1
|
Ledwith MP, Nipper T, Davis KA, Uresin D, Komarova AV, Mehle A. Influenza virus antagonizes self sensing by RIG-I to enhance viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642847. [PMID: 40161615 PMCID: PMC11952396 DOI: 10.1101/2025.03.12.642847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Innate immune sensors must finely distinguish pathogens from the host to mount a response only during infection. RIG-I is cytoplasmic sensor that surveils for foreign RNAs. When activated, RIG-I triggers a broad antiviral response that is a major regulator of RNA virus infection. Here were show that RIG-I not only bound viral RNAs, but was activated by host RNAs to amplify the antiviral state. These were primarily non-coding RNAs transcribed by RNA polymerase III. They were benign under normal conditions but became immunogenic during influenza virus infection where they signaled via RIG-I to suppress viral replication. This same class of RNAs was bound by influenza virus nucleoprotein (NP), which normally functions to encapsidate the viral genome. NP interacted with RIG-I and antagonized sensing of self RNAs to counter innate immune responses. Overall, these results demonstrate that self sensing is strategically deployed by the cell to amplify the antiviral response and reveal a newly identified viral countermeasure that disrupts RIG-I activation by host RNAs.
Collapse
Affiliation(s)
- Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas Nipper
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Deniz Uresin
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
| | - Anastassia V. Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA Viruses, CNRS UMR- 3569, F-75015 Paris, France
- Institut Pasteur, Pasteur-Oncovita Joint Laboratory, F-75015 Paris, France
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
- Lead contact
| |
Collapse
|
2
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
3
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Wang W, Götte B, Guo R, Pyle AM. The E3 ligase Riplet promotes RIG-I signaling independent of RIG-I oligomerization. Nat Commun 2023; 14:7308. [PMID: 37951994 PMCID: PMC10640585 DOI: 10.1038/s41467-023-42982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of which is ubiquitination of the RIG-I Caspase Recruitment Domains (CARDs) by E3 ligase Riplet. This is required for interaction between RIG-I and its downstream adapter protein MAVS, but the mechanism of action remains unclear. Here we show that Riplet is required for RIG-I signaling in the presence of both short and long dsRNAs, establishing that Riplet activation does not depend upon RIG-I filament formation on long dsRNAs. Likewise, quantitative Riplet-RIG-I affinity measurements establish that Riplet interacts with RIG-I regardless of whether the receptor is bound to RNA. To understand this, we solved high-resolution cryo-EM structures of RIG-I/RNA/Riplet complexes, revealing molecular interfaces that control Riplet-mediated activation and enabling the formulation of a unified model for the role of Riplet in signaling.
Collapse
Affiliation(s)
- Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA
| | - Benjamin Götte
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Rong Guo
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Miyamoto M, Himeda T, Ishihara K, Okuwa T, Kobayashi D, Nameta M, Karasawa Y, Chunhaphinyokul B, Yoshida Y, Tanaka N, Higuchi M, Komuro A. Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene 5, and Impairs Double-Stranded RNA-Mediated IFN Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:335-347. [PMID: 36525065 DOI: 10.4049/jimmunol.2200565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kazuki Ishihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | - Yu Karasawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Benyapa Chunhaphinyokul
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University, Niigata, Japan; and
| | - Nobuyuki Tanaka
- Division of Tumor Immunology, Miyagi Cancer Center Research Institute, Medeshima-Shiode, Natori, Miyagi, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
8
|
Wang W, Pyle AM. The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Mol Cell 2022; 82:4131-4144.e6. [DOI: 10.1016/j.molcel.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
9
|
Blay V, Gailiunaite S, Lee CY, Chang HY, Hupp T, Houston DR, Chi P. Comparison of ATP-binding pockets and discovery of homologous recombination inhibitors. Bioorg Med Chem 2022; 70:116923. [PMID: 35841829 DOI: 10.1016/j.bmc.2022.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
The ATP binding sites of many enzymes are structurally related, which complicates their development as therapeutic targets. In this work, we explore a diverse set of ATPases and compare their ATP binding pockets using different strategies, including direct and indirect structural methods, in search of pockets attractive for drug discovery. We pursue different direct and indirect structural strategies, as well as ligandability assessments to help guide target selection. The analyses indicate human RAD51, an enzyme crucial in homologous recombination, as a promising, tractable target. Inhibition of RAD51 has shown promise in the treatment of certain cancers but more potent inhibitors are needed. Thus, we design compounds computationally against the ATP binding pocket of RAD51 with consideration of multiple criteria, including predicted specificity, drug-likeness, and toxicity. The molecules designed are evaluated experimentally using molecular and cell-based assays. Our results provide two novel hit compounds against RAD51 and illustrate a computational pipeline to design new inhibitors against ATPases.
Collapse
Affiliation(s)
- Vincent Blay
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Institute for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980 Valencia, Spain.
| | - Saule Gailiunaite
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Chih-Ying Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ted Hupp
- MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK.
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
11
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
12
|
Li S, Cao L, Zhang Z, Kuang M, Chen L, Zhao Y, Luo Y, Yin Z, You F. Cytosolic and nuclear recognition of virus and viral evasion. MOLECULAR BIOMEDICINE 2021; 2:30. [PMID: 35006471 PMCID: PMC8607372 DOI: 10.1186/s43556-021-00046-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
The innate immune system is the first line of host defense, which responds rapidly to viral infection. Innate recognition of viruses is mediated by a set of pattern recognition receptors (PRRs) that sense viral genomic nucleic acids and/or replication intermediates. PRRs are mainly localized either to the endosomes, the plasma membrane or the cytoplasm. Recent evidence suggested that several proteins located in the nucleus could also act as viral sensors. In turn, these important elements are becoming the target for most viruses to evade host immune surveillance. In this review, we focus on the recent progress in the study of viral recognition and evasion.
