1
|
Chen C, Yang H, Song Y, Dong YL, Zhang J, Shah MAA, Qin T, Zheng N, Yu SB, Xiong YY, Zhang JF, Sui HJ. A new analogous organ in bony fishes and amphibians: an anatomical structure related with the cerebrospinal fluid circulation. Sci Rep 2025; 15:5646. [PMID: 39955354 PMCID: PMC11829981 DOI: 10.1038/s41598-025-89599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
The myodural bridge (MDB) was described as a dense fibrous tissue connecting the suboccipital musculature with the spinal dura mater. Now, the concept of the MDB was perceived as an exact anatomical structure likely essential for cerebrospinal fluid (CSF) circulation. The MDB has been shown to be universal across mammals, reptiles, and birds. To determine the existence of the MDB in other vertebrates on morphological study, representatives in amphibians and bony fishes were examined. It was found that the dense fibrous tissue connected the interarcuales muscle (IAR) and the spinal dura mater in the Xenopus laevis. In four examined fish species, somatic muscle fibers were directly anchored to the vertebral canal membrane. This observation led to the hypothesis that, during movement, these muscles may exert a pulling force on the membrane, generating negative pressure. It is speculated that this may serve as the driving force for CSF circulation. Thus, this connection suggests a functional similarity to the MDB observed in other vertebrate species. Based on this finding, the study proposes the MDB as a functionally analogous structure with a universal existence in amphibians and bony fishes.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Heng Yang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Song
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yun-Li Dong
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
- Dapartment of Medical oncology, Wafangdian Third Hospital, Dalian, 116044, Liaoning, China
| | - Jing Zhang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Muhammad Adeel Alam Shah
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Tao Qin
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zheng
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Sheng-Bo Yu
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yu-Yu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
| | - Jian-Fei Zhang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Hong-Jin Sui
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
2
|
Heude E, Dutel H, Sanchez-Garrido F, Prummel KD, Lalonde R, Lam F, Mosimann C, Herrel A, Tajbakhsh S. Co-option of neck muscles supported the vertebrate water-to-land transition. Nat Commun 2024; 15:10564. [PMID: 39632846 PMCID: PMC11618326 DOI: 10.1038/s41467-024-54724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
A major event in vertebrate evolution was the separation of the skull from the pectoral girdle and the acquisition of a functional neck, transitions that required profound developmental rearrangements of the musculoskeletal system. The neck is a hallmark of the tetrapod body plan and allows for complex head movements on land. While head and trunk muscles arise from distinct embryonic mesoderm populations, the origins of neck muscles remain elusive. Here, we combine comparative embryology and anatomy to reconstruct the mesodermal contribution to neck evolution. We demonstrate that head/trunk-connecting muscle groups have conserved mesodermal origins in fishes and tetrapods and that the neck evolved from muscle groups present in fishes. We propose that expansions of mesodermal populations into head and trunk domains during embryonic development underpinned the emergence and adaptation of the tetrapod neck. Our results provide evidence for the exaptation of archetypal muscle groups in ancestral fishes, which were co-opted to acquire novel functions adapted to a terrestrial lifestyle.
Collapse
Affiliation(s)
- Eglantine Heude
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR5242 Université Claude Bernard Lyon-1, Lyon, France.
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France.
