; and alter intercellular and intertissue communication. The accumulation of molecular damage together with modifications in the epigenetic landscape, dysregulation of gene expression, and altered endocrine communication, drive the aging process and establish age as the main risk factor for age-associated diseases and multimorbidity.
Collapse
|
38
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Currais A, Huang L, Petrascheck M, Maher P, Schubert D. A chemical biology approach to identifying molecular pathways associated with aging. GeroScience 2020; 43:353-365. [PMID: 32705410 DOI: 10.1007/s11357-020-00238-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The understanding of how aging contributes to dementia remains obscure. To address this problem, a chemical biology approach was used employing CAD031, an Alzheimer's disease (AD) drug candidate identified using a discovery platform based upon phenotypic screens that mimic toxicities associated with the aging brain. Since CAD031 has therapeutic efficacy when fed to old symptomatic transgenic AD mice, the chemical biology hypothesis is that it can be used to determine the molecular pathways associated with age-related disease by identifying those that are modified by the compound. Here we show that when CAD031 was fed to rapidly aging SAMP8 mice starting in the last quadrant of their lifespan, it reduced many of the changes in gene, protein, and small molecule expression associated with mitochondrial aging, maintaining mitochondria at the younger molecular phenotype. Network analysis integrating the metabolomics and transcription data followed by mechanistic validation showed that CAD031 targets acetyl-CoA and fatty acid metabolism via the AMPK/ACC1 pathway. Importantly, CAD031 extended the median lifespan of SAMP8 mice by about 30%. These data show that specific alterations in mitochondrial composition and metabolism highly correlate with aging, supporting the use AD drug candidates that limit physiological aging in the brain.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
Halim MA, Tan FHP, Azlan A, Rasyid II, Rosli N, Shamsuddin S, Azzam G. Ageing, Drosophila melanogaster and Epigenetics. Malays J Med Sci 2020; 27:7-19. [PMID: 32684802 PMCID: PMC7337951 DOI: 10.21315/mjms2020.27.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/31/2020] [Indexed: 11/03/2022] Open
Abstract
Ageing is a phenomenon where the accumulation of all the stresses that alter the functions of living organisms, halter them from maintaining their physiological balance and eventually lead to death. The emergence of epigenetic tremendously contributed to the knowledge of ageing. Epigenetic changes in cells or tissues like deoxyribonucleic acid (DNA) methylation, modification of histone proteins, transcriptional modification and also the involvement of non-coding DNA has been documented to be associated with ageing. In order to study ageing, scientists have taken advantage of several potential organisms to aid them in their study. Drosophila melanogaster has been an essential model in establishing current understanding of the mechanism of ageing as they possess several advantages over other competitors like having homologues to more than 75% of human disease genes, having 50% of Drosophila genes are homologues to human genes and most importantly they are genetically amenable. Here, we would like to summarise the extant knowledge about ageing and epigenetic process and the role of Drosophila as an ideal model to study epigenetics in association with ageing process.
Collapse
Affiliation(s)
- Mardani Abdul Halim
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Florence Hui Ping Tan
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Azali Azlan
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ian Ilham Rasyid
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurlina Rosli
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Shaharum Shamsuddin
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ghows Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Pulau Pinang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
41
|
LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models. Aging Cell 2020; 19:e13167. [PMID: 32500641 PMCID: PMC7412685 DOI: 10.1111/acel.13167] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
Transcriptomic markers of aging can be useful for studying age‐related processes and diseases. However, noncoding repetitive element (RE) transcripts, which may play an important role in aging, are commonly overlooked in transcriptome studies—and their potential as a transcriptomic marker of aging has not been evaluated. Here, we used multiple RNA‐seq datasets generated from human samples and Caenorhabditis elegans and found that most RE transcripts (a) accumulate progressively with aging; (b) can be used to accurately predict age; and (c) may be a good marker of biological age. The strong RE/aging correlations we observed are consistent with growing evidence that RE transcripts contribute directly to aging and disease.