Collapse
Affiliation(s)
- Siji Li
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
13
|
Li K, Zheng J, Wirawan M, Trinh NM, Fedorova O, Griffin PR, Pyle AM, Luo D. Insights into the structure and RNA-binding specificity of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3). Nucleic Acids Res 2021; 49:9978-9991. [PMID: 34403472 PMCID: PMC8464030 DOI: 10.1093/nar/gkab712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
DRH-3 is critically involved in germline development and RNA interference (RNAi) facilitated chromosome segregation via the 22G-siRNA pathway in Caenorhabditis elegans. DRH-3 has similar domain architecture to RIG-I-like receptors (RLRs) and belongs to the RIG-I-like RNA helicase family. The molecular understanding of DRH-3 and its function in endogenous RNAi pathways remains elusive. In this study, we solved the crystal structures of the DRH-3 N-terminal domain (NTD) and the C-terminal domains (CTDs) in complex with 5'-triphosphorylated RNAs. The NTD of DRH-3 adopts a distinct fold of tandem caspase activation and recruitment domains (CARDs) structurally similar to the CARDs of RIG-I and MDA5, suggesting a signaling function in the endogenous RNAi biogenesis. The CTD preferentially recognizes 5'-triphosphorylated double-stranded RNAs bearing the typical features of secondary siRNA transcripts. The full-length DRH-3 displays unique structural dynamics upon binding to RNA duplexes that differ from RIG-I or MDA5. These features of DRH-3 showcase the evolutionary divergence of the Dicer and RLR family of helicases.
Collapse
Affiliation(s)
- Kuohan Li
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Jie Zheng
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Nguyen Mai Trinh
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Olga Fedorova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| |
Collapse
|
14
|
Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. The molecular mechanism of RIG-I activation and signaling. Immunol Rev 2021; 304:154-168. [PMID: 34514601 PMCID: PMC9293153 DOI: 10.1111/imr.13022] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
RIG‐I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG‐I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt‐ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG‐I activation by viral RNA, and we describe the strategies by which RIG‐I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG‐I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG‐I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.
Collapse
Affiliation(s)
- Daniel Thoresen
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Wenshuai Wang
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Drew Galls
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rong Guo
- Chemistry, Yale University, New Haven, CT, USA
| | - Ling Xu
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Chemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur J Immunol 2021; 51:1897-1910. [PMID: 34138462 DOI: 10.1002/eji.202049116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acids (NAs) represent one of the most important classes of molecules recognized by the innate immune system. However, NAs are not limited to pathogens, but are also present within the host. As such, the immune system has evolved an elaborate set of pathogen recognition receptors (PRRs) that employ various strategies to recognize distinct types of NAs, while reliably distinguishing between self and nonself. The here-employed strategies encompass the positioning of NA-sensing PRRs in certain subcellular compartments that potentially come in contact with pathogens but not host NAs, the existence of counterregulatory measures that keep endogenous NAs below a certain threshold, and also the specific identification of certain nonself patterns. Here, we review recent advances in the molecular mechanisms of NA recognition by TLRs, RLRs, and the cGAS-STING axis. We highlight the differences in NA-PRR interfaces that confer specificity and selectivity toward an NA ligand, as well as the NA-dependent induced conformational changes required for signal transduction.
Collapse
Affiliation(s)
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
16
|
Bauernfried S, Scherr MJ, Pichlmair A, Duderstadt KE, Hornung V. Human NLRP1 is a sensor for double-stranded RNA. Science 2020; 371:science.abd0811. [PMID: 33243852 DOI: 10.1126/science.abd0811] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Inflammasomes function as intracellular sensors of pathogen infection or cellular perturbation and thereby play a central role in numerous diseases. Given the high abundance of NLRP1 in epithelial barrier tissues, we screened a diverse panel of viruses for inflammasome activation in keratinocytes. We identified Semliki Forest virus (SFV), a positive-strand RNA virus, as a potent activator of human but not murine NLRP1B. SFV replication and the associated formation of double-stranded (ds) RNA was required to engage the NLRP1 inflammasome. Moreover, delivery of long dsRNA was sufficient to trigger activation. Biochemical studies revealed that NLRP1 binds dsRNA through its leucine-rich repeat domain, resulting in its NACHT domain gaining adenosine triphosphatase activity. Altogether, these results establish human NLRP1 as a direct sensor for dsRNA and thus RNA virus infection.
Collapse
Affiliation(s)
- Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Karl E Duderstadt
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Physics Department, Technical University of Munich, Garching, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany. .,Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
17
|
Tan DX, Hardeland R. Targeting Host Defense System and Rescuing Compromised Mitochondria to Increase Tolerance against Pathogens by Melatonin May Impact Outcome of Deadly Virus Infection Pertinent to COVID-19. Molecules 2020; 25:molecules25194410. [PMID: 32992875 PMCID: PMC7582936 DOI: 10.3390/molecules25194410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Fighting infectious diseases, particularly viral infections, is a demanding task for human health. Targeting the pathogens or targeting the host are different strategies, but with an identical purpose, i.e., to curb the pathogen's spreading and cure the illness. It appears that targeting a host to increase tolerance against pathogens can be of substantial advantage and is a strategy used in evolution. Practically, it has a broader protective spectrum than that of only targeting the specific pathogens, which differ in terms of susceptibility. Methods for host targeting applied in one pandemic can even be effective for upcoming pandemics with different pathogens. This is even more urgent if we consider the possible concomitance of two respiratory diseases with potential multi-organ afflictions such as Coronavirus disease 2019 (COVID-19) and seasonal flu. Melatonin is a molecule that can enhance the host's tolerance against pathogen invasions. Due to its antioxidant, anti-inflammatory, and immunoregulatory activities, melatonin has the capacity to reduce the severity and mortality of deadly virus infections including COVID-19. Melatonin is synthesized and functions in mitochondria, which play a critical role in viral infections. Not surprisingly, melatonin synthesis can become a target of viral strategies that manipulate the mitochondrial status. For example, a viral infection can switch energy metabolism from respiration to widely anaerobic glycolysis even if plenty of oxygen is available (the Warburg effect) when the host cell cannot generate acetyl-coenzyme A, a metabolite required for melatonin biosynthesis. Under some conditions, including aging, gender, predisposed health conditions, already compromised mitochondria, when exposed to further viral challenges, lose their capacity for producing sufficient amounts of melatonin. This leads to a reduced support of mitochondrial functions and makes these individuals more vulnerable to infectious diseases. Thus, the maintenance of mitochondrial function by melatonin supplementation can be expected to generate beneficial effects on the outcome of viral infectious diseases, particularly COVID-19.
