1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5. Nat Commun 2025; 16:2580. [PMID: 40089503 PMCID: PMC11910620 DOI: 10.1038/s41467-025-57752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Here, we present a high resolution cryogenic-electron microscopy structure showing the phosphorylated 35-residue nuclear export signal of Pho4, which binds the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches. These findings characterize a mechanism of phosphate-specific recognition mediated by a non-classical signal distinct from that for Exportin-1. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Sanraj R Mittal
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Ashley B Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Jenny Jiou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 302, Australia
| | - Binita Shakya
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Clinical, Diagnostic & Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, US
| | - Takuya Yoshizawa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Ahmet E Cansizoglu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA, 01821, US
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US.
| |
Collapse
|
3
|
Zhang X, Baumann C, De La Fuente R. Fluo-Cast-Bright: a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live oocytes. Commun Biol 2025; 8:141. [PMID: 39880880 PMCID: PMC11779945 DOI: 10.1038/s42003-025-07568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes. Our Fluorescence prediction and Classification on Bright-field (Fluo-Cast-Bright) pipeline achieved 91.3% accuracy in the classification of chromatin state in fixed oocytes and 85.7% accuracy in live oocytes. Importantly, transcriptome analysis following non-invasive selection revealed that meiotically competent oocytes exhibit a higher expression of transcripts associated with RNA and protein nuclear export, maternal mRNA deadenylation, histone modifications, chromatin remodeling and signaling pathways regulating microtubule dynamics during the metaphase-I to metaphase-II transition. Fluo-Cast-Bright provides fast and non-invasive selection of meiotically competent oocytes for downstream research and clinical applications.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
- Regenerative Bioscience Center (RBC), University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
5
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a novel NES class recognized by exportin Msn5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607649. [PMID: 39211127 PMCID: PMC11361136 DOI: 10.1101/2024.08.12.607649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
|
6
|
Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Oncogene 2024; 43:2229-2243. [PMID: 38886570 PMCID: PMC11245395 DOI: 10.1038/s41388-024-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Steven X F Zheng
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| |
Collapse
|
7
|
Marullo R, Rutherford SC, Revuelta MV, Zamponi N, Culjkovic-Kraljacic B, Kotlov N, Di Siervi N, Lara-Garcia J, Allan JN, Ruan J, Furman RR, Chen Z, Shore TB, Phillips AA, Mayer S, Hsu J, van Besien K, Leonard JP, Borden KL, Inghirami G, Martin P, Cerchietti L. XPO1 Enables Adaptive Regulation of mRNA Export Required for Genotoxic Stress Tolerance in Cancer Cells. Cancer Res 2024; 84:101-117. [PMID: 37801604 PMCID: PMC10758694 DOI: 10.1158/0008-5472.can-23-1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors. SIGNIFICANCE XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.
Collapse
Affiliation(s)
- Rossella Marullo
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Sarah C. Rutherford
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Maria V. Revuelta
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Nahuel Zamponi
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Canada
| | | | - Nicolás Di Siervi
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Juan Lara-Garcia
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - John N. Allan
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Jia Ruan
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Richard R. Furman
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Zhengming Chen
- Division of Biostatistics, Population Health Sciences Department, Weill Cornell Medicine, New York, New York
| | - Tsiporah B. Shore
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Adrienne A. Phillips
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Sebastian Mayer
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Jingmei Hsu
- New York University Grossman School of Medicine, New York, New York
| | | | - John P. Leonard
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Katherine L.B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Canada
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Peter Martin
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
8
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
9
|
Meng Q, Guo F, Tang J. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model. Brief Bioinform 2023:bbad217. [PMID: 37321965 DOI: 10.1093/bib/bbad217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
In recent years, protein structure problems have become a hotspot for understanding protein folding and function mechanisms. It has been observed that most of the protein structure works rely on and benefit from co-evolutionary information obtained by multiple sequence alignment (MSA). As an example, AlphaFold2 (AF2) is a typical MSA-based protein structure tool which is famous for its high accuracy. As a consequence, these MSA-based methods are limited by the quality of the MSAs. Especially for orphan proteins that have no homologous sequence, AlphaFold2 performs unsatisfactorily as MSA depth decreases, which may pose a barrier to its widespread application in protein mutation and design problems in which there are no rich homologous sequences and rapid prediction is needed. In this paper, we constructed two standard datasets for orphan and de novo proteins which have insufficient/none homology information, called Orphan62 and Design204, respectively, to fairly evaluate the performance of the various methods in this case. Then, depending on whether or not utilizing scarce MSA information, we summarized two approaches, MSA-enhanced and MSA-free methods, to effectively solve the issue without sufficient MSAs. MSA-enhanced model aims to improve poor MSA quality from the data source by knowledge distillation and generation models. MSA-free model directly learns the relationship between residues on enormous protein sequences from pre-trained models, bypassing the step of extracting the residue pair representation from MSA. Next, we evaluated the performance of four MSA-free methods (trRosettaX-Single, TRFold, ESMFold and ProtT5) and MSA-enhanced (Bagging MSA) method compared with a traditional MSA-based method AlphaFold2, in two protein structure-related prediction tasks, respectively. Comparison analyses show that trRosettaX-Single and ESMFold which belong to MSA-free method can achieve fast prediction ($\sim\! 40$s) and comparable performance compared with AF2 in tertiary structure prediction, especially for short peptides, $\alpha $-helical segments and targets with few homologous sequences. Bagging MSA utilizing MSA enhancement improves the accuracy of our trained base model which is an MSA-based method when poor homology information exists in secondary structure prediction. Our study provides biologists an insight of how to select rapid and appropriate prediction tools for enzyme engineering and peptide drug development. CONTACT guofei@csu.edu.cn, jj.tang@siat.ac.cn.