| | - Hugo Dutel
- Bristol Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac, France
- Craniofacial Growth and Form, Hôpital Necker - Enfants Malades, Paris, France
| | - Frida Sanchez-Garrido
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France
| | - Karin D Prummel
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robert Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Yale University, New Haven, USA
| | - France Lam
- Core Facilities - Institut de Biologie Paris Seine (IBPS), Sorbonne Universités, Paris, France
| | - Christian Mosimann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Herrel
- MECADEV, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7179, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Stem Cells & Development Unit, Institut Pasteur, Université Paris Cité, Paris, France
- CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Toriño P, Dutel H, Soto M, Norbis W, Ezquerra V, Perea D. Reconstructing an ancient fish: Three-dimensional skeletal restoration of the head of Mawsonia (Sarcopterygii, Actinistia) using CT scan, and an adjusted model for body size estimation in fossil coelacanths. J Anat 2024; 245:467-489. [PMID: 38749764 PMCID: PMC11306766 DOI: 10.1111/joa.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 08/09/2024] Open
Abstract
Mawsonia constitutes one of the most conspicuous fossil coelacanth taxa, due to its unique anatomy and possible maximum body size. It typifies Mesozoic coelacanth morphology, before the putative disappearance of the group in the fossil record. In this work, the three-dimensional cranial anatomy and body size estimations of this genus are re-evaluated from a recently described specimen from Upper Jurassic deposits of Uruguay. The 3D restoration was performed directly on the material based on anatomical information provided by the living coelacanth Latimeria and previous two-dimensional restorations of the head of Mawsonia. The montage was then scanned with computed tomography and virtually adjusted to generate an interactive online resource for future anatomical, taxonomic and biomechanical research. In general terms, the model constitutes a tool to improve both the anatomical knowledge of this genus and its comparison with other coelacanths. It also facilitates the evaluation of possible evolutionary trends and the discussion of particular features with potential palaeobiological implications, such as the anterior position of the eye and the development of the pseudomaxillary fold. Regarding the body size, a previous model for body size estimation based on the gular plate was submitted to OLS, RMA, segmented linear and PGLS regressions (including the evaluation of regression statistics, variance analysis, t-tests and residual analysis). The results point to a power relationship between gular and total lengths showing a better support than a simple linear relationship. The new resulting equations were applied to the studied individual and are provided for future estimates. Although an isometric evolutionary growth cannot be rejected with the available evidence, additional models developed with other bones will be necessary to evaluate possible hidden evolutionary allometric trends in this group of fishes, thus avoiding overestimates.
Collapse
Affiliation(s)
- Pablo Toriño
- Departamento de Paleontología, Facultad de Ciencias, Instituto de Ciencias Geológicas, Universidad de la República, Montevideo, Uruguay
- Centro Universitario Regional Noreste - sede Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
- Sistema Nacional de Investigadores, Uruguay
| | - Hugo Dutel
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac, France
- Craniofacial Growth and Form, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Matías Soto
- Departamento de Paleontología, Facultad de Ciencias, Instituto de Ciencias Geológicas, Universidad de la República, Montevideo, Uruguay
- Sistema Nacional de Investigadores, Uruguay
| | - Walter Norbis
- Sistema Nacional de Investigadores, Uruguay
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Departamento de Biología Animal, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Víctor Ezquerra
- Departamento Clínico de Imagenología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniel Perea
- Departamento de Paleontología, Facultad de Ciencias, Instituto de Ciencias Geológicas, Universidad de la República, Montevideo, Uruguay
- Sistema Nacional de Investigadores, Uruguay
| |
Collapse
|
4
|
Dumas CE, Rousset C, De Bono C, Cortés C, Jullian E, Lescroart F, Zaffran S, Adachi N, Kelly RG. Retinoic acid signalling regulates branchiomeric neck muscle development at the head/trunk interface. Development 2024; 151:dev202905. [PMID: 39082789 DOI: 10.1242/dev.202905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
Skeletal muscles of the head and trunk originate in distinct lineages with divergent regulatory programmes converging on activation of myogenic determination factors. Branchiomeric head and neck muscles share a common origin with cardiac progenitor cells in cardiopharyngeal mesoderm (CPM). The retinoic acid (RA) signalling pathway is required during a defined early time window for normal deployment of cells from posterior CPM to the heart. Here, we show that blocking RA signalling in the early mouse embryo also results in selective loss of the trapezius neck muscle, without affecting other skeletal muscles. RA signalling is required for robust expression of myogenic determination factors in posterior CPM and subsequent expansion of the trapezius primordium. Lineage-specific activation of a dominant-negative RA receptor reveals that trapezius development is not regulated by direct RA signalling to myogenic progenitor cells in CPM, or through neural crest cells, but indirectly through the somitic lineage, closely apposed with posterior CPM in the early embryo. These findings suggest that trapezius development is dependent on precise spatiotemporal interactions between cranial and somitic mesoderm at the head/trunk interface.
Collapse
Affiliation(s)
- Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Célia Rousset
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Claudio Cortés
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Stéphane Zaffran
- Aix-Marseille Université, INSERM, MMG U1251, 13005 Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| |
Collapse
|
5
|
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman M. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle. Nature 2023; 623:550-554. [PMID: 37914937 PMCID: PMC10651482 DOI: 10.1038/s41586-023-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.