Collapse
Affiliation(s)
- Thomas J. LaRocca
- Department of Health and Exercise Science Center for Healthy Aging Colorado State University Fort Collins CO USA
| | - Alyssa N. Cavalier
- Department of Health and Exercise Science Center for Healthy Aging Colorado State University Fort Collins CO USA
| | - Devin Wahl
- Department of Health and Exercise Science Center for Healthy Aging Colorado State University Fort Collins CO USA
| |
Collapse
|
42
|
The aging transcriptome: read between the lines. Curr Opin Neurobiol 2020; 63:170-175. [PMID: 32563038 DOI: 10.1016/j.conb.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The increasing sophistication of gene expression technologies has given rise to the idea that aging could be understood by analyzing transcriptomes. Mapping trajectories of gene expression changes in aging organisms, across different tissues and brain regions has provided insights on how biological functions change with age. However, recent publications suggest that transcriptional regulation itself deteriorates with age. Loss of transcriptional regulation will lead to non-regulated gene expression changes, but current analysis strategies were not designed to disentangle mixtures of regulated and non-regulated changes. Disentangling transcriptional data to distinguish adaptive, regulatory changes, from those that are the consequence of the age-associated deterioration is likely to create an analytical challenge but promises to unlock yet poorly understood aspects of many age-associated transcriptomes.
Collapse
|
43
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
44
|
Tao J, Hao Y, Li X, Yin H, Nie X, Zhang J, Xu B, Chen Q, Li B. Systematic Identification of Housekeeping Genes Possibly Used as References in Caenorhabditis elegans by Large-Scale Data Integration. Cells 2020; 9:786. [PMID: 32213971 PMCID: PMC7140892 DOI: 10.3390/cells9030786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
For accurate gene expression quantification, normalization of gene expression data against reliable reference genes is required. It is known that the expression levels of commonly used reference genes vary considerably under different experimental conditions, and therefore, their use for data normalization is limited. In this study, an unbiased identification of reference genes in Caenorhabditis elegans was performed based on 145 microarray datasets (2296 gene array samples) covering different developmental stages, different tissues, drug treatments, lifestyle, and various stresses. As a result, thirteen housekeeping genes (rps-23, rps-26, rps-27, rps-16, rps-2, rps-4, rps-17, rpl-24.1, rpl-27, rpl-33, rpl-36, rpl-35, and rpl-15) with enhanced stability were comprehensively identified by using six popular normalization algorithms and RankAggreg method. Functional enrichment analysis revealed that these genes were significantly overrepresented in GO terms or KEGG pathways related to ribosomes. Validation analysis using recently published datasets revealed that the expressions of newly identified candidate reference genes were more stable than the commonly used reference genes. Based on the results, we recommended using rpl-33 and rps-26 as the optimal reference genes for microarray and rps-2 and rps-4 for RNA-sequencing data validation. More importantly, the most stable rps-23 should be a promising reference gene for both data types. This study, for the first time, successfully displays a large-scale microarray data driven genome-wide identification of stable reference genes for normalizing gene expression data and provides a potential guideline on the selection of universal internal reference genes in C. elegans, for quantitative gene expression analysis.