Collapse
Affiliation(s)
- Qiaozhen Meng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
10
|
Zhao C, Ma B, Yang Z, Li O, Liu S, Pan L, Gong W, Dong P, Shu Y. Inhibition of XPO1 impairs cholangiocarcinoma cell proliferation by triggering p53 intranuclear accumulation. Cancer Med 2023; 12:5751-5763. [PMID: 36200270 PMCID: PMC10028126 DOI: 10.1002/cam4.5322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XPO1 mediates the nuclear export of several proteins, mainly tumor suppressors. KPT-330 (Selinexor) is a selective inhibitor of XPO1 that has demonstrated good therapeutic effects in hematologic cancers. METHODS We used TCGA and GTEx pan-cancer database to evaluate XPO1 mRNA expression in various tumors. Cell proliferation assay and colony formation assay were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. Western blot was performed to explore the specific mechanisms. RESULTS We found that XPO1 was highly expressed across a range of cancers and associated with poor prognosis in hepatobiliary and pancreatic tumors. We revealed that the XPO1 inhibitor KPT-330 triggered the nuclear accumulation of the p53 protein and significantly disrupted the proliferation of cholangiocarcinoma cells. Mechanistically, the XPO1 inhibitor, KPT-330, reduced BIRC6 expression by inhibiting the PI3K/AKT pathway to decrease p53 degradation and improve its stability. CONCLUSION Therefore, XPO1 may be a potential therapeutic target in cholangiocarcinoma, mediated by its effects on KPT-330.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ben Ma
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Zi‐yi Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ou Li
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Shi‐lei Liu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Li‐jia Pan
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yi‐jun Shu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
11
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
12
|
Bernardes NE, Fung HYJ, Li Y, Chen Z, Chook YM. Structure of IMPORTIN-4 bound to the H3-H4-ASF1 histone-histone chaperone complex. Proc Natl Acad Sci U S A 2022; 119:e2207177119. [PMID: 36103578 PMCID: PMC9499513 DOI: 10.1073/pnas.2207177119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.5-Å IMPORTIN-4-H3-H4-ASF1 cryoelectron microscopy structure reveals the full nuclear import complex and shows a binding mode different from suggested by previous structures. The N-terminal half of IMPORTIN-4 clamps the globular H3-H4 domain and H3 αN helix, while its C-terminal half binds the H3 N-terminal tail weakly; tail contribution to binding energy is negligible. ASF1 binds H3-H4 without contacting IMPORTIN-4. Together, ASF1 and IMPORTIN-4 shield nucleosomal H3-H4 surfaces to chaperone and import it into the nucleus where RanGTP binds IMPORTIN-4, causing large conformational changes to release H3-H4-ASF1. This work explains how full-length H3-H4 binds IMPORTIN-4 in the cytoplasm and how it is released in the nucleus.
Collapse
Affiliation(s)
- Natália Elisa Bernardes
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
13
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
14
|
Kose S, Imai K, Watanabe A, Nakai A, Suzuki Y, Imamoto N. Lack of Hikeshi activates HSF1 activity under normal conditions and disturbs the heat-shock response. Life Sci Alliance 2022; 5:5/9/e202101241. [PMID: 35580988 PMCID: PMC9113944 DOI: 10.26508/lsa.202101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Hikeshi mediates the nuclear import of the molecular chaperone HSP70 under heat-shock (acute heat stress) conditions, which is crucial for recovery from cellular damage. The cytoplasmic function of HSP70 is well studied, but its nuclear roles, particularly under nonstressed conditions, remain obscure. Here, we show that Hikeshi regulates the nucleocytoplasmic distribution of HSP70 not only under heat-shock conditions but also under nonstressed conditions. Nuclear HSP70 affects the transcriptional activity of HSF1 and nuclear proteostasis under nonstressed conditions. Depletion of Hikeshi induces a reduction in nuclear HSP70 and up-regulation of the mRNA expression of genes regulated by HSF1 under nonstressed conditions. In addition, the heat-shock response is impaired in Hikeshi-knockout cells. Our results suggest that HSF1 transcriptional activity is tightly regulated by nuclear HSP70 because nuclear-localized Hsp70 effectively suppresses transcriptional activity in a dose-dependent manner. Furthermore, the cytotoxicity of nuclear pathologic polyglutamine proteins was increased by Hikeshi depletion. Thus, proper nucleocytoplasmic distribution of HSP70, mediated by Hikeshi, is required for nuclear proteostasis and adaptive response to heat shock.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan,Correspondence: ;
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Ai Watanabe
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan,Correspondence: ;
| |
Collapse
|
15
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
16
|
