1
|
Fritts RK, Ebmeier CC, Copley SD. Transcriptomic and proteomic ramifications of segmental amplification in Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2422424122. [PMID: 40372434 PMCID: PMC12107188 DOI: 10.1073/pnas.2422424122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
Gene amplification can drive adaptation by rapidly increasing the cellular dosage of critical gene products. Segmental amplifications often encompass large genomic regions surrounding the gene(s) under selection for higher dosage. Overexpression of coamplified neighboring genes imposes a substantial metabolic burden. While compensatory mutations can decrease inappropriate overexpression of coamplified genes, it takes time for such mutations to arise. The extent to which intrinsic regulatory mechanisms modulate expression of coamplified genes in the immediate aftermath of segmental amplification is largely unknown. To address the collateral effects of segmental amplification, we evolved replicate cultures of an Escherichia coli mutant under conditions that select for higher dosage of an inefficient enzyme whose weak activity limits growth rate. Segmental amplifications encompassing the gene encoding the weak-link enzyme arose in all populations. Amplified regions ranged in size (33 to 125 kb) and copy number (2 to ≥14 copies). We performed RNA-seq and label-free proteomics to quantify expression of amplified genes present at 2, 6, and 14 copies. mRNA expression generally scales with gene copy number, but protein expression scales less well with both gene copy number and mRNA expression. We characterize the molecular mechanisms underlying discrepancies between gene copy number and expression for several cases. We also show that segmental amplifications can have system-wide consequences by indirectly altering expression of nonamplified genes. Our findings indicate that the fitness benefit derived from segmental amplification depends on the combined effects of amplicon size, gene content, and copy number as well as collateral effects on nonamplified genes.
Collapse
Affiliation(s)
- Ryan K. Fritts
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder80309, CO
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder80309, CO
| | | | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder80309, CO
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder80309, CO
| |
Collapse
|
2
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Muenzner J, Trébulle P, Agostini F, Zauber H, Messner CB, Steger M, Kilian C, Lau K, Barthel N, Lehmann A, Textoris-Taube K, Caudal E, Egger AS, Amari F, De Chiara M, Demichev V, Gossmann TI, Mülleder M, Liti G, Schacherer J, Selbach M, Berman J, Ralser M. Natural proteome diversity links aneuploidy tolerance to protein turnover. Nature 2024; 630:149-157. [PMID: 38778096 PMCID: PMC11153158 DOI: 10.1038/s41586-024-07442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Pauline Trébulle
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Martin Steger
- Evotec (München), Martinsried, Germany
- NEOsphere Biotechnologies, Martinsried, Germany
| | - Christiane Kilian
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kate Lau
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Natalie Barthel
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Andrea Lehmann
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kathrin Textoris-Taube
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Elodie Caudal
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
| | - Anna-Sophia Egger
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Fatma Amari
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | | | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Toni I Gossmann
- Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of chromosomal instability measures across mechanistic models. Proc Natl Acad Sci U S A 2024; 121:e2309621121. [PMID: 38588415 PMCID: PMC11032477 DOI: 10.1073/pnas.2309621121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/25/2024] [Indexed: 04/10/2024] Open
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Kim Oxendine
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Les Henderson
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Vanessa L. Horner
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI53705
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Division of Hematology Oncology and Palliative Care, Department of Medicine University of Wisconsin–Madison, Madison, WI53705
| |
Collapse
|
8
|
Hunter S, Hendrix J, Freeman J, Dowell RD, Allen MA. Transcription dosage compensation does not occur in Down syndrome. BMC Biol 2023; 21:228. [PMID: 37946204 PMCID: PMC10636926 DOI: 10.1186/s12915-023-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The increase in DNA copy number in Down syndrome (DS; caused by trisomy 21) has led to the DNA dosage hypothesis, which posits that the level of gene expression is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0×). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in trisomy 21, providing support to the DNA dosage hypothesis. RESULTS In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation, even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family with an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Furthermore, we link the limited apparent dosage compensation to expected allelic variation in transcription levels. CONCLUSIONS Transcription dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
Collapse
Affiliation(s)
- Samuel Hunter
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Jo Hendrix
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Computational Bioscience, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Justin Freeman
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA.
