1
|
Mitchell CL, Matveyenka M, Kurouski D. Neuroprotective properties of transition metal dichalcogenide nanoflowers alleviate acute and chronic neurological conditions linked to mitochondrial dysfunction. J Biol Chem 2025; 301:108498. [PMID: 40216249 PMCID: PMC12139420 DOI: 10.1016/j.jbc.2025.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 05/12/2025] Open
Abstract
Mitochondrial dysfunction is an expected cause of etiology and progression in numerous human neurological pathologies, including stroke, Alzheimer's, and Parkinson's diseases. Therefore, a neuroprotective treatment is an urgent and unmet need. Transition metal dichalcogenide nanoflowers (TMD NFs) exhibit unique biological properties. However, neuroprotective properties of these nanomaterials remain poorly understood. In the current study, the biological effect of molybdenum disulfide and molybdenum diselenide TMD NFs on neurons and astrocytes was investigated. It was found that both nanomaterials lowered reactive oxygen species levels, reduced mitochondrial impairment, and increased mitochondrial biogenesis. Neuroprotective effects of both TMD NFs resulted from upregulation of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha pathway, the biological system responsible for mitochondrial biogenesis. Furthermore, administration of TMD NFs to Caenorhabditis elegans extended lifespan of the nematodes. These results indicate that TMD NFs can be used as novel neuroprotective therapeutic agents against acute and chronic neurological condition linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Charles L Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
2
|
Lauziere A, Christensen R, Shroff H, Balan R. An Exact Hypergraph Matching algorithm for posture identification in embryonic C. elegans. PLoS One 2022; 17:e0277343. [PMID: 36445888 PMCID: PMC9707761 DOI: 10.1371/journal.pone.0277343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a model organism used frequently in developmental biology and neurobiology [White, (1986), Sulston, (1983), Chisholm, (2016) and Rapti, (2020)]. The C. elegans embryo can be used for cell tracking studies to understand how cell movement drives the development of specific embryonic tissues. Analyses in late-stage development are complicated by bouts of rapid twitching motions which invalidate traditional cell tracking approaches. However, the embryo possesses a small set of cells which may be identified, thereby defining the coiled embryo's posture [Christensen, 2015]. The posture serves as a frame of reference, facilitating cell tracking even in the presence of twitching. Posture identification is nevertheless challenging due to the complete repositioning of the embryo between sampled images. Current approaches to posture identification rely on time-consuming manual efforts by trained users which limits the efficiency of subsequent cell tracking. Here, we cast posture identification as a point-set matching task in which coordinates of seam cell nuclei are identified to jointly recover the posture. Most point-set matching methods comprise coherent point transformations that use low order objective functions [Zhou, (2016) and Zhang, (2019)]. Hypergraphs, an extension of traditional graphs, allow more intricate modeling of relationships between objects, yet existing hypergraphical point-set matching methods are limited to heuristic algorithms which do not easily scale to handle higher degree hypergraphs [Duchenne, (2010), Chertok, (2010) and Lee, (2011)]. Our algorithm, Exact Hypergraph Matching (EHGM), adapts the classical branch-and-bound paradigm to dynamically identify a globally optimal correspondence between point-sets under an arbitrarily intricate hypergraphical model. EHGM with hypergraphical models inspired by C. elegans embryo shape identified posture more accurately (56%) than established point-set matching methods (27%), correctly identifying twice as many sampled postures as a leading graphical approach. Posterior region seeding empowered EHGM to correctly identify 78% of postures while reducing runtime, demonstrating the efficacy of the method on a cutting-edge problem in developmental biology.
Collapse
Affiliation(s)
- Andrew Lauziere
- Department of Mathematics, University of Maryland, College Park, MD, United States of America
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States of America
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States of America
| | - Radu Balan
- Department of Mathematics, University of Maryland, College Park, MD, United States of America
- Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, United States of America
| |
Collapse
|
3
|
Abstract
Fluorescence microscopy is a highly effective tool for interrogating biological structure and function, particularly when imaging across multiple spatiotemporal scales. Here we survey recent innovations and applications in the relatively understudied area of multiscale fluorescence imaging of living samples. We discuss fundamental challenges in live multiscale imaging and describe successful examples that highlight the power of this approach. We attempt to synthesize general strategies from these test cases, aiming to help accelerate progress in this exciting area.