Fung HYJ, Chook YM. Crystallization of Nuclear Export Signals or Small-Molecule Inhibitors Bound to Nuclear Exporter CRM1. Methods Mol Biol 2022; 2502:285-297. [PMID: 35412246 DOI: 10.1007/978-1-0716-2337-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Karyopherin protein CRM1 or XPO1 is the major nuclear export receptor that regulates nuclear exit of thousands of macromolecules in the cell. CRM1 recognizes protein cargoes by binding to their 8-15 residue-long nuclear export signals (NESs). A ternary CRM1-Ran-RanBP1 complex engineered to be suitable for crystallization has enabled structure determination by X-ray crystallography of CRM1 bound to many NES peptides and small-molecule inhibitors. Here, we present a protocol for the purification of the individual proteins, formation of the ternary CRM1-Ran-RanBP1 complex and crystallization of this complex for X-ray crystallography.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Fung HYJ, Chook YM. Binding Affinity Measurement of Nuclear Export Signal Peptides to Their Exporter CRM1. Methods Mol Biol 2022; 2502:245-256. [PMID: 35412243 DOI: 10.1007/978-1-0716-2337-4_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
CRM1 recognizes hundreds to thousands of protein cargoes by binding to the eight to fifteen residue-long nuclear export signals (NESs) within their polypeptide chains. Various assays to measure the binding affinity of NESs for CRM1 have been developed. CRM1 binds to NESs with a wide range of binding affinities, with dissociation constants that span from low nanomolar to tens of micromolar. An optimized binding affinity assay with improved throughput was recently developed to measure binding affinities of NES peptides for CRM1 in the presence of excess RanGTP. The assay can measure affinities, with multiple replicates, for up to seven different NES peptides per screening plate. Here, we present a protocol for the purification of the necessary proteins and for measuring CRM1-NES binding affinities.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Machida Y, Suzuki T, Sasabe M, Iwakawa H, Kojima S, Machida C. Arabidopsis ASYMMETRIC LEAVES2 (AS2): roles in plant morphogenesis, cell division, and pathogenesis. JOURNAL OF PLANT RESEARCH 2022; 135:3-14. [PMID: 34668105 PMCID: PMC8755679 DOI: 10.1007/s10265-021-01349-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 05/26/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.
Collapse
Affiliation(s)
- Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Takanori Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Central Research Institute, Ishihara Sangyo Kaisha, Ltd., 2-3-1 Nishi-Shibukawa, Kusatsu, Shiga, 525-0025, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
20
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Kimura M, Imai K, Morinaka Y, Hosono-Sakuma Y, Horton P, Imamoto N. Distinct mutations in importin-β family nucleocytoplasmic transport receptors transportin-SR and importin-13 affect specific cargo binding. Sci Rep 2021; 11:15649. [PMID: 34341383 PMCID: PMC8329185 DOI: 10.1038/s41598-021-94948-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/20/2021] [Indexed: 01/25/2023] Open
Abstract
Importin-(Imp)β family nucleocytoplasmic transport receptors (NTRs) are supposed to bind to their cargoes through interaction between a confined interface on an NTR and a nuclear localization or export signal (NLS/NES) on a cargo. Although consensus NLS/NES sequence motifs have been defined for cargoes of some NTRs, many experimentally identified cargoes of those NTRs lack those motifs, and consensus NLSs/NESs have been reported for only a few NTRs. Crystal structures of NTR-cargo complexes have exemplified 3D structure-dependent binding of cargoes lacking a consensus NLS/NES to different sites on an NTR. Since only a limited number of NTR-cargo interactions have been studied, whether most cargoes lacking a consensus NLS/NES bind to the same confined interface or to various sites on an NTR is still unclear. Addressing this issue, we generated four mutants of transportin-(Trn)SR, of which many cargoes lack a consensus NLS, and eight mutants of Imp13, where no consensus NLS has been defined, and we analyzed their binding to as many as 40 cargo candidates that we previously identified by a nuclear import reaction-based method. The cargoes bind differently to the NTR mutants, suggesting that positions on an NTR contribute differently to the binding of respective cargoes.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| | - Yuriko Morinaka
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshiko Hosono-Sakuma
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
22
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
23
|
Fung HYJ, Niesman A, Chook YM. An update to the CRM1 cargo/NES database NESdb. Mol Biol Cell 2021; 32:467-469. [PMID: 33720780 PMCID: PMC8101443 DOI: 10.1091/mbc.e20-11-0694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| | - Ashley Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
24
|
Walker JS, Hing ZA, Harrington B, Baumhardt J, Ozer HG, Lehman A, Giacopelli B, Beaver L, Williams K, Skinner JN, Cempre CB, Sun Q, Shacham S, Stromberg BR, Summers MK, Abruzzo LV, Rassenti L, Kipps TJ, Parikh S, Kay NE, Rogers KA, Woyach JA, Coppola V, Chook YM, Oakes C, Byrd JC, Lapalombella R. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J Hematol Oncol 2021; 14:17. [PMID: 33451349 PMCID: PMC7809770 DOI: 10.1186/s13045-021-01032-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.