Collapse
Affiliation(s)
- Dun-Xian Tan
- S.T. Bio-Life, San Antonio, TX 78240, USA
- Correspondence: ; Tel.: +1-215-672-550
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
18
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
19
|
Lin H, Cao X. Nuclear innate sensors for nucleic acids in immunity and inflammation. Immunol Rev 2020; 297:162-173. [PMID: 32564422 DOI: 10.1111/imr.12893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Innate sensors recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to initiate innate immune response by activating downstream signaling. These evolutionarily conserved innate sensors usually locate in the plasma membrane or cytoplasm. However, the nucleus-localized innate sensors are recently found to detect pathogenic nucleic acids for initiating innate response, demonstrating a complicated crosstalk with cytoplasmic sensors and signaling molecules to form an elaborate tiered innate signaling network between nucleus and cytoplasm. Furthermore, these nuclear innate sensors evolve varied mechanisms for discriminating self from non-self nucleic acids to maintain immune homeostasis and avoid autoinflammatory immune response. In this review, we summarize the recent findings on the identification of nuclear innate sensors for nucleic acids, such as hnRNPA2B1, IFI16, SAFA, and their roles in host defense and inflammatory response.
Collapse
Affiliation(s)
- Hongyu Lin
- Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuetao Cao
- Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Laboratory of Immunity and Inflammation, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Schweinoch D, Bachmann P, Clausznitzer D, Binder M, Kaderali L. Mechanistic modeling explains the dsRNA length-dependent activation of the RIG-I mediated immune response. J Theor Biol 2020; 500:110336. [PMID: 32446742 DOI: 10.1016/j.jtbi.2020.110336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
In cell-intrinsic antiviral immunity, cytoplasmic receptors such as retinoic acid-inducible gene I (RIG-I) detect viral double-stranded RNA (dsRNA) and trigger a signaling cascade activating the interferon (IFN) system. This leads to the transcription of hundreds of interferon-stimulated genes (ISGs) with a wide range of antiviral effects. This recognition of dsRNA not only has to be very specific to discriminate foreign from self but also highly sensitive to detect even very low numbers of pathogenic dsRNA molecules. Previous work indicated an influence of the dsRNA length on the binding behavior of RIG-I and its potential to elicit antiviral signaling. However, the molecular mechanisms behind the binding process are still under debate. We compare two hypothesized RIG-I binding mechanisms by translating them into mathematical models and analyzing their potential to describe published experimental data. The models consider the length of the dsRNA as well as known RIG-I binding motifs and describe RIG-I pathway activation after stimulation with dsRNA. We show that internal RIG-I binding sites in addition to cooperative RIG-I oligomerization are essential to describe the experimentally observed RIG-I binding behavior and immune response activation for different dsRNA lengths and concentrations. The combination of RIG-I binding to internal sites on the dsRNA and cooperative oligomerization compensates for a lack of high-affinity binding motifs and triggers a strong antiviral response for long dsRNAs. Model analysis reveals dsRNA length-dependency as a potential mechanism to discriminate between different types of dsRNAs: It allows for sensitive detection of small numbers of long dsRNAs, a typical by-product of viral replication, while ensuring tolerance against non-harming small dsRNAs.
Collapse
Affiliation(s)
- Darius Schweinoch
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes (C_FunGene), Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Pia Bachmann
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes (C_FunGene), Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Diana Clausznitzer
- Technische Universität Dresden, Faculty of Medicine Carl-Gustav Carus, Institute for Medical Informatics and Biometry, Dresden, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes (C_FunGene), Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany.
| |
Collapse
|
21
|
Ren X, Linehan MM, Iwasaki A, Pyle AM. RIG-I Selectively Discriminates against 5'-Monophosphate RNA. Cell Rep 2020; 26:2019-2027.e4. [PMID: 30784585 DOI: 10.1016/j.celrep.2019.01.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The innate immune sensor RIG-I must sensitively detect and respond to viral RNAs that enter the cytoplasm, while remaining unresponsive to the abundance of structurally similar RNAs that are the products of host metabolism. In the case of RIG-I, these viral and host targets differ by only a few atoms, and a molecular mechanism for such selective differentiation has remained elusive. Using a combination of quantitative biophysical and immunological studies, we show that RIG-I, which is normally activated by duplex RNAs containing a 5'-tri- or diphosphate (5'-ppp or 5'-pp RNAs), is actively antagonized by RNAs containing 5'-monophosphates (5'-p RNAs). This is accomplished by a gating mechanism in which an alternative RIG-I conformation blocks the C-terminal domain (CTD) upon 5'-p RNA binding, thereby short circuiting the activation of signaling.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Melissa M Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Deng P, Khan A, Jacobson D, Sambrani N, McGurk L, Li X, Jayasree A, Hejatko J, Shohat-Ophir G, O'Connell MA, Li JB, Keegan LP. Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila. Nat Commun 2020; 11:1580. [PMID: 32221286 PMCID: PMC7101428 DOI: 10.1038/s41467-020-15435-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.
Collapse
Affiliation(s)
- Patricia Deng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Dionna Jacobson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nagraj Sambrani
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Leeanne McGurk
- MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Xianghua Li
- MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Aswathy Jayasree
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Galit Shohat-Ophir
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Rawling DC, Jagdmann GE, Potapova O, Pyle AM. Small-Molecule Antagonists of the RIG-I Innate Immune Receptor. ACS Chem Biol 2020; 15:311-317. [PMID: 31944652 DOI: 10.1021/acschembio.9b00810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RIG-I receptor plays a key role in the vertebrate innate immune system, where it functions as a sensor for detecting infection by RNA viruses. Although agonists of RIG-I show great potential as antitumor and antimicrobial therapies, antagonists of RIG-I remain undeveloped, despite the role of RIG-I hyperstimulation in a range of diseases, including COPD and autoimmune disorders. There is now a wealth of information on RIG-I structure, enzymatic function, and signaling mechanism that can drive new drug design strategies. Here, we used the enzymatic activity of RIG-I to develop assays for high-throughput screening, SAR, and downstream optimization of RIG-I antagonists. Using this approach, we have developed potent RIG-I antagonists that interact directly with the receptor and which inhibit RIG-I signaling and interferon response in living cells.