Collapse
Affiliation(s)
- Yicong Wu
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hari Shroff
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| |
Collapse
|
4
|
Ardiel EL, Lauziere A, Xu S, Harvey BJ, Christensen RP, Nurrish S, Kaplan JM, Shroff H. Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos. eLife 2022; 11:76836. [PMID: 35929725 PMCID: PMC9448323 DOI: 10.7554/elife.76836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.
Collapse
Affiliation(s)
- Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Andrew Lauziere
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Stephen Xu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Brandon J Harvey
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | | | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| |
Collapse
|
5
|
Shah P, Bao Z, Zaidel-Bar R. Visualizing and quantifying molecular and cellular processes in C. elegans using light microscopy. Genetics 2022; 221:6619563. [PMID: 35766819 DOI: 10.1093/genetics/iyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
Collapse
Affiliation(s)
- Pavak Shah
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Skuhersky M, Wu T, Yemini E, Nejatbakhsh A, Boyden E, Tegmark M. Toward a more accurate 3D atlas of C. elegans neurons. BMC Bioinformatics 2022; 23:195. [PMID: 35643434 PMCID: PMC9145532 DOI: 10.1186/s12859-022-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Determining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an “atlas” of labeled neuronal positions and other identifying characteristics. Previous analyses of such C. elegans datasets have been hampered by the limited accuracy of such atlases, especially for neurons present in the ventral nerve cord, and also by time-consuming manual elements of the alignment process.
Results
We present a novel automated alignment method for sparse and incomplete point clouds of the sort resulting from typical C. elegans fluorescence microscopy datasets. This method involves a tunable learning parameter and a kernel that enforces biologically realistic deformation. We also present a pipeline for creating alignment atlases from datasets of the recently developed NeuroPAL transgene. In combination, these advances allow us to label neurons in volumetric images with confidence much higher than previous methods.
Conclusions
We release, to the best of our knowledge, the most complete full-body C. elegans 3D positional neuron atlas, incorporating positional variability derived from at least 7 animals per neuron, for the purposes of cell-type identity prediction for myriad applications (e.g., imaging neuronal activity, gene expression, and cell-fate).
Collapse
|
7
|
Weaver CJ, Poulain FE. From whole organism to ultrastructure: progress in axonal imaging for decoding circuit development. Development 2021; 148:271122. [PMID: 34328171 DOI: 10.1242/dev.199717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Since the pioneering work of Ramón y Cajal, scientists have sought to unravel the complexities of axon development underlying neural circuit formation. Micrometer-scale axonal growth cones navigate to targets that are often centimeters away. To reach their targets, growth cones react to dynamic environmental cues that change in the order of seconds to days. Proper axon growth and guidance are essential to circuit formation, and progress in imaging has been integral to studying these processes. In particular, advances in high- and super-resolution microscopy provide the spatial and temporal resolution required for studying developing axons. In this Review, we describe how improved microscopy has revolutionized our understanding of axonal development. We discuss how novel technologies, specifically light-sheet and super-resolution microscopy, led to new discoveries at the cellular scale by imaging axon outgrowth and circuit wiring with extreme precision. We next examine how advanced microscopy broadened our understanding of the subcellular dynamics driving axon growth and guidance. We finally assess the current challenges that the field of axonal biology still faces for imaging axons, and examine how future technology could meet these needs.