Collapse
Affiliation(s)
- Janek S Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zachary A Hing
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Bonnie Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jordan Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jordan N Skinner
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Casey B Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Laura Rassenti
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Thomas J Kipps
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Sameer Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Ujike M, Kawachi Y, Matsunaga Y, Etho Y, Asanuma H, Kamitani W, Taguchi F. Characterization of Localization and Export Signals of Bovine Torovirus Nucleocapsid Protein Responsible for Extensive Nuclear and Nucleolar Accumulation and Their Importance for Virus Growth. J Virol 2021; 95:e02111-20. [PMID: 33177195 PMCID: PMC7925113 DOI: 10.1128/jvi.02111-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukako Kawachi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yui Matsunaga
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuka Etho
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
26
|
Tso SC, Brautigam CA. Measuring the K D of Protein-Ligand Interactions Using Microscale Thermophoresis. Methods Mol Biol 2021; 2263:161-181. [PMID: 33877597 DOI: 10.1007/978-1-0716-1197-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microscale thermophoresis (MST) has become a widely used technique to determine the KD or EC50 of protein-ligand interactions. The method exploits the tendency of macromolecules to migrate along a thermal gradient (i.e., thermophoresis). Differences in thermophoresis as a function of the liganded state of a macromolecule can be measured and assembled into a binding curve that can be analyzed to yield KD. In this protocol, we outline a simple experiment designed for new MST users, with the goal of using readily available, inexpensive materials to plan, execute, and analyze an MST experiment.
Collapse
Affiliation(s)
- Shih-Chia Tso
- Departments of Biophysics and Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Squires KE, Gerber KJ, Tillman MC, Lustberg DJ, Montañez-Miranda C, Zhao M, Ramineni S, Scharer CD, Saha RN, Shu FJ, Schroeder JP, Ortlund EA, Weinshenker D, Dudek SM, Hepler JR. Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. J Biol Chem 2021; 296:100024. [PMID: 33410399 PMCID: PMC7949046 DOI: 10.1074/jbc.ra120.016009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Daniel J Lustberg
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | | | - Meilan Zhao
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Ramendra N Saha
- Department of Molecular & Cell Biology, University of California-Merced, Merced California, USA
| | - Feng-Jue Shu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA.
| |
Collapse
|
28
|
Imai K, Nakai K. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Front Genet 2020; 11:607812. [PMID: 33324450 PMCID: PMC7723863 DOI: 10.3389/fgene.2020.607812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.
Collapse
Affiliation(s)
- Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Duffraisse M, Paul R, Carnesecchi J, Hudry B, Banreti A, Reboulet J, Ajuria L, Lohmann I, Merabet S. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J Cell Sci 2020; 133:jcs241943. [PMID: 32878938 DOI: 10.1242/jcs.241943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.
Collapse
Affiliation(s)
- Marilyne Duffraisse
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Rachel Paul
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Julie Carnesecchi
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Bruno Hudry
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Agnes Banreti
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Leiore Ajuria
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Ingrid Lohmann
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| |
Collapse
|
30
|
Alam T, Alazmi M, Naser R, Huser F, Momin AA, Astro V, Hong S, Walkiewicz KW, Canlas CG, Huser R, Ali AJ, Merzaban J, Adamo A, Jaremko M, Jaremko Ł, Bajic VB, Gao X, Arold ST. Proteome-level assessment of origin, prevalence and function of leucine-aspartic acid (LD) motifs. Bioinformatics 2020; 36:1121-1128. [PMID: 31584626 PMCID: PMC7703752 DOI: 10.1093/bioinformatics/btz703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023] Open
Abstract
Motivation Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. Results To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. Availability and implementation LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanvir Alam
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Meshari Alazmi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Rayan Naser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Franceline Huser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Afaque A Momin
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Veronica Astro
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Katarzyna W Walkiewicz
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | | | - Raphaël Huser
- Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Jasmeen Merzaban
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Antonio Adamo
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| |
Collapse
|
31
|
Sendino M, Omaetxebarria MJ, Prieto G, Rodriguez JA. Using a Simple Cellular Assay to Map NES Motifs in Cancer-Related Proteins, Gain Insight into CRM1-Mediated NES Export, and Search for NES-Harboring Micropeptides. Int J Mol Sci 2020; 21:E6341. [PMID: 32882917 PMCID: PMC7503480 DOI: 10.3390/ijms21176341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear export receptor CRM1 (XPO1) recognizes and binds specific sequence motifs termed nuclear export signals (NESs) in cargo proteins. About 200 NES motifs have been identified, but over a thousand human proteins are potential CRM1 cargos, and most of their NESs remain to be identified. On the other hand, the interaction of NES peptides with the "NES-binding groove" of CRM1 was studied in detail using structural and biochemical analyses, but a better understanding of CRM1 function requires further investigation of how the results from these in vitro studies translate into actual NES export in a cellular context. Here we show that a simple cellular assay, based on a recently described reporter (SRVB/A), can be applied to identify novel potential NESs motifs, and to obtain relevant information on different aspects of CRM1-mediated NES export. Using cellular assays, we first map 19 new sequence motifs with nuclear export activity in 14 cancer-related proteins that are potential CRM1 cargos. Next, we investigate the effect of mutations in individual NES-binding groove residues, providing further insight into CRM1-mediated NES export. Finally, we extend the search for CRM1-dependent NESs to a recently uncovered, but potentially vast, set of small proteins called micropeptides. By doing so, we report the first NES-harboring human micropeptides.