Collapse
Affiliation(s)
- David C Rawling
- Inflammatix, Inc , Burlingame , California 94010 , United States
| | - G Erik Jagdmann
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
- Howard Hughes Medical Institute , New Haven , Connecticut 06520 , United States
| |
Collapse
|
24
|
Ren X, Linehan MM, Iwasaki A, Pyle AM. RIG-I Recognition of RNA Targets: The Influence of Terminal Base Pair Sequence and Overhangs on Affinity and Signaling. Cell Rep 2019; 29:3807-3815.e3. [PMID: 31851914 DOI: 10.1016/j.celrep.2019.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Within the complex environment of the human cell, the RIG-I innate immune receptor must detect the presence of double-stranded viral RNA molecules and differentiate them from a diversity of host RNA molecules. In an ongoing effort to understand the molecular basis for RIG-I target specificity, here, we evaluate the ability of this sensor to respond to triphosphorylated, double-stranded RNA molecules that contain all possible terminal base pairs and common mismatches. In addition, we test the response to duplexes with various types of 5' and 3' overhangs. We conducted quantitative measurements of RNA ligand affinity, then tested RNA variants for their ability to stimulate the RIG-I-dependent interferon response in cells and in whole animals. The resulting data provide insights into the design of RNA therapeutics that prevent RIG-I activation, and they provide valuable insights into the mechanisms of evasion by deadly pathogens such as the Ebola and Marburg viruses.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Melissa M Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Yong HY, Zheng J, Ho VCY, Nguyen MT, Fink K, Griffin PR, Luo D. Structure-guided design of immunomodulatory RNAs specifically targeting the cytoplasmic viral RNA sensor RIG-I. FEBS Lett 2019; 593:3003-3014. [PMID: 31369683 DOI: 10.1002/1873-3468.13564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
The cytoplasmic immune sensor RIG-I detects viral RNA and initiates an antiviral immune response upon activation. It has become a potential target for vaccination and immunotherapies. To develop the smallest but potent immunomodulatory RNA (immRNAs) species, we performed structure-guided RNA design and used biochemical, structural, and cell-based methods to select and characterize the immRNAs. We demonstrated that inserting guanosine at position 9 to the 10mer RNA hairpin (3p10LG9) activates RIG-I more robustly than the parental RNA. 3p10LG9 interacts strongly with the RIG-I helicase-CTD RNA sensing module and disrupts the auto-inhibitory interaction between the HEL2i and CARDs domains. We further showed that 3p10LA9 has a stronger cellular activity than 3p10LG9. Collectively, purine insertion at position 9 of the immRNA species triggered more robust activation of RIG-1.
Collapse
Affiliation(s)
- Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Victor Chin Yong Ho
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Mai Trinh Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Katja Fink
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
26
|
Cadena C, Hur S. Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Mol Cell 2019; 76:243-254. [PMID: 31626748 PMCID: PMC6880955 DOI: 10.1016/j.molcel.2019.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Self versus non-self discrimination by innate immune sensors is critical for mounting effective immune responses against pathogens while avoiding harmful auto-inflammatory reactions against the host. Foreign DNA and RNA sensors must discriminate between self versus non-self nucleic acids, despite their shared building blocks and similar physicochemical properties. Recent structural and biochemical studies suggest that multiple steps of filament-like assembly are required for the functions of several nucleic acid sensors. Here, we discuss ligand discrimination and oligomerization of RIG-I-like receptors, AIM2-like receptors, and cGAS. We discuss how filament-like assembly allows for robust and accurate discrimination of self versus non-self nucleic acids and how these assemblies enable sensing of multiple distinct features in foreign nucleic acids, including structure, length, and modifications. We also discuss how individual receptors differ in their assembly and disassembly mechanisms and how these differences contribute to the diversity in nucleic acid specificity and pathogen detection strategies.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
27
|
Dickey TH, Song B, Pyle AM. RNA binding activates RIG-I by releasing an autorepressed signaling domain. SCIENCE ADVANCES 2019; 5:eaax3641. [PMID: 31616790 PMCID: PMC6774723 DOI: 10.1126/sciadv.aax3641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The retinoic acid-inducible gene I (RIG-I) innate immune receptor is an important immunotherapeutic target, but we lack approaches for monitoring the physical basis for its activation in vitro. This gap in our understanding has led to confusion about mechanisms of RIG-I activation and difficulty discovering agonists and antagonists. We therefore created a novel fluorescence resonance energy transfer-based method for measuring RIG-I activation in vitro using dual site-specific fluorescent labeling of the protein. This approach enables us to measure the conformational change that releases the signaling domain during the first step of RIG-I activation, making it possible to understand the role of stimulatory ligands. We have found that RNA alone is sufficient to eject the signaling domain, ejection is reversible, and adenosine triphosphate plays but a minor role in this process. These findings help explain RIG-I dysfunction in autoimmune disease, and they inform the design of therapeutics targeting RIG-I.
Collapse
Affiliation(s)
- T. H. Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - B. Song
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - A. M. Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
28
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
29
|
Landry ML, Foxman EF. Antiviral Response in the Nasopharynx Identifies Patients With Respiratory Virus Infection. J Infect Dis 2019; 217:897-905. [PMID: 29281100 PMCID: PMC5853594 DOI: 10.1093/infdis/jix648] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Background Despite the high burden of respiratory infection and the importance of early and accurate diagnosis, there is no simple diagnostic test to rule in viral infection as a cause of respiratory symptoms. Methods We performed RNA sequencing on human nasal epithelial cells following stimulation of the intracellular viral recognition receptor RIG-I. Next, we evaluated whether measuring identified host mRNAs and proteins from patient nasopharyngeal swabs could predict the presence of a respiratory virus in the sample. Results Our first study showed that a signature of 3 mRNAs, CXCL10, IFIT2, and OASL, predicted respiratory virus detection with an accuracy of 97% (95% confidence interval [CI], 0.9–1.0), and identified proteins correlating with virus detection. In a second study, elevated CXCL11 or CXCL10 protein levels identified samples containing respiratory viruses, including viruses not on the initial test panel. Overall area under the curve (AUC) values were: CXCL11 AUC = 0.901 (95% CI, 0.86–0.94); CXCL10 AUC = 0.85 (95% CI, 0.80–0.91). Conclusions Host antiviral mRNAs and single host proteins detectable using nasopharyngeal swabs accurately predict the presence of viral infection. This approach holds promise for developing rapid, cost-effective tests to improve management of patients with respiratory illnesses.