Collapse
Affiliation(s)
- Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Xudong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Xiner Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Jie Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Boying Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Qiao Chen
- Scientific Research Office, Chongqing Normal University, Chongqing 401331, China;
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| |
Collapse
|
45
|
Wan J, Sun G, Dicent J, Patel DS, Lu H. smFISH in chips: a microfluidic-based pipeline to quantify in situ gene expression in whole organisms. LAB ON A CHIP 2020; 20:266-273. [PMID: 31788681 PMCID: PMC8146400 DOI: 10.1039/c9lc00896a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gene expression and genetic regulatory networks in multi-cellular organisms control complex physiological processes ranging from cellular differentiation to development to aging. Traditional methods to investigate gene expression relationships rely on using bulk, pooled-population assays (e.g. RNA-sequencing and RT-PCR) to compare gene expression levels in hypo- or hyper-morphic mutant animals (e.g. gain-of-function or knockout). This approach is limited, especially in complex gene networks, as these genetic mutations may affect the expressions of related genes in unforseen ways. In contrast, we developed a microfluidic-based pipeline to discover gene relationships in a single genetic background. The microfluidic device provides efficient reagent exchange and the ability to track individual animals. By automating a robust microfluidic reagent exchange strategy, we adapted and validated single molecule fluorescent in situ hybridization (smFISH) on-chip and combined this technology with live-imaging of fluorescent transcriptional reporters. Together, this multi-level information enabled us to quantify a gene expression relationship with single-animal resolution. While this microfluidic-based pipeline is optimized for live-imaging and smFISH C. elegans studies, the strategy is highly-adaptable to other biological models as well as combining other live and end-point biological assays, such as behavior-based toxicology screening and immunohistochemistry.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA. and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jocelyn Dicent
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA. and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
46
|
Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto-Duarte A, Shokhirev MN, Schubert D, Maher P. Elevating acetyl-CoA levels reduces aspects of brain aging. eLife 2019; 8:47866. [PMID: 31742554 PMCID: PMC6882557 DOI: 10.7554/elife.47866] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joshua Goldberg
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - António Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
47
|
Abstract
Cells and organisms grow old and die. We develop a biophysical model of the mechanism. Young cells are kept healthy by the positive processes of protein synthesis, degradation, and chaperoning (the activity of keeping proteins properly folded). But, with age, negative processes increase: Oxidative damage accumulates randomly in the cell’s proteins, healthy synthesis and degradation slow down, and—like overfilled garbage cans—chaperone capacity is exceeded. The chaperones are distracted trying to fold irreversibly damaged proteins, leading to accumulating misfolded and aggregated proteins in the cell. The tipping point to death happens when the negative overwhelms the positive. The model makes several quantitative predictions of the life span of the worm Caenorhabditis elegans. What molecular processes drive cell aging and death? Here, we model how proteostasis—i.e., the folding, chaperoning, and maintenance of protein function—collapses with age from slowed translation and cumulative oxidative damage. Irreparably damaged proteins accumulate with age, increasingly distracting the chaperones from folding the healthy proteins the cell needs. The tipping point to death occurs when replenishing good proteins no longer keeps up with depletion from misfolding, aggregation, and damage. The model agrees with experiments in the worm Caenorhabditis elegans that show the following: Life span shortens nonlinearly with increased temperature or added oxidant concentration, and life span increases in mutants having more chaperones or proteasomes. It predicts observed increases in cellular oxidative damage with age and provides a mechanism for the Gompertz-like rise in mortality observed in humans and other organisms. Overall, the model shows how the instability of proteins sets the rate at which damage accumulates with age and upends a cell’s normal proteostasis balance.
Collapse
|
48
|
Timmons JA, Volmar C, Crossland H, Phillips BE, Sood S, Janczura KJ, Törmäkangas T, Kujala UM, Kraus WE, Atherton PJ, Wahlestedt C. Longevity-related molecular pathways are subject to midlife "switch" in humans. Aging Cell 2019; 18:e12970. [PMID: 31168962 PMCID: PMC6612641 DOI: 10.1111/acel.12970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.