Collapse
Affiliation(s)
- Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Miren Josu Omaetxebarria
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain;
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| |
Collapse
|
32
|
Baumhardt JM, Walker JS, Lee Y, Shakya B, Brautigam CA, Lapalombella R, Grishin N, Chook YM. Recognition of nuclear export signals by CRM1 carrying the oncogenic E571K mutation. Mol Biol Cell 2020; 31:1879-1891. [PMID: 32520643 PMCID: PMC7525811 DOI: 10.1091/mbc.e20-04-0233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
The E571K mutation of CRM1 is highly prevalent in some cancers, but its mechanism of tumorigenesis is unclear. Glu571 of CRM1 is located in its nuclear export signal (NES)-binding groove, suggesting that binding of select NESs may be altered. We generated HEK 293 cells with either monoallelic CRM1WT/E571K or biallelic CRM1E571K/E571K using CRISPR/Cas9. We also combined analysis of binding affinities and structures of 27 diverse NESs for wild-type and E571K CRM1 with structure-based bioinformatics. While most NESs bind the two CRM1 similarly, NESs from Mek1, eIF4E-transporter, and RPS2 showed >10-fold affinity differences. These NESs have multiple charged side chains binding close to CRM1 position 571, but this feature alone was not sufficient to predict different binding to CRM1(E571K). Consistent with eIF4E-transporter NES binding weaker to CRM1(E571K), eIF4E-transporter was mislocalized in tumor cells carrying CRM1(E571K). This serves as proof of concept that understanding how CRM1(E571K) affects NES binding provides a platform for identifying cargoes that are mislocalized in cancer upon CRM1 mutation. Finally, we showed that large affinity changes seen with some NES peptides (of Mek1 and RPS2) do not always translate to the full-length cargoes, suggesting limitations with current NES prediction methods. Therefore, comprehensive studies like ours are imperative to identify CRM1 cargoes with real pathogenic potential.
Collapse
Affiliation(s)
- Jordan M. Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Yoonji Lee
- Departments of Biophysics and Microbiology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Binita Shakya
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chad A. Brautigam
- Departments of Biophysics and Microbiology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Nick Grishin
- Departments of Biophysics and Microbiology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
33
|
Shaikhqasem A, Dickmanns A, Neumann P, Ficner R. Characterization of Inhibition Reveals Distinctive Properties for Human and Saccharomyces cerevisiae CRM1. J Med Chem 2020; 63:7545-7558. [PMID: 32585100 DOI: 10.1021/acs.jmedchem.0c00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.
Collapse
Affiliation(s)
- Alaa Shaikhqasem
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Walker JS, Garzon R, Lapalombella R. Selinexor for advanced hematologic malignancies. Leuk Lymphoma 2020; 61:2335-2350. [DOI: 10.1080/10428194.2020.1775210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Olivieri C, Wang Y, Li GC, V S M, Kim J, Stultz BR, Neibergall M, Porcelli F, Muretta JM, Thomas DDT, Gao J, Blumenthal DK, Taylor SS, Veglia G. Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. eLife 2020; 9:e55607. [PMID: 32338601 PMCID: PMC7234811 DOI: 10.7554/elife.55607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Shenzhen Bay LaboratoryShenzhenChina
| | - Geoffrey C Li
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jonggul Kim
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David DT Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Laboratory of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of UtahSalt Lake CityUnited States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry and Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
36
|
Singh S, Giesecke A, Damulewicz M, Fexova S, Mazzotta GM, Stanewsky R, Dolezel D. New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless. Front Physiol 2019; 10:1442. [PMID: 31849700 PMCID: PMC6901700 DOI: 10.3389/fphys.2019.01442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.
Collapse
Affiliation(s)
- Samarjeet Singh
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Astrid Giesecke
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Milena Damulewicz
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Silvie Fexova
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Gabriella M. Mazzotta
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Department of Biology, University of Padua, Padua, Italy
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - David Dolezel
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
37
|
Onuma A, Fujioka YA, Fujii W, Sugiura K, Naito K. Expression and function of exportin 6 in full-grown and growing porcine oocytes. J Reprod Dev 2019; 65:407-412. [PMID: 31204365 PMCID: PMC6815735 DOI: 10.1262/jrd.2019-040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exportin 6, which functions specifically in the nuclear export of actin family proteins, has been reported to be absent in immature Xenopus oocytes, which have a huge
nucleus containing a large amount of actin. In mammalian oocytes, however, the presence and the function of exportin 6 remain uninvestigated. In this study, we assessed the expression and
effects of exportin 6 on meiotic resumption in porcine oocytes after cloning porcine exportin 6 cDNA and carrying out overexpression and expression inhibition by mRNA and antisense RNA
injection, respectively. We found for the first time that exportin 6 was expressed in mammalian full-grown germinal-vesicle-stage oocytes and was involved in the nuclear export of actin. In
contrast, exportin 6 was absent from the growing oocytes, which are meiotically incompetent and maintain the germinal-vesicle structure in the long term; the regulatory mechanism appeared to
be active degradation. We examined the effects of exportin 6 on meiotic resumption of porcine oocytes and noted that its expression did not affect the onset time but increased the rate of
germinal vesicle breakdown at 24 h via regulation of the nuclear actin level, which directly influences the physical strength of the germinal-vesicle membrane. Our results suggest that
exportin 6 affects the nuclear transport of actin and meiotic resumption in mammalian oocytes.