Collapse
Affiliation(s)
- Marie L Landry
- Department of Laboratory Medicine Yale University School of Medicine, New Haven, Connecticut.,Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ellen F Foxman
- Department of Laboratory Medicine Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park JW, Oh SW, Fujita T, Hou F, Binder M, Hur S. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell 2019; 177:1187-1200.e16. [PMID: 31006531 PMCID: PMC6525047 DOI: 10.1016/j.cell.2019.03.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023]
Abstract
The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Audrey Xavier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
31
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Zheng J, Wang C, Chang MR, Devarkar SC, Schweibenz B, Crynen GC, Garcia-Ordonez RD, Pascal BD, Novick SJ, Patel SS, Marcotrigiano J, Griffin PR. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun 2018; 9:5366. [PMID: 30560918 PMCID: PMC6299088 DOI: 10.1038/s41467-018-07780-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) ensures immune surveillance of viral RNAs bearing a 5'-triphosphate (5'ppp) moiety. Mutations in RIG-I (C268F and E373A) lead to impaired ATPase activity, thereby driving hyperactive signaling associated with autoimmune diseases. Here we report, using hydrogen/deuterium exchange, mechanistic models for dysregulated RIG-I proofreading that ultimately result in the improper recognition of cellular RNAs bearing 7-methylguanosine and N1-2'-O-methylation (Cap1) on the 5' end. Cap1-RNA compromises its ability to stabilize RIG-I helicase and blunts caspase activation and recruitment domains (CARD) partial opening by threefold. RIG-I H830A mutation restores Cap1-helicase engagement as well as CARDs partial opening event to a level comparable to that of 5'ppp. However, E373A RIG-I locks the receptor in an ATP-bound state, resulting in enhanced Cap1-helicase engagement and a sequential CARDs stimulation. C268F mutation renders a more tethered ring architecture and results in constitutive CARDs signaling in an ATP-independent manner.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Autoimmunity/genetics
- Caspase Activation and Recruitment Domain/immunology
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Deuterium Exchange Measurement/methods
- Gain of Function Mutation
- Guanosine/analogs & derivatives
- Guanosine/chemistry
- Guanosine/immunology
- Guanosine/metabolism
- Immunity, Innate/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Mass Spectrometry/methods
- Methylation
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Binding/immunology
- RNA Caps/chemistry
- RNA Caps/immunology
- RNA Caps/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Viral/immunology
- Receptors, Immunologic
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| | - Chen Wang
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Swapnil C Devarkar
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brandon Schweibenz
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gogce C Crynen
- The Center for Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ruben D Garcia-Ordonez
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Omics Informatics LLC, Honolulu, HI 96813, USA
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Smita S Patel
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
33
|
Yu Q, Qu K, Modis Y. Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis. Mol Cell 2018; 72:999-1012.e6. [PMID: 30449722 PMCID: PMC6310684 DOI: 10.1016/j.molcel.2018.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type I interferon signaling platform. Here, we determined cryoelectron microscopy (cryo-EM) structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs at resolutions sufficient to build and refine atomic models. The structures identify the filament-forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition. Cryo-EM structures of MDA5-dsRNA filaments determined for three catalytic states Filament forming interfaces are flexible and predominantly hydrophobic Mutation of filament-forming residues can cause loss or gain of IFN-β signaling ATPase cycle is coupled to changes in filament twist and size of the RNA footprint
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kun Qu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
34
|
Devarkar SC, Schweibenz B, Wang C, Marcotrigiano J, Patel SS. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization. Mol Cell 2018; 72:355-368.e4. [PMID: 30270105 PMCID: PMC6434538 DOI: 10.1016/j.molcel.2018.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
RIG-I has a remarkable ability to specifically select viral 5'ppp dsRNAs for activation from a pool of cytosolic self-RNAs. The ATPase activity of RIG-I plays a role in RNA discrimination and activation, but the underlying mechanism was unclear. Using transient-state kinetics, we elucidated the ATPase-driven "kinetic proofreading" mechanism of RIG-I activation and RNA discrimination, akin to DNA polymerases, ribosomes, and T cell receptors. Even in the autoinhibited state of RIG-I, the C-terminal domain kinetically discriminates against self-RNAs by fast off rates. ATP binding facilitates dsRNA engagement but, interestingly, makes RIG-I promiscuous, explaining the constitutive signaling by Singleton-Merten syndrome-linked mutants that bind ATP without hydrolysis. ATP hydrolysis dissociates self-RNAs faster than 5'ppp dsRNA but, more importantly, drives RIG-I oligomerization through translocation, which we show to be regulated by helicase motif IVa. RIG-I translocates directionally from the dsRNA end into the stem region, and the 5'ppp end "throttles" translocation to provide a mechanism for threading and building a signaling-active oligomeric complex.
Collapse
Affiliation(s)
- Swapnil C Devarkar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Chen Wang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Joseph Marcotrigiano
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Lässig C, Lammens K, Gorenflos López JL, Michalski S, Fettscher O, Hopfner KP. Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants. eLife 2018; 7:e38958. [PMID: 30047865 PMCID: PMC6086658 DOI: 10.7554/elife.38958] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
The innate immune sensor retinoic acid-inducible gene I (RIG-I) detects cytosolic viral RNA and requires a conformational change caused by both ATP and RNA binding to induce an active signaling state and to trigger an immune response. Previously, we showed that ATP hydrolysis removes RIG-I from lower-affinity self-RNAs (Lässig et al., 2015), revealing how ATP turnover helps RIG-I distinguish viral from self-RNA and explaining why a mutation in a motif that slows down ATP hydrolysis causes the autoimmune disease Singleton-Merten syndrome (SMS). Here we show that a different, mechanistically unexplained SMS variant, C268F, which is localized in the ATP-binding P-loop, can signal independently of ATP but is still dependent on RNA. The structure of RIG-I C268F in complex with double-stranded RNA reveals that C268F helps induce a structural conformation in RIG-I that is similar to that induced by ATP. Our results uncover an unexpected mechanism to explain how a mutation in a P-loop ATPase can induce a gain-of-function ATP state in the absence of ATP.