Collapse
Affiliation(s)
- James A. Timmons
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- Scion HouseStirling University Innovation ParkStirlingUK
| | - Claude‐Henry Volmar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Hannah Crossland
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- School of Medicine, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | | | - Sanjana Sood
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
| | - Karolina J. Janczura
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Timo Törmäkangas
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | | | | | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| |
Collapse
|
49
|
Weinheimer CJ, Kovacs A, Evans S, Matkovich SJ, Barger PM, Mann DL. Load-Dependent Changes in Left Ventricular Structure and Function in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure. Circ Heart Fail 2019; 11:e004351. [PMID: 29716898 DOI: 10.1161/circheartfailure.117.004351] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 03/22/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND To better understand reverse left ventricular (LV) remodeling, we developed a murine model wherein mice develop LV remodeling after transverse aortic constriction (TAC) and a small apical myocardial infarct (MI) and undergo reverse LV remodeling after removal of the aortic band. METHODS AND RESULTS Mice studied were subjected to sham (n=6) surgery or TAC+MI (n=12). Two weeks post-TAC+MI, 1 group underwent debanding (referred to as heart failure debanding [HF-DB] mice; n=6), whereas the aortic band remained in a second group (heart failure [HF] group; n=6). LV remodeling was evaluated by 2D echocardiography at 1 day, 2 weeks and 6 weeks post-TAC+MI. The hearts were analyzed by transcriptional profiling at 4 and 6 weeks and histologically at 6 weeks. Debanding normalized LV volumes, LV mass, and cardiac myocyte hypertrophy at 6 weeks in HF-DB mice, with no difference in myofibrillar collagen in the HF and HF-DB mice. LV ejection fraction and radial strain improved after debanding; however, both remained decreased in the HF-DB mice relative to sham and were not different from HF mice at 6 weeks. Hemodynamic unloading in the HF-DB mice was accompanied by a 35% normalization of the HF genes at 2 weeks and 80% of the HF genes at 4 weeks. CONCLUSIONS Hemodynamic unloading of a pathophysiologically relevant mouse model of HF results in normalization of LV structure, incomplete recovery of LV function, and incomplete reversal of the HF transcriptional program. The HF-DB mouse model may provide novel insights into mechanisms of reverse LV remodeling.
Collapse
Affiliation(s)
- Carla J Weinheimer
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Sarah Evans
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Scot J Matkovich
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Philip M Barger
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
50
|
Li S, Zhao H, Zhang P, Liang C, Zhang Y, Hsu A, Dong M. DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis elegans to cope with internal stress. Aging Cell 2019; 18:e12896. [PMID: 30773782 PMCID: PMC6516157 DOI: 10.1111/acel.12896] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022] Open
Abstract
The roles and regulatory mechanisms of transcriptome changes during aging are unclear. It has been proposed that the transcriptome suffers decay during aging owing to age‐associated down‐regulation of transcription factors. In this study, we characterized the role of a transcription factor DAF‐16, which is a highly conserved lifespan regulator, in the normal aging process of Caenorhabditis elegans. We found that DAF‐16 translocates into the nucleus in aged wild‐type worms and activates the expression of hundreds of genes in response to age‐associated cellular stress. Most of the age‐dependent DAF‐16 targets are different from the canonical DAF‐16 targets downstream of insulin signaling. This and other evidence suggest that activation of DAF‐16 during aging is distinct from activation of DAF‐16 due to reduced signaling from DAF‐2. Further analysis showed that it is due in part to a loss of proteostasis during aging. We also found that without daf‐16, dramatic gene expression changes occur as early as on adult day 2, indicating that DAF‐16 acts to stabilize the transcriptome during normal aging. Our results thus reveal that normal aging is not simply a process in which the gene expression program descends into chaos due to loss of regulatory activities; rather, there is active transcriptional regulation during aging.
Collapse
Affiliation(s)
- Shang‐Tong Li
- School of Life Sciences Tsinghua University Beijing China
- Peking University‐Tsinghua University‐National Institute of Biological Sciences (PTN) Joint Graduate Program Beijing China
- National Institute of Biological Sciences Beijing China
| | - Han‐Qing Zhao
- National Institute of Biological Sciences Beijing China
| | - Pan Zhang
- National Institute of Biological Sciences Beijing China
| | - Chung‐Yi Liang
- Research Center for Healthy Aging China Medical University Taichung Taiwan
| | | | - Ao‐Lin Hsu
- Research Center for Healthy Aging China Medical University Taichung Taiwan
- Institute of Biochemistry and Molecular Biology National Yang‐Ming University Taipei Taiwan
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine University of Michigan Ann Arbor Michigan
| | - Meng‐Qiu Dong
- National Institute of Biological Sciences Beijing China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University Beijing China
| |
Collapse
|