Collapse
Affiliation(s)
- Martin D Brazeau
- Department of Life Sciences, Imperial College London, Ascot, UK.
- The Natural History Museum, London, UK.
| | - Marco Castiello
- Department of Life Sciences, Imperial College London, Ascot, UK
- London Academy of Excellence, London, United Kingdom
| | - Amin El Fassi El Fehri
- Department of Life Sciences, Imperial College London, Ascot, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Louis Hamilton
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alexander O Ivanov
- Department of Sedimentary Geology, Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | | | - Matt Friedman
- The Natural History Museum, London, UK
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Yahya I, Morosan-Puopolo G, Brand-Saberi B. The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Front Cell Dev Biol 2020; 8:615264. [PMID: 33415110 PMCID: PMC7783292 DOI: 10.3389/fcell.2020.615264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany.,Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Klingler JJ. The evolution of the pectoral extrinsic appendicular and infrahyoid musculature in theropods and its functional and behavioral importance. J Anat 2020; 237:870-889. [PMID: 32794182 DOI: 10.1111/joa.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/13/2023] Open
Abstract
Birds have lost and modified the musculature joining the pectoral girdle to the skull and hyoid, called the pectoral extrinsic appendicular and infrahyoid musculature. These muscles include the levator scapulae, sternomandibularis, sternohyoideus, episternocleidomastoideus, trapezius, and omohyoideus. As non-avian theropod dinosaurs are the closest relatives to birds, it is worth investigating what conditions they may have exhibited to learn when and how these muscles were lost or modified. Using extant phylogenetic bracketing, osteological correlates and non-osteological influences of these muscles are identified and discussed. Compsognathids and basal Maniraptoriformes were found to have been the likeliest transition points of a derived avian condition of losing or modifying these muscles. Increasing needs to control the feather tracts of the neck and shoulder, for insulation, display, or tightening/readjustment of the skin after dynamic neck movements may have been the selective force that drove some of these muscles to be modified into dermo-osseous muscles. The loss and modification of shoulder protractors created a more immobile girdle that would later be advantageous for flight in birds. The loss of the infrahyoid muscles freed the hyolarynx, trachea, and esophagus which may have aided in vocal tract filtering.
Collapse
Affiliation(s)
- Jeremy J Klingler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Zhu YA, Lu J, Zhu M. Reappraisal of the Silurian placoderm Silurolepis and insights into the dermal neck joint evolution. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191181. [PMID: 31598327 PMCID: PMC6774982 DOI: 10.1098/rsos.191181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Silurolepis platydorsalis, a Silurian jawed vertebrate originally identified as an antiarch, is here redescribed as a maxillate placoderm close to Qilinyu and is anteroposteriorly reversed as opposed to the original description. The cuboid trunk shield possesses three longitudinal cristae, obstanic grooves on the trunk shield and three median dorsal plates, all uniquely shared with Qilinyu. Further preparation reveals the morphology of the dermal neck joint, with slot-shaped articular fossae on the trunk shield similar to Qilinyu and antiarchs. However, new tomographic data reveal that Qilinyu uniquely bears a dual articulation between the skull roof and trunk shield, which does not fit into the traditional 'ginglymoid' and 'reverse ginglymoid' categories. An extended comparison in early jawed vertebrates confirms that a sliding-type dermal neck joint is widely distributed and other types are elaborated in different lineages by developing various laminae. Nine new characters related to the dermal neck joint are proposed for a new phylogenetic analysis, in which Silurolepis forms a clade with Qilinyu. The current phylogenetic framework conflicts with the parsimonious evolution of dermal neck joints in suggesting that the shared trunk shield characters between antiarchs and Qilinyu are independently acquired, and the sliding-type joint in Entelognathus is reversely evolved from the dual articulation in Qilinyu.