Collapse
Affiliation(s)
- Charlotte Lässig
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Katja Lammens
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Jacob Lucián Gorenflos López
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Sebastian Michalski
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Olga Fettscher
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Karl-Peter Hopfner
- Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
- Gene Center, Ludwig-Maximilians-Universität MünchenMunichGermany
- Center for Integrated Protein Science MunichMunichGermany
| |
Collapse
|
36
|
Davidson S, Steiner A, Harapas CR, Masters SL. An Update on Autoinflammatory Diseases: Interferonopathies. Curr Rheumatol Rep 2018; 20:38. [PMID: 29846818 DOI: 10.1007/s11926-018-0748-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Type I interferons (IFNαβ) induce the expression of hundreds of genes; thus, it is unsurprising that the initiation, transmission, and resolution of the IFNαβ-mediated immune response is tightly controlled. Mutations that alter nucleic acid processing and recognition, ablate IFNαβ-specific negative feedback mechanisms, or result in dysfunction of the proteasome system can all induce pathogenic IFNαβ signalling and are the focus of this review. RECENT FINDINGS Recent advances have delineated the precise cytoplasmic mechanisms that facilitate self-DNA to be recognised by cGAS and self-RNA to be recognised by RIG-I or MDA-5. This helps clarify interferonopathies associated with mutations in genes which code for DNase-II and ADAR1, among others. Similarly, loss of function mutations in Pol α, which lowers the presence of antagonistic ligands in the cytosol, or gain of function mutations in RIG-I and MDA-5, result in increased propensity for receptor activation and therefore IFNαβ induction. As the aetiology of monogenic autoinflammatory diseases are uncovered, novel and sometimes unsuspected molecular interactions and signalling pathways are being defined. This review covers developments that have come to light over the past 3 years, with reference to the study of interferonopathies.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
| | - Annemarie Steiner
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Seth L Masters
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
37
|
Davidson S, Steiner A, Harapas CR, Masters SL. An Update on Autoinflammatory Diseases: Interferonopathies. Curr Rheumatol Rep 2018. [PMID: 29846818 DOI: 10.1007/s11926-018-0748-y)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
PURPOSE OF REVIEW Type I interferons (IFNαβ) induce the expression of hundreds of genes; thus, it is unsurprising that the initiation, transmission, and resolution of the IFNαβ-mediated immune response is tightly controlled. Mutations that alter nucleic acid processing and recognition, ablate IFNαβ-specific negative feedback mechanisms, or result in dysfunction of the proteasome system can all induce pathogenic IFNαβ signalling and are the focus of this review. RECENT FINDINGS Recent advances have delineated the precise cytoplasmic mechanisms that facilitate self-DNA to be recognised by cGAS and self-RNA to be recognised by RIG-I or MDA-5. This helps clarify interferonopathies associated with mutations in genes which code for DNase-II and ADAR1, among others. Similarly, loss of function mutations in Pol α, which lowers the presence of antagonistic ligands in the cytosol, or gain of function mutations in RIG-I and MDA-5, result in increased propensity for receptor activation and therefore IFNαβ induction. As the aetiology of monogenic autoinflammatory diseases are uncovered, novel and sometimes unsuspected molecular interactions and signalling pathways are being defined. This review covers developments that have come to light over the past 3 years, with reference to the study of interferonopathies.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
| | - Annemarie Steiner
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Seth L Masters
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
38
|
Said EA, Tremblay N, Al-Balushi MS, Al-Jabri AA, Lamarre D. Viruses Seen by Our Cells: The Role of Viral RNA Sensors. J Immunol Res 2018; 2018:9480497. [PMID: 29854853 PMCID: PMC5952511 DOI: 10.1155/2018/9480497] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The role of the innate immune response in detecting RNA viruses is crucial for the establishment of proper inflammatory and antiviral responses. Different receptors, known as pattern recognition receptors (PRRs), are present in the cytoplasm, endosomes, and on the cellular surface. These receptors have the capacity to sense the presence of viral nucleic acids as pathogen-associated molecular patterns (PAMPs). This recognition leads to the induction of type 1 interferons (IFNs) as well as inflammatory cytokines and chemokines. In this review, we provide an overview of the significant involvement of cellular RNA helicases and Toll-like receptors (TLRs) 3, 7, and 8 in antiviral immune defenses.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Nicolas Tremblay
- Centre de Recherche du CHUM (CRCHUM) et Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Daniel Lamarre
- Centre de Recherche du CHUM (CRCHUM) et Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
Shah N, Beckham SA, Wilce JA, Wilce M. Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 2018; 46:3169-3186. [PMID: 29346611 PMCID: PMC5887321 DOI: 10.1093/nar/gkx1307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/24/2022] Open
Abstract
RIG-I (retinoic acid inducible gene-I) is a cytosolic innate immune protein that senses viral dsRNA with a 5'-triphosphate overhang. Upon interaction with dsRNA a de-repression of the RIG-I CARD domains takes place that ultimately leads to the production of type I interferons and pro-inflammatory cytokines. Here we investigate the RIG-I conformational rearrangement upon interaction with an activating 5'-triphosphate-10-base pair dsRNA hairpin loop (10bp) compared with a less active 5'-triphosphate-8-base pair dsRNA hairpin loop (8bp). We use size-exclusion chromatography-coupled small-angle X-ray scattering (SAXS) and limited tryptic digest experiments to show that that upon binding to 10 bp, but not 8 bp, RIG-I becomes extended and shows greater flexibility, reflecting the release of its CARDs. We also examined the effect of different ATP analogues on the conformational changes of RIG-I/dsRNA complexes. Of the analogues tested, the addition of ATP transition state analogue ADP-AlFx further assisted in the complete activation of RIG-I in complex with 10bp and also to some extent RIG-I bound to 8bp. Together these data provide solution-based evidence for the molecular mechanism of innate immune signaling by RIG-I as stimulated by short hairpin RNA and ATP.
Collapse
Affiliation(s)
- Neelam Shah
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simone A Beckham
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
40
|
Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM. A minimal RNA ligand for potent RIG-I activation in living mice. SCIENCE ADVANCES 2018; 4:e1701854. [PMID: 29492454 PMCID: PMC5821489 DOI: 10.1126/sciadv.1701854] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/22/2018] [Indexed: 05/08/2023]
Abstract
We have developed highly potent synthetic activators of the vertebrate immune system that specifically target the RIG-I receptor. When introduced into mice, a family of short, triphosphorylated stem-loop RNAs (SLRs) induces a potent interferon response and the activation of specific genes essential for antiviral defense. Using RNA sequencing, we provide the first in vivo genome-wide view of the expression networks that are initiated upon RIG-I activation. We observe that SLRs specifically induce type I interferons, subsets of interferon-stimulated genes (ISGs), and cellular remodeling factors. By contrast, polyinosinic:polycytidylic acid [poly(I:C)], which binds and activates multiple RNA sensors, induces type III interferons and several unique ISGs. The short length (10 to 14 base pairs) and robust function of SLRs in mice demonstrate that RIG-I forms active signaling complexes without oligomerizing on RNA. These findings demonstrate that SLRs are potent therapeutic and investigative tools for targeted modulation of the innate immune system.