Collapse
Affiliation(s)
- Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Alicea B. Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Front Cell Neurosci 2020; 14:524791. [PMID: 33100971 PMCID: PMC7522492 DOI: 10.3389/fncel.2020.524791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The differentiation of neurons and formation of connections between cells is the basis of both the adult phenotype and behaviors tied to cognition, perception, reproduction, and survival. Such behaviors are associated with local (circuits) and global (connectome) brain networks. A solid understanding of how these networks emerge is critical. This opinion piece features a guided tour of early developmental events in the emerging connectome, which is crucial to a new view on the connectogenetic process. Connectogenesis includes associating cell identities with broader functional and developmental relationships. During this process, the transition from developmental cells to terminally differentiated cells is defined by an accumulation of traits that ultimately results in neuronal-driven behavior. The well-characterized developmental and cell biology of Caenorhabditis elegans will be used to build a synthesis of developmental events that result in a functioning connectome. Specifically, our view of connectogenesis enables a first-mover model of synaptic connectivity to be demonstrated using data representing larval synaptogenesis. In a first-mover model of Stackelberg competition, potential pre- and postsynaptic relationships are shown to yield various strategies for establishing various types of synaptic connections. By comparing these results to what is known regarding principles for establishing complex network connectivity, these strategies are generalizable to other species and developmental systems. In conclusion, we will discuss the broader implications of this approach, as what is presented here informs an understanding of behavioral emergence and the ability to simulate related biological phenomena.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Laboratory, Champaign, IL, United States
- OpenWorm Foundation, Boston, MA, United States
| |
Collapse
|
9
|
Laine RF, Sinnige T, Ma KY, Haack AJ, Poudel C, Gaida P, Curry N, Perni M, Nollen EA, Dobson CM, Vendruscolo M, Kaminski Schierle GS, Kaminski CF. Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging Caenorhabditis elegans. ACS Chem Biol 2019; 14:1628-1636. [PMID: 31246415 PMCID: PMC7612977 DOI: 10.1021/acschembio.9b00354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson's and Huntington's diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.
Collapse
Affiliation(s)
- Romain F. Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Tessa Sinnige
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Kai Yu Ma
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Amanda J. Haack
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Chetan Poudel
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Peter Gaida
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Nathan Curry
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Ellen A.A. Nollen
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, 9700 AD Groningen, The Netherlands
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F. Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
10
|
Belthangady C, Royer LA. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat Methods 2019; 16:1215-1225. [DOI: 10.1038/s41592-019-0458-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
|
11
|
Duncan LH, Moyle MW, Shao L, Sengupta T, Ikegami R, Kumar A, Guo M, Christensen R, Santella A, Bao Z, Shroff H, Mohler W, Colón-Ramos DA. Isotropic Light-Sheet Microscopy and Automated Cell Lineage Analyses to Catalogue Caenorhabditis elegans Embryogenesis with Subcellular Resolution. J Vis Exp 2019. [PMID: 31233035 DOI: 10.3791/59533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) stands out as the only organism in which the challenge of understanding the cellular origins of an entire nervous system can be observed, with single cell resolution, in vivo. Here, we present an integrated protocol for the examination of neurodevelopment in C. elegans embryos. Our protocol combines imaging, lineaging and neuroanatomical tracing of single cells in developing embryos. We achieve long-term, four-dimensional (4D) imaging of living C. elegans embryos with nearly isotropic spatial resolution through the use of Dual-view Inverted Selective Plane Illumination Microscopy (diSPIM). Nuclei and neuronal structures in the nematode embryos are imaged and isotropically fused to yield images with resolution of ~330 nm in all three dimensions. These minute-by-minute high-resolution 4D data sets are then analyzed to correlate definitive cell-lineage identities with gene expression and morphological dynamics at single-cell and subcellular levels of detail. Our protocol is structured to enable modular implementation of each of the described steps and enhance studies on embryogenesis, gene expression, or neurodevelopment.
Collapse
Affiliation(s)
- Leighton H Duncan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org
| | - Lin Shao
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org
| | - Titas Sengupta
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org
| | - Richard Ikegami
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health; WormGUIDES.org
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health; WormGUIDES.org
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health; WormGUIDES.org
| | - Anthony Santella
- Developmental Biology Program, Sloan Kettering Institute; WormGUIDES.org
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute; WormGUIDES.org
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health; WormGUIDES.org
| | - William Mohler
- Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut Health Center; WormGUIDES.org;
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; WormGUIDES.org; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico;
| |
Collapse
|
12
|