Collapse
Affiliation(s)
- You-an Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), 142 Xi-zhi-men-wai Street, Beijing 100044, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
- Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), 142 Xi-zhi-men-wai Street, Beijing 100044, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), 142 Xi-zhi-men-wai Street, Beijing 100044, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Author for correspondence: Min Zhu e-mail:
| |
Collapse
|
9
|
Naumann B, Schmidt J, Olsson L. FoxN3
is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog,
Xenopus laevis
(Lissamphibia: Anura: Pipidae). Dev Dyn 2019; 248:323-336. [DOI: 10.1002/dvdy.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Benjamin Naumann
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Jennifer Schmidt
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Lennart Olsson
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| |
Collapse
|
10
|
Dohn TE, Ravisankar P, Tirera FT, Martin KE, Gafranek JT, Duong TB, VanDyke TL, Touvron M, Barske LA, Crump JG, Waxman JS. Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genet 2019; 15:e1007962. [PMID: 30721228 PMCID: PMC6377147 DOI: 10.1371/journal.pgen.1007962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/15/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple syndromes share congenital heart and craniofacial muscle defects, indicating there is an intimate relationship between the adjacent cardiac and pharyngeal muscle (PM) progenitor fields. However, mechanisms that direct antagonistic lineage decisions of the cardiac and PM progenitors within the anterior mesoderm of vertebrates are not understood. Here, we identify that retinoic acid (RA) signaling directly promotes the expression of the transcription factor Nr2f1a within the anterior lateral plate mesoderm. Using zebrafish nr2f1a and nr2f2 mutants, we find that Nr2f1a and Nr2f2 have redundant requirements restricting ventricular cardiomyocyte (CM) number and promoting development of the posterior PMs. Cre-mediated genetic lineage tracing in nr2f1a; nr2f2 double mutants reveals that tcf21+ progenitor cells, which can give rise to ventricular CMs and PM, more frequently become ventricular CMs potentially at the expense of posterior PMs in nr2f1a; nr2f2 mutants. Our studies reveal insights into the molecular etiology that may underlie developmental syndromes that share heart, neck and facial defects as well as the phenotypic variability of congenital heart defects associated with NR2F mutations in humans.
Collapse
Affiliation(s)
- Tracy E. Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Fouley T. Tirera
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Master’s Program in Genetics, Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Kendall E. Martin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular Genetics and Human Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Jacob T. Gafranek
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Tiffany B. Duong
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Master’s Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Terri L. VanDyke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Melissa Touvron
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lindsey A. Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
11
|
Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol 2019; 132:137-176. [PMID: 30797508 DOI: 10.1016/bs.ctdb.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle powers all movement of the vertebrate body and is distributed in multiple regions that have evolved distinct functions. Axial muscles are ancestral muscles essential for support and locomotion of the whole body. The evolution of the head was accompanied by development of cranial muscles essential for eye movement, feeding, vocalization, and facial expression. With the evolution of paired fins and limbs and their associated muscles, vertebrates gained increased locomotor agility, populated the land, and acquired fine motor skills. Finally, unique muscles with specialized functions have evolved in some groups, and the diaphragm which solely evolved in mammals to increase respiratory capacity is one such example. The function of all these muscles requires their integration with the other components of the musculoskeletal system: muscle connective tissue (MCT), tendons, bones as well as nerves and vasculature. MCT is muscle's closest anatomical and functional partner. Not only is MCT critical in the adult for muscle structure and function, but recently MCT in the embryo has been found to be crucial for muscle development. In this review, we examine the important role of the MCT in axial, head, limb, and diaphragm muscles for regulating normal muscle development, discuss how defects in MCT-muscle interactions during development underlie the etiology of a range of birth defects, and explore how changes in MCT development or communication with muscle may have led to the modification and acquisition of new muscles during vertebrate evolution.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
12
|
|
13
|
An Integrative View of Lepidosaur Cranial Anatomy, Development, and Diversification. HEADS, JAWS, AND MUSCLES 2019. [DOI: 10.1007/978-3-319-93560-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Heude E, Tesarova M, Sefton EM, Jullian E, Adachi N, Grimaldi A, Zikmund T, Kaiser J, Kardon G, Kelly RG, Tajbakhsh S. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. eLife 2018; 7:40179. [PMID: 30451684 PMCID: PMC6310459 DOI: 10.7554/elife.40179] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/17/2018] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.