Collapse
Affiliation(s)
- Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Maurice F, Pérébaskine N, Thore S, Fribourg S. In vitro dimerization of human RIO2 kinase. RNA Biol 2019; 16:1633-1642. [PMID: 31390939 DOI: 10.1080/15476286.2019.1653679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
RIO proteins form a conserved family of atypical protein kinases. RIO2 is a serine/threonine protein kinase/ATPase involved in pre-40S ribosomal maturation. Current crystal structures of archaeal and fungal Rio2 proteins report a monomeric form of the protein. Here, we describe three atomic structures of the human RIO2 kinase showing that it forms a homodimer in vitro. Upon self-association, each protomer ATP-binding pocket is partially remodelled and found in an apostate. The homodimerization is mediated by key residues previously shown to be responsible for ATP binding and catalysis. This unusual in vitro protein kinase dimer reveals an intricate mechanism where identical residues are involved in substrate binding and oligomeric state formation. We speculate that such an oligomeric state might be formed also in vivo and might function in maintaining the protein in an inactive state and could be employed during import.
Collapse
Affiliation(s)
| | | | - Stéphane Thore
- INSERM U1212, UMR CNRS 5320, Université de Bordeaux , Bordeaux , France
| | | |
Collapse
|
39
|
Tessier TM, Dodge MJ, Prusinkiewicz MA, Mymryk JS. Viral Appropriation: Laying Claim to Host Nuclear Transport Machinery. Cells 2019; 8:E559. [PMID: 31181773 PMCID: PMC6627039 DOI: 10.3390/cells8060559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Protein nuclear transport is an integral process to many cellular pathways and often plays a critical role during viral infection. To overcome the barrier presented by the nuclear membrane and gain access to the nucleus, virally encoded proteins have evolved ways to appropriate components of the nuclear transport machinery. By binding karyopherins, or the nuclear pore complex, viral proteins influence their own transport as well as the transport of key cellular regulatory proteins. This review covers how viral proteins can interact with different components of the nuclear import machinery and how this influences viral replicative cycles. We also highlight the effects that viral perturbation of nuclear transport has on the infected host and how we can exploit viruses as tools to study novel mechanisms of protein nuclear import. Finally, we discuss the possibility that drugs targeting these transport pathways could be repurposed for treating viral infections.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada.
| |
Collapse
|
40
|
Aksu M, Trakhanov S, Vera Rodriguez A, Görlich D. Structural basis for the nuclear import and export functions of the biportin Pdr6/Kap122. J Cell Biol 2019; 218:1839-1852. [PMID: 31023722 PMCID: PMC6548137 DOI: 10.1083/jcb.201812093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Importins ferry proteins into nuclei while exportins carry cargoes to the cytoplasm. In the accompanying paper in this issue (Vera Rodriguez et al. 2019. J. Cell Biol. https://doi.org/10.1083/jcb.201812091), we discovered that Pdr6 is a biportin that imports, e.g., the SUMO E2 ligase Ubc9 while depleting the translation factor eIF5A from the nuclear compartment. In this paper, we report the structures of key transport intermediates, namely, of the Ubc9•Pdr6 import complex, of the RanGTP•Pdr6 heterodimer, and of the trimeric RanGTP•Pdr6•eIF5A export complex. These revealed nonlinear transport signals, chaperone-like interactions, and how the RanGTPase system drives Pdr6 to transport Ubc9 and eIF5A in opposite directions. The structures also provide unexpected insights into the evolution of transport selectivity. Specifically, they show that recognition of Ubc9 by Pdr6 differs fundamentally from that of the human Ubc9-importer Importin 13. Likewise, Pdr6 recognizes eIF5A in a nonhomologous manner compared with the mammalian eIF5A-exporter Exportin 4. This suggests that the import of Ubc9 and active nuclear exclusion of eIF5A evolved in different eukaryotic lineages more than once and independently from each other.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Arturo Vera Rodriguez
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
41
|
Lee Y, Pei J, Baumhardt JM, Chook YM, Grishin NV. Structural prerequisites for CRM1-dependent nuclear export signaling peptides: accessibility, adapting conformation, and the stability at the binding site. Sci Rep 2019; 9:6627. [PMID: 31036839 PMCID: PMC6488578 DOI: 10.1038/s41598-019-43004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Nuclear export signal (NES) motifs function as essential regulators of the subcellular location of proteins by interacting with the major nuclear exporter protein, CRM1. Prediction of NES is of great interest in many aspects of research including cancer, but currently available methods, which are mostly based on the sequence-based approaches, have been suffered from high false positive rates since the NES consensus patterns are quite