Aaron J, Wait E, DeSantis M, Chew TL. Practical Considerations in Particle and Object Tracking and Analysis. ACTA ACUST UNITED AC 2019; 83:e88. [PMID: 31050869 DOI: 10.1002/cpcb.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid advancement of live-cell imaging technologies has enabled biologists to generate high-dimensional data to follow biological movement at the microscopic level. Yet, the "perceived" ease of use of modern microscopes has led to challenges whereby sub-optimal data are commonly generated that cannot support quantitative tracking and analysis as a result of various ill-advised decisions made during image acquisition. Even optimally acquired images often require further optimization through digital processing before they can be analyzed. In writing this article, we presume our target audience to be biologists with a foundational understanding of digital image acquisition and processing, who are seeking to understand the essential steps for particle/object tracking experiments. It is with this targeted readership in mind that we review the basic principles of image-processing techniques as well as analysis strategies commonly used for tracking experiments. We conclude this technical survey with a discussion of how movement behavior can be mathematically modeled and described. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Eric Wait
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Michael DeSantis
- Light Microscopy Facility, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.,Light Microscopy Facility, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
13
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Breimann L, Preusser F, Preibisch S. Light-microscopy methods in C. elegans research. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Katzman B, Tang D, Santella A, Bao Z. AceTree: a major update and case study in the long term maintenance of open-source scientific software. BMC Bioinformatics 2018; 19:121. [PMID: 29618316 PMCID: PMC5885296 DOI: 10.1186/s12859-018-2127-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AceTree, a software application first released in 2006, facilitates exploration, curation and editing of tracked C. elegans nuclei in 4-dimensional (4D) fluorescence microscopy datasets. Since its initial release, AceTree has been continuously used to interact with, edit and interpret C. elegans lineage data. In its 11 year lifetime, AceTree has been periodically updated to meet the technical and research demands of its community of users. This paper presents the newest iteration of AceTree which contains extensive updates, demonstrates the new applicability of AceTree in other developmental contexts, and presents its evolutionary software development paradigm as a viable model for maintaining scientific software. RESULTS Large scale updates have been made to the user interface for an improved user experience. Tools have been grouped according to functionality and obsolete methods have been removed. Internal requirements have been changed that enable greater flexibility of use both in C. elegans contexts and in other model organisms. Additionally, the original 3-dimensional (3D) viewing window has been completely reimplemented. The new window provides a new suite of tools for data exploration. CONCLUSION By responding to technical advancements and research demands, AceTree has remained a useful tool for scientific research for over a decade. The updates made to the codebase have extended AceTree's applicability beyond its initial use in C. elegans and enabled its usage with other model organisms. The evolution of AceTree demonstrates a viable model for maintaining scientific software over long periods of time.
Collapse
Affiliation(s)
- Braden Katzman
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Doris Tang
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA.
| |
Collapse
|
16
|
Insley P, Shaham S. Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS One 2018; 13:e0194861. [PMID: 29590193 PMCID: PMC5874040 DOI: 10.1371/journal.pone.0194861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
The Caenorhabditis elegans cell lineage is nearly invariant. Whether this stereotyped cell-division pattern promotes reproducibility in cell shapes/positions is not generally known, as manual spatiotemporal cell-shape/position alignments are labor-intensive, and fully-automated methods are not described. Here, we report automated algorithms for spatiotemporal alignments of C. elegans embryos from pre-morphogenesis to motor-activity initiation. We use sparsely-labeled green-fluorescent nuclei and a pan-nuclear red-fluorescent reporter to register consecutive imaging time points and compare embryos. Using our method, we monitor early assembly of the nerve-ring (NR) brain neuropil. While NR pioneer neurons exhibit reproducible growth kinetics and axon positions, cell-body placements are variable. Thus, pioneer-neuron axon locations, but not cell-body positions, are under selection. We also show that anterior NR displacement in cam-1/ROR Wnt-receptor mutants is not an early NR assembly defect. Our results demonstrate the utility of automated spatiotemporal alignments of C. elegans embryos, and uncover key principles guiding nervous-system development in this animal.
Collapse
Affiliation(s)
- Peter Insley
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, United States of America
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
17
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Lamkin ER, Heiman MG. Coordinated morphogenesis of neurons and glia. Curr Opin Neurobiol 2017; 47:58-64. [PMID: 28988011 DOI: 10.1016/j.conb.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022]
Abstract
Glia adopt remarkable shapes that are tightly coordinated with the morphologies of their neuronal partners. To achieve these precise shapes, glia and neurons exhibit coordinated morphological changes on the time scale of minutes and on size scales ranging from nanometers to hundreds of microns. Here, we review recent studies that reveal the highly dynamic, localized morphological changes of mammalian neuron-glia contacts. We then explore the power of Drosophila and C. elegans models to study coordinated changes at defined neuron-glia contacts, highlighting the use of innovative genetic and imaging tools to uncover the molecular mechanisms responsible for coordinated morphogenesis of neurons and glia.