Collapse
Affiliation(s)
- Eglantine Heude
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Alexandre Grimaldi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| |
Collapse
|
15
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
16
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuratani S. Development of hypobranchial muscles with special reference to the evolution of the vertebrate neck. ZOOLOGICAL LETTERS 2018; 4:5. [PMID: 29468087 PMCID: PMC5816939 DOI: 10.1186/s40851-018-0087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extant vertebrates include cyclostomes (lamprey and hagfish) and crown gnathostomes (jawed vertebrates), but there are various anatomical disparities between these two groups. Conspicuous in the gnathostomes is the neck, which occupies the interfacial domain between the head and trunk, including the occipital part of the cranium, the shoulder girdle, and the cucullaris and hypobranchial muscles (HBMs). Of these, HBMs originate from occipital somites to form the ventral pharyngeal and neck musculature in gnathostomes. Cyclostomes also have HBMs on the ventral pharynx, but lack the other neck elements, including the occipital region, the pectoral girdle, and cucullaris muscles. These anatomical differences raise questions about the evolution of the neck in vertebrates. RESULTS In this study, we observed developing HBMs as a basis for comparison between the two groups and show that the arrangement of the head-trunk interface in gnathostomes is distinct from that of lampreys. Our comparative analyses reveal that, although HBM precursors initially pass through the lateral side of the pericardium in both groups, the relative positions of the pericardium withrespect to the pharyngeal arches differ between the two, resulting in diverse trajectories of HBMs in gnathostomes and lampreys. CONCLUSIONS We suggest that a heterotopic rearrangement of early embryonic components, including the pericardium and pharyngeal arches, may have played a fundamental role in establishing the gnathostome HBMs, which would also have served as the basis for neck formation in the jawed vertebrate lineage.
Collapse
Affiliation(s)
- Noritaka Adachi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
17
|
Naumann B, Warth P, Olsson L, Konstantinidis P. The development of the cucullaris muscle and the branchial musculature in the Longnose Gar, (Lepisosteus osseus, Lepisosteiformes, Actinopterygii) and its implications for the evolution and development of the head/trunk interface in vertebrates. Evol Dev 2017; 19:263-276. [PMID: 29027738 DOI: 10.1111/ede.12239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vertebrate head/trunk interface is the region of the body where the different developmental programs of the head and trunk come in contact. Many anatomical structures that develop in this transition zone differ from similar structures in the head or the trunk. This is best exemplified by the cucullaris/trapezius muscle, spanning the head/trunk interface by connecting the head to the pectoral girdle. The source of this muscle has been claimed to be either the unsegmented head mesoderm or the somites of the trunk. However most recent data on the development of the cucullaris muscle are derived from tetrapods and information from actinopterygian taxa is scarce. We used classical histology in combination with fluorescent whole-mount antibody staining and micro-computed tomography to investigate the developmental pattern of the cucullaris and the branchial muscles in a basal actinopterygian, the Longnose gar (Lepisosteus osseus). Our results show (1) that the cucullaris has been misidentified in earlier studies on its development in Lepisosteus. (2) Cucullaris development is delayed compared to other head and trunk muscles. (3) This developmental pattern of the cucullaris is similar to that reported from some tetrapod taxa. (4) That the retractor dorsalis muscle of L. osseus shows a delayed developmental pattern similar to the cucullaris. Our data are in agreement with an explanatory scenario for the cucullaris development in tetrapods, suggesting that these mechanisms are conserved throughout the Osteichthyes. Furthermore the developmental pattern of the retractor dorsalis, also spanning the head/trunk interface, seems to be controlled by similar mechanisms.
Collapse
Affiliation(s)
- Benjamin Naumann
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Peter Warth
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Peter Konstantinidis
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
| |
Collapse
|
18
|
Ziermann JM, Freitas R, Diogo R. Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Front Zool 2017; 14:31. [PMID: 28649268 PMCID: PMC5480186 DOI: 10.1186/s12983-017-0216-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. RESULTS Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. CONCLUSION Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates.
Collapse
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington, DC 20059 USA
| | - Renata Freitas
- IBMC—Institute for Molecular and Cell Biology, Oporto, Portugal
- I3S, Institute for Innovation and Health Research, University of Oporto, Oporto, Portugal
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 USA
| |
Collapse
|