commonly observed in protein sequences. Therefore, finding a feature that can distinguish real NES motifs from false positives is desired to improve the prediction power, but it is quite challenging when only using the sequence. Here, we provide a comprehensive table for the validated cargo proteins, containing the location of the NES consensus patterns with the disordered propensity plots, known protein domain information, and the predicted secondary structures. It could be useful for determining the most plausible NES region in the context of the whole protein sequence and suggests possibilities for some non-binders of the annotated regions. In addition, using the currently available crystal structures of CRM1 bound to various classes of NES peptides, we adopted, for the first time, the structure-based prediction of the NES motifs bound to the CRM1's binding groove. Combining sequence-based and structure-based predictions, we suggest a novel and more straight-forward approach to identify CRM1-binding NES sequences by analysis of their structural prerequisites and energetic evaluation of the stability at the CRM1's binding site.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jordan M Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
42
|
Schwarzerová K, Bellinvia E, Martinek J, Sikorová L, Dostál V, Libusová L, Bokvaj P, Fischer L, Schmit AC, Nick P. Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway. Sci Rep 2019; 9:5725. [PMID: 30952896 PMCID: PMC6451007 DOI: 10.1038/s41598-019-42056-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubules of all eukaryotic cells are formed by α- and β-tubulin heterodimers. In addition to the well known cytoplasmic tubulins, a subpopulation of tubulin can occur in the nucleus. So far, the potential function of nuclear tubulin has remained elusive. In this work, we show that α- and β-tubulins of various organisms contain multiple conserved nuclear export sequences, which are potential targets of the Exportin 1/CRM1 pathway. We demonstrate exemplarily that these NES motifs are sufficient to mediate export of GFP as model cargo and that this export can be inhibited by leptomycin B, an inhibitor of the Exportin 1/CRM1 pathway. Likewise, leptomycin B causes accumulation of GFP-tagged tubulin in interphase nuclei, in both plant and animal model cells. Our analysis of nuclear tubulin content supports the hypothesis that an important function of nuclear tubulin export is the exclusion of tubulin from interphase nuclei, after being trapped by nuclear envelope reassembly during telophase.
Collapse
Affiliation(s)
- K Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic.
| | - E Bellinvia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic
| | - J Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic
| | - L Sikorová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic
| | - V Dostál
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Viničná 7, Czech Republic
| | - L Libusová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Viničná 7, Czech Republic
| | - P Bokvaj
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic
| | - L Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, Czech Republic
| | - A C Schmit
- Institut de Biologie Moléculaire des Plantes, Centre National de La Recherche Scientifique, Université de Strasbourg, F67084, Strasbourg-cedex, France
| | - P Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
43
|
Jayaraman B, Fernandes JD, Yang S, Smith C, Frankel AD. Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Sci Rep 2019; 9:5139. [PMID: 30914719 PMCID: PMC6435700 DOI: 10.1038/s41598-019-41582-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/05/2019] [Indexed: 11/12/2022] Open
Abstract
HIV-1 Rev is an essential viral regulatory protein that facilitates the nuclear export of intron-containing viral mRNAs. It is organized into structured, functionally well-characterized motifs joined by less understood linker regions. Our recent competitive deep mutational scanning study confirmed many known constraints in Rev’s established motifs, but also identified positions of mutational plasticity, most notably in surrounding linker regions. Here, we probe the mutational limits of these linkers by testing the activities of multiple truncation and mass substitution mutations. We find that these regions possess previously unknown structural, functional or regulatory roles, not apparent from systematic point mutational approaches. Specifically, the N- and C-termini of Rev contribute to protein stability; mutations in a turn that connects the two main helices of Rev have different effects in different contexts; and a linker region which connects the second helix of Rev to its nuclear export sequence has structural requirements for function. Thus, Rev function extends beyond its characterized motifs, and is tuned by determinants within seemingly plastic portions of its sequence. Additionally, Rev’s ability to tolerate many of these massive truncations and substitutions illustrates the overall mutational and functional robustness inherent in this viral protein.