Collapse
Affiliation(s)
| | - Thayne H. Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Emanuela S. Molinari
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Megan E. Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna M. Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
41
|
Lee J, Park EB, Min J, Sung SE, Jang Y, Shin JS, Chun D, Kim KH, Hwang J, Lee MK, Go YY, Kwon D, Kim M, Kang SJ, Choi BS. Systematic editing of synthetic RIG-I ligands to produce effective antiviral and anti-tumor RNA immunotherapies. Nucleic Acids Res 2018; 46:1635-1647. [PMID: 29373735 PMCID: PMC5829749 DOI: 10.1093/nar/gky039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) recognizes double-stranded viral RNAs (dsRNAs) containing two or three 5' phosphates. A few reports of 5'-PPP-independent RIG-I agonists have emerged, but little is known about the molecular principles underlying their recognition. We recently found that the bent duplex RNA from the influenza A panhandle promoter activates RIG-I even in the absence of a 5'-triphosphate moiety. Here, we report that non-canonical synthetic RNA oligonucleotides containing G-U wobble base pairs that form a bent helix can exert RIG-I-mediated antiviral and anti-tumor effects in a sequence- and site-dependent manner. We present synthetic RNAs that have been systematically modified to enhance their efficacy and we outline the basic principles for engineering RIG-I agonists applicable to immunotherapy.
Collapse
Affiliation(s)
- Janghyun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun-Byeol Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jiyoun Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Si-Eun Sung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Yejin Jang
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jin Soo Shin
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Dongmin Chun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Ki-Hun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jihyun Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Mi-Kyung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Yun Young Go
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Dohyeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Meehyein Kim
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Byong-Seok Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
42
|
Uchikawa E, Lethier M, Malet H, Brunel J, Gerlier D, Cusack S. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5. Mol Cell 2017; 62:586-602. [PMID: 27203181 PMCID: PMC4885022 DOI: 10.1016/j.molcel.2016.04.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/21/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
RIG-I and MDA5 sense virus-derived short 5′ppp blunt-ended or long dsRNA, respectively, causing interferon production. Non-signaling LGP2 appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. Co-crystal structures of chicken (ch) LGP2 with dsRNA display a fully or semi-closed conformation depending on the presence or absence of nucleotide. LGP2 caps blunt, 3′ or 5′ overhang dsRNA ends with 1 bp longer overall footprint than RIG-I. Structures of 1:1 and 2:1 complexes of chMDA5 with short dsRNA reveal head-to-head packing rather than the polar head-to-tail orientation described for long filaments. chLGP2 and chMDA5 make filaments with a similar axial repeat, although less co-operatively for chLGP2. Overall, LGP2 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. Functionally, RNA binding is required for LGP2-mediated enhancement of MDA5 activation. We propose that LGP2 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. chLPG2-dsRNA structures reveal RIG-I like end binding, but overhangs are possible chMDA5-dsRNA complex structures show head-to-head packing on short dsRNAs LGP2 also has MDA5-like behavior, coating dsRNA but with less cooperativity Both human and chicken LGP2 enhance MDA5 signaling in an RNA-dependent manner
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Avian Proteins/chemistry
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Binding Sites
- Cell Line
- Chickens
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Humans
- Hydrolysis
- Interferon-Induced Helicase, IFIH1/chemistry
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Interaction Domains and Motifs
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Pattern Recognition/chemistry
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Structure-Activity Relationship
- Transfection
Collapse
Affiliation(s)
- Emiko Uchikawa
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; University Grenoble Alpes, Centre National de la Recherche Scientifique, EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Mathilde Lethier
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; University Grenoble Alpes, Centre National de la Recherche Scientifique, EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Hélène Malet
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; University Grenoble Alpes, Centre National de la Recherche Scientifique, EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; University Grenoble Alpes, Centre National de la Recherche Scientifique, EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
43
|
Raghuraman P, Jesu Jaya Sudan R, Lesitha Jeeva Kumari J, Sudandiradoss C. Systematic prioritization of functional hotspot in RIG-1 domains using pattern based conventional molecular dynamic simulation. Life Sci 2017; 184:58-70. [PMID: 28705469 DOI: 10.1016/j.lfs.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Retinoic acid inducible gene 1 (RIG-1), multi-domain protein has a role-play in detecting viral nucleic acids and stimulates the antiviral response. Dysfunction of this protein due to mutations makes the route vulnerable to viral diseases. AIM Identification of functional hotspots that maintains conformational stability in RIG-1 domains. METHODS In this study, we employed a systematic in silico strategy on RIG-1 protein to understand the mechanism of structural changes upon mutation. We computationally investigated the protein sequence signature for all the three domains of RIG-1 protein that encloses the mutation within the motif. Further, we carried out a structural comparison between RIG-1 domains with their respective distant orthologs which revealed the minimal number of interactions required to maintain its structural fold. This intra-protein network paved the way to infer hotspot residues crucial for the maintenance of the structural architecture and folding pattern. KEY FINDINGS Our analysis revealed about 40 hotspot residues that determine the folding pattern of the RIG-1 domains. Also, conventional molecular dynamic simulation coupled with essential dynamics provides conformational transitions of hot spot residues among native and mutant structures. Structural variations owing to hotspot residues in mutants again confirm the significance of these residues in structural characterization of RIG-1 domains. We believe our results will help the researchers to better comprehend towards regulatory regions and target-binding sites for therapeutic design within the pattern recognition receptor proteins. SIGNIFICANCE Our protocol employed in this work describes a novel approach in identifying signature residues that would provide structural insights in protein folding.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - R Jesu Jaya Sudan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - J Lesitha Jeeva Kumari
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
44
|
Abstract
RIG-I-like receptors (RLRs) are cytosolic innate immune sensors that detect pathogenic RNA and induce a systemic antiviral response. During the last decade, many studies focused on their molecular characterization and the identification of RNA agonists. Therefore, it became more and more clear that RLR activation needs to be carefully regulated, because constitutive signaling or detection of endogenous RNA through loss of specificity is detrimental. Here, we review the current understanding of RLR activation and selectivity. We specifically focus upon recent findings on the function of the helicase domain in discriminating between different RNAs, and whose malfunctioning causes serious autoimmune diseases.