Collapse
Affiliation(s)
- Elizabeth R Lamkin
- Department of Genetics, Harvard Medical School and Division of Genetics and Genomics, Boston Children's Hospital, Boston MA 02115, United States
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School and Division of Genetics and Genomics, Boston Children's Hospital, Boston MA 02115, United States.
| |
Collapse
|
19
|
Ardiel EL, Kumar A, Marbach J, Christensen R, Gupta R, Duncan W, Daniels JS, Stuurman N, Colón-Ramos D, Shroff H. Visualizing Calcium Flux in Freely Moving Nematode Embryos. Biophys J 2017; 112:1975-1983. [PMID: 28494967 DOI: 10.1016/j.bpj.2017.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brainwide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons.
Collapse
Affiliation(s)
- Evan L Ardiel
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Grass Lab, Marine Biological Laboratories, Woods Hole, Massachusetts.
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Grass Lab, Marine Biological Laboratories, Woods Hole, Massachusetts
| | - Joseph Marbach
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Rishi Gupta
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - William Duncan
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | | | - Nico Stuurman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Daniel Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Neuroscience, Yale University, New Haven, Connecticut; Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
20
|
Nguyen JP, Linder AN, Plummer GS, Shaevitz JW, Leifer AM. Automatically tracking neurons in a moving and deforming brain. PLoS Comput Biol 2017; 13:e1005517. [PMID: 28545068 PMCID: PMC5436637 DOI: 10.1371/journal.pcbi.1005517] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
Collapse
Affiliation(s)
- Jeffrey P. Nguyen
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Ashley N. Linder
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - George S. Plummer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew M. Leifer
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Keller PJ. How to Make a Worm Twitch. Biophys J 2017; 112:1737-1738. [PMID: 28494944 DOI: 10.1016/j.bpj.2017.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
| |
Collapse
|
22
|
Singhal A, Shaham S. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nat Commun 2017; 8:14100. [PMID: 28098184 PMCID: PMC5253673 DOI: 10.1038/ncomms14100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Visualizing neural-circuit assembly in vivo requires tracking growth of optically resolvable neurites. The Caenorhabditis elegans embryonic nervous system, comprising 222 neurons and 56 glia, is attractive for comprehensive studies of development; however, embryonic reporters are broadly expressed, making single-neurite tracking/manipulation challenging. We present a method, using an infrared laser, for reproducible heat-dependent gene expression in small sublineages (one to four cells) without radiation damage. We go beyond proof-of-principle, and use our system to label and track single neurons during early nervous-system assembly. We uncover a retrograde extension mechanism for axon growth, and reveal the aetiology of axon-guidance defects in sax-3/Robo and vab-1/EphR mutants. We also perform cell-specific rescues, determining DAF-6/patched-related site of action during sensory-organ development. Simultaneous ablation and labelling of cells using our system reveals roles for glia in dendrite extension. Our method can be applied to other optically/IR-transparent organisms, and opens the door to high-resolution systematic analyses of C. elegans morphogenesis.
Collapse
Affiliation(s)
- Anupriya Singhal
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
23
|
Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW. Quantitating the cell: turning images into numbers with ImageJ. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911038 DOI: 10.1002/wdev.260] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/06/2016] [Accepted: 10/15/2016] [Indexed: 01/14/2023]
Abstract
Modern biological research particularly in the fields of developmental and cell biology has been transformed by the rapid evolution of the light microscope. The light microscope, long a mainstay of the experimental biologist, is now used for a wide array of biological experimental scenarios and sample types. Much of the great developments in advanced biological imaging have been driven by the digital imaging revolution with powerful processors and algorithms. In particular, this combination of advanced imaging and computational analysis has resulted in the drive of the modern biologist to not only visually inspect dynamic phenomena, but to quantify the involved processes. This need to quantitate images has become a major thrust within the bioimaging community and requires extensible and accessible image processing routines with corresponding intuitive software packages. Novel algorithms both made specifically for light microscopy or adapted from other fields, such as astronomy, are available to biologists, but often in a form that is inaccessible for a number of reasons ranging from data input issues, usability and training concerns, and accessibility and output limitations. The biological community has responded to this need by developing open source software packages that are freely available and provide access to image processing routines. One of the most prominent is the open-source image package ImageJ. In this review, we give an overview of prominent imaging processing approaches in ImageJ that we think are of particular interest for biological imaging and that illustrate the functionality of ImageJ and other open source image analysis software. WIREs Dev Biol 2017, 6:e260. doi: 10.1002/wdev.260 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ellen T Arena