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.,UCSC Genomics Institute/Howard Hughes Medical Institute, University of Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shumin Yang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
44
|
Padavannil A, Sarkar P, Kim SJ, Cagatay T, Jiou J, Brautigam CA, Tomchick DR, Sali A, D'Arcy S, Chook YM. Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. eLife 2019; 8:e43630. [PMID: 30855230 PMCID: PMC6453568 DOI: 10.7554/elife.43630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/09/2019] [Indexed: 01/29/2023] Open
Abstract
We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Prithwijit Sarkar
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Seung Joong Kim
- Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Tolga Cagatay
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Jenny Jiou
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Chad A Brautigam
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Diana R Tomchick
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited states
| | - Sheena D'Arcy
- Department of Chemistry and BiochemistryUniversity of Texas at DallasRichardsonUnited States
| | - Yuh Min Chook
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
45
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
46
|
Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, Lin Y, Peeples WB, Saltzberg D, Soniat M, Baumhardt JM, Oldenbourg R, Sali A, Fawzi NL, Rosen MK, Chook YM. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 2019; 173:693-705.e22. [PMID: 29677513 DOI: 10.1016/j.cell.2018.03.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-β2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-β2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-β2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-β2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-β2 may act analogously to control condensates in diverse cellular contexts.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rustam Ali
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Lin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - William B Peeples
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Soniat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
47
|
Funk C, Raschbichler V, Lieber D, Wetschky J, Arnold EK, Leimser J, Biggel M, Friedel CC, Ruzsics Z, Bailer SM. Comprehensive analysis of nuclear export of herpes simplex virus type 1 tegument proteins and their Epstein-Barr virus orthologs. Traffic 2019; 20:152-167. [PMID: 30548142 PMCID: PMC6590417 DOI: 10.1111/tra.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
Morphogenesis of herpesviral virions is initiated in the nucleus but completed in the cytoplasm. Mature virions contain more than 25 tegument proteins many of which perform both nuclear and cytoplasmic functions suggesting they shuttle between these compartments. While nuclear import of herpesviral proteins was shown to be crucial for viral propagation, active nuclear export and its functional impact are still poorly understood. To systematically analyze nuclear export of tegument proteins present in virions of Herpes simplex virus type 1 (HSV1) and Epstein-Barr virus (EBV), the Nuclear EXport Trapped by RAPamycin (NEX-TRAP) was applied. Nine of the 22 investigated HSV1 tegument proteins including pUL4, pUL7, pUL11, pUL13, pUL21, pUL37d11, pUL47, pUL48 and pUS2 as well as 2 out of 6 EBV orthologs harbor nuclear export activity. A functional leucine-rich nuclear export sequence (NES) recognized by the export factor CRM1/Xpo1 was identified in six of them. The comparison between experimental and bioinformatic data indicates that experimental validation of predicted NESs is required. Mutational analysis of the pUL48/VP16 NES revealed its importance for herpesviral propagation. Together our data suggest that nuclear export is an important feature of the herpesviral life cycle required to co-ordinate nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Verena Raschbichler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Diana Lieber
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Jens Wetschky
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Eileen K Arnold
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Jacqueline Leimser
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Michael Biggel
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center-University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Susanne M Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
48
|
Fu SC, Fung HYJ, Cağatay T, Baumhardt J, Chook YM. Correlation of CRM1-NES affinity with nuclear export activity. Mol Biol Cell 2018; 29:2037-2044. [PMID: 29927350 PMCID: PMC6232958 DOI: 10.1091/mbc.e18-02-0096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
CRM1 (Exportin1/XPO1) exports hundreds of broadly functioning protein cargoes out of the cell nucleus by binding to their classical nuclear export signals (NESs). The 8- to 15-amino-acid-long NESs contain four to five hydrophobic residues and are highly diverse in both sequence and CRM1-bound structure. Here we examine the relationship between nuclear export activities of 24 different NES peptides in cells and their CRM1-NES affinities. We found that binding affinity and nuclear export activity are linearly correlated for NESs with dissociation constants ( Kds) between tens of nanomolar to tens of micromolar. NESs with Kds outside this range have significantly reduced nuclear export activities. These include two unusually tight-binding peptides, one from the nonstructural protein 2 of murine minute virus (MVM NS2) and the other a mutant of the protein kinase A inhibitor (PKI) NES. The crystal structure of CRM1-bound MVM NS2NES suggests that extraordinarily tight CRM1 binding arises from intramolecular contacts within the NES that likely stabilizes the CRM1-bound conformation in free peptides. This mechanistic understanding led to the design of two novel peptide inhibitors that bind CRM1 with picomolar affinity.
Collapse
Affiliation(s)
- Szu-Chin Fu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tolga Cağatay
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jordan Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
49
|
Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, Urlaub H, Bohnsack MT, Görlich D. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol 2018; 217:2329-2340. [PMID: 29748336 PMCID: PMC6028547 DOI: 10.1083/jcb.201712013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022] Open
Abstract
Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christin Kappert
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz-Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina Seibel
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
50
|
Chaker-Margot M. Assembly of the small ribosomal subunit in yeast: mechanism and regulation. RNA (NEW YORK, N.Y.) 2018; 24:881-891. [PMID: 29712726 PMCID: PMC6004059 DOI: 10.1261/rna.066985.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The eukaryotic ribosome is made of four intricately folded ribosomal RNAs and 79 proteins. During rapid growth, yeast cells produce an incredible 2000 ribosomes every minute. Ribosome assembly involves more than 200 trans-acting factors, intervening from the transcription of the preribosomal RNA in the nucleolus to late maturation events in the cytoplasm. The biogenesis of the small ribosomal subunit, or 40S, is especially intricate, requiring more than four times the mass of the small subunit in assembly factors for its full maturation. Recent studies have provided new insights into the complex assembly of the 40S subunit. These data from cryo-electron microscopy, X-ray crystallography, and other biochemical and molecular biology methods, have elucidated the role of many factors required in small subunit maturation. Mechanisms of the regulation of ribosome assembly have also emerged from this body of work. This review aims to integrate these new results into an updated view of small subunit biogenesis and its regulation, in yeast, from transcription to the formation of the mature small subunit.
Collapse
Affiliation(s)
- Malik Chaker-Margot
- The Rockefeller University, New York, New York 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, New York 10065, USA
| |
Collapse
|