Collapse
Affiliation(s)
- Charlotte Lässig
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
| | - Karl-Peter Hopfner
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
- the Center for Integrated Protein Sciences, 81377 Munich, Germany
| |
Collapse
|
45
|
Fitzgerald ME, Rawling DC, Potapova O, Ren X, Kohlway A, Pyle AM. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding. Nucleic Acids Res 2017; 45:1442-1454. [PMID: 28180316 PMCID: PMC5388420 DOI: 10.1093/nar/gkw816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/25/2022] Open
Abstract
RIG-I is an innate immune receptor that detects and responds to infection by deadly RNA viruses such as influenza, and Hepatitis C. In the cytoplasm, RIG-I is faced with a difficult challenge: it must sensitively detect viral RNA while ignoring the abundance of host RNA. It has been suggested that RIG-I has a ‘proof-reading’ mechanism for rejecting host RNA targets, and that disruptions of this selectivity filter give rise to autoimmune diseases. Here, we directly monitor RNA proof-reading by RIG-I and we show that it is controlled by a set of conserved amino acids that couple RNA and ATP binding to the protein (Motif III). Mutations of this motif directly modulate proof-reading by eliminating or enhancing selectivity for viral RNA, with major implications for autoimmune disease and cancer. More broadly, the results provide a physical explanation for the ATP-gated behavior of SF2 RNA helicases and receptor proteins.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Amino Acid Substitution
- Autoimmunity
- Binding Sites/genetics
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- HEK293 Cells
- Humans
- Immunity, Innate
- Models, Molecular
- Mutagenesis, Site-Directed
- Neoplasms/genetics
- Neoplasms/metabolism
- Protein Interaction Domains and Motifs
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Viruses/genetics
- RNA Viruses/immunology
- RNA Viruses/pathogenicity
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Immunologic
- Receptors, Pattern Recognition/chemistry
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Megan E. Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - David C. Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
46
|
Cao X, Li Y, Jin X, Li Y, Guo F, Jin T. Molecular mechanism of divalent-metal-induced activation of NS3 helicase and insights into Zika virus inhibitor design. Nucleic Acids Res 2016; 44:10505-10514. [PMID: 27915293 PMCID: PMC5137455 DOI: 10.1093/nar/gkw941] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Zika virus has attracted increasing attention because of its potential for causing human neural disorders, including microcephaly in infants and Guillain–Barré syndrome. Its NS3 helicase domain plays critical roles in NTP-dependent RNA unwinding and translocation during viral replication. Our structural analysis revealed a pre-activation state of NS3 helicase in complex with GTPγS, in which the triphosphate adopts a compact conformation in the absence of any divalent metal ions. In contrast, in the presence of a divalent cation, GTPγS adopts an extended conformation, and the Walker A motif undergoes substantial conformational changes. Both features contribute to more extensive interactions between the GTPγS and the enzyme. Thus, this study provides structural evidence on the allosteric modulation of MgNTP2− on the NS3 helicase activity. Furthermore, the compact conformation of inhibitory NTP identified in this study provides precise information for the rational drug design of small molecule inhibitors for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Xiaocong Cao
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yajuan Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyu Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuelong Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Feng Guo
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
47
|
Omura H, Oikawa D, Nakane T, Kato M, Ishii R, Ishitani R, Tokunaga F, Nureki O. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Sci Rep 2016; 6:34756. [PMID: 27721487 PMCID: PMC5056382 DOI: 10.1038/srep34756] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022] Open
Abstract
In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway.
Collapse
Affiliation(s)
- Hiroki Omura
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Daisuke Oikawa
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Takanori Nakane
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Megumi Kato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryohei Ishii
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Ishitani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fuminori Tokunaga
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
48
|
RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling. mBio 2016; 7:mBio.00833-16. [PMID: 27651356 PMCID: PMC5030355 DOI: 10.1128/mbio.00833-16] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. The innate immune system provides the first response to virus infections and must distinguish between host and pathogen nucleic acids to mount a protective immune response without activating autoimmune responses. While the presence of nucleotide modifications in RNA is known to correlate with diminished innate immune signaling, the underlying mechanisms have not been explored. The data reported here are important for defining mechanistic details to explain signaling suppression by RNAs containing modified nucleotides. The results suggest that RNAs containing modified nucleotides interrupt signaling at early steps of the RIG-I-like innate immune activation pathway and also that nucleotide modifications with similar chemical structures can be organized into classes that suppress or evade innate immune signaling steps. These data contribute to defining the molecular basis for innate immune signaling suppression by RNAs containing modified nucleotides. The results have important implications for designing therapeutic RNAs that evade innate immune detection.
Collapse
|
49
|
Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proc Natl Acad Sci U S A 2016; 113:8496-501. [PMID: 27402752 DOI: 10.1073/pnas.1601942113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.
Collapse
|
50
|
Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. Antimicrob Agents Chemother 2016; 60:2834-48. [PMID: 26926637 DOI: 10.1128/aac.02700-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/09/2016] [Indexed: 12/24/2022] Open
Abstract
Viruses are solely dependent on host cells to propagate; therefore, understanding virus-host interaction is important for antiviral drug development. Since de novo nucleotide biosynthesis is essentially required for both host cell metabolism and viral replication, specific catalytic enzymes of these pathways have been explored as potential antiviral targets. In this study, we investigated the role of different enzymatic cascades of nucleotide biosynthesis in hepatitis E virus (HEV) replication. By profiling various pharmacological inhibitors of nucleotide biosynthesis, we found that targeting the early steps of the purine biosynthesis pathway led to the enhancement of HEV replication, whereas targeting the later step resulted in potent antiviral activity via the depletion of purine nucleotide. Furthermore, the inhibition of the pyrimidine pathway resulted in potent anti-HEV activity. Interestingly, all of these inhibitors with anti-HEV activity concurrently triggered the induction of antiviral interferon-stimulated genes (ISGs). Although ISGs are commonly induced by interferons via the JAK-STAT pathway, their induction by nucleotide synthesis inhibitors is completely independent of this classical mechanism. In conclusion, this study revealed an unconventional novel mechanism of cross talk between nucleotide biosynthesis pathways and cellular antiviral immunity in constraining HEV infection. Targeting particular enzymes in nucleotide biosynthesis represents a viable option for antiviral drug development against HEV. HEV is the most common cause of acute viral hepatitis worldwide and is also associated with chronic hepatitis, especially in immunocompromised patients. Although often an acute and self-limiting infection in the general population, HEV can cause severe morbidity and mortality in certain patients, a problem compounded by the lack of FDA-approved anti-HEV medication available. In this study, we have investigated the role of the nucleotide synthesis pathway in HEV infection and its potential for antiviral drug development. We show that targeting the later but not the early steps of the purine synthesis pathway exerts strong anti-HEV activity. In particular, IMP dehydrogenase (IMPDH) is the most important anti-HEV target of this cascade. Importantly, the clinically used IMPDH inhibitors, including mycophenolic acid and ribavirin, have potent anti-HEV activity. Furthermore, targeting the pyrimidine synthesis pathway also exerts potent antiviral activity against HEV. Interestingly, antiviral effects of nucleotide synthesis pathway inhibitors appear to depend on the medication-induced transcription of antiviral interferon-stimulated genes. Thus, this study reveals an unconventional novel mechanism as to how nucleotide synthesis pathway inhibitors can counteract HEV replication.
Collapse
|