- Morgridge Institute for Research, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI, USA
| | - Curtis T Rueden
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI, USA
| | - Mark C Hiner
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI, USA
| | - Shulei Wang
- Department of Statistics, University of Wisconsin at Madison, Madison, WI, USA
| | - Ming Yuan
- Morgridge Institute for Research, Madison, WI, USA.,Department of Statistics, University of Wisconsin at Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Morgridge Institute for Research, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI, USA
| |
Collapse
|
24
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
25
|
Colón-Ramos DA. The need to connect: on the cell biology of synapses, behaviors, and networks in science. Mol Biol Cell 2016; 27:3197-3201. [PMID: 27799494 PMCID: PMC5170851 DOI: 10.1091/mbc.e16-07-0507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
My laboratory is interested in the cell biology of the synapse. Synapses, which are points of cellular communication between neurons, were first described by Santiago Ramón y Cajal as "protoplasmic kisses that appear to constitute the final ecstasy of an epic love story." Who would not want to work on that?! My lab examines the biological mechanisms neurons use to find and connect to each other. How are synapses formed during development, maintained during growth, and modified during learning? In this essay, I reflect about my scientific journey to the synapse, the cell biological one, but also a metaphorical synapse-my role as a point of contact between the production of knowledge and its dissemination. In particular, I discuss how the architecture of scientific networks propels knowledge production but can also exclude certain groups in science.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Department of Cell Biology and Neuroscience, Yale School of Medicine, New Haven, CT 06510; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, PR 00901
| |
Collapse
|
26
|
Jordan S. Hari Shroff: Taking a closer look. ACTA ACUST UNITED AC 2016; 214:360-1. [PMID: 27528653 DOI: 10.1083/jcb.2144pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shroff works on developing new super-resolution imaging tools and using them to study cell biology.
Collapse
|
27
|
Kumar A, Christensen R, Guo M, Chandris P, Duncan W, Wu Y, Santella A, Moyle M, Winter PW, Colón-Ramos D, Bao Z, Shroff H. Using Stage- and Slit-Scanning to Improve Contrast and Optical Sectioning in Dual-View Inverted Light Sheet Microscopy (diSPIM). THE BIOLOGICAL BULLETIN 2016; 231:26-39. [PMID: 27638693 PMCID: PMC5481201 DOI: 10.1086/689589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dual-view inverted selective plane illumination microscopy (diSPIM) enables high-speed, long-term, four-dimensional (4D) imaging with isotropic spatial resolution. It is also compatible with conventional sample mounting on glass coverslips. However, broadening of the light sheet at distances far from the beam waist and sample-induced scattering degrades diSPIM contrast and optical sectioning. We describe two simple improvements that address both issues and entail no additional hardware modifications to the base diSPIM. First, we demonstrate improved diSPIM sectioning by keeping the light sheet and detection optics stationary, and scanning the sample through the stationary light sheet (rather than scanning the broadening light sheet and detection plane through the stationary sample, as in conventional diSPIM). This stage-scanning approach allows a thinner sheet to be used when imaging laterally extended samples, such as fixed microtubules or motile mitochondria in cell monolayers, and produces finer contrast than does conventional diSPIM. We also used stage-scanning diSPIM to obtain high-quality, 4D nuclear datasets derived from an uncompressed nematode embryo, and performed lineaging analysis to track 97% of cells until twitching. Second, we describe the improvement of contrast in thick, scattering specimens by synchronizing light-sheet synthesis with the rolling, electronic shutter of our scientific complementary metal-oxide-semiconductor (sCMOS) detector. This maneuver forms a virtual confocal slit in the detection path, partially removing out-of-focus light. We demonstrate the applicability of our combined stage- and slit-scanning- methods by imaging pollen grains and nuclear and neuronal structures in live nematode embryos. All acquisition and analysis code is freely available online.
Collapse
Affiliation(s)
- Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710;
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - Panos Chandris
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - William Duncan
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065; and
| | - Mark Moyle
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, Connecticut 06511
| | - Peter W Winter
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| | - Daniel Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, Connecticut 06511
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065; and
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710
| |
Collapse
|