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA.
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA.
| |
Collapse
|
9
|
Seel A, Padovani F, Mayer M, Finster A, Bureik D, Thoma F, Osman C, Klecker T, Schmoller KM. Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth. Nat Struct Mol Biol 2023; 30:1549-1560. [PMID: 37679564 PMCID: PMC10584693 DOI: 10.1038/s41594-023-01091-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
To maintain stable DNA concentrations, proliferating cells need to coordinate DNA replication with cell growth. For nuclear DNA, eukaryotic cells achieve this by coupling DNA replication to cell-cycle progression, ensuring that DNA is doubled exactly once per cell cycle. By contrast, mitochondrial DNA replication is typically not strictly coupled to the cell cycle, leaving the open question of how cells maintain the correct amount of mitochondrial DNA during cell growth. Here, we show that in budding yeast, mitochondrial DNA copy number increases with cell volume, both in asynchronously cycling populations and during G1 arrest. Our findings suggest that cell-volume-dependent mitochondrial DNA maintenance is achieved through nuclear-encoded limiting factors, including the mitochondrial DNA polymerase Mip1 and the packaging factor Abf2, whose amount increases in proportion to cell volume. By directly linking mitochondrial DNA maintenance to nuclear protein synthesis and thus cell growth, constant mitochondrial DNA concentrations can be robustly maintained without a need for cell-cycle-dependent regulation.
Collapse
Affiliation(s)
- Anika Seel
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Mayer
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Alissa Finster
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Torres EM. Consequences of gaining an extra chromosome. Chromosome Res 2023; 31:24. [PMID: 37620607 PMCID: PMC10449985 DOI: 10.1007/s10577-023-09732-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Mistakes in chromosome segregation leading to aneuploidy are the primary cause of miscarriages in humans. Excluding sex chromosomes, viable aneuploidies in humans include trisomies of chromosomes 21, 18, or 13, which cause Down, Edwards, or Patau syndromes, respectively. While individuals with trisomy 18 or 13 die soon after birth, people with Down syndrome live to adulthood but have intellectual disabilities and are prone to multiple diseases. At the cellular level, mistakes in the segregation of a single chromosome leading to a cell losing a chromosome are lethal. In contrast, the cell that gains a chromosome can survive. Several studies support the hypothesis that gaining an extra copy of a chromosome causes gene-specific phenotypes and phenotypes independent of the identity of the genes encoded within that chromosome. The latter, referred to as aneuploidy-associated phenotypes, are the focus of this review. Among the conserved aneuploidy-associated phenotypes observed in yeast and human cells are lower viability, increased gene expression, increased protein synthesis and turnover, abnormal nuclear morphology, and altered metabolism. Notably, abnormal nuclear morphology of aneuploid cells is associated with increased metabolic demand for de novo synthesis of sphingolipids. These findings reveal important insights into the possible pathological role of aneuploidy in Down syndrome. Despite the adverse effects on cell physiology, aneuploidy is a hallmark of cancer cells. Understanding how aneuploidy affects cell physiology can reveal insights into the selective pressure that aneuploid cancer cells must overcome to support unlimited proliferation.
Collapse
Affiliation(s)
- Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Kawaguchi YW, Tsuchikane Y, Tanaka K, Taji T, Suzuki Y, Toyoda A, Ito M, Watano Y, Nishiyama T, Sekimoto H, Tsuchimatsu T. Extensive Copy Number Variation Explains Genome Size Variation in the Unicellular Zygnematophycean Alga, Closterium peracerosum-strigosum-littorale Complex. Genome Biol Evol 2023; 15:evad115. [PMID: 37348049 PMCID: PMC10407611 DOI: 10.1093/gbe/evad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Genome sizes are known to vary within and among closely related species, but the knowledge about genomic factors contributing to the variation and their impacts on gene functions is limited to only a small number of species. This study identified a more than 2-fold heritable genome size variation among the unicellular Zygnematophycean alga, Closterium peracerosum-strigosum-littorale (C. psl.) complex, based on short-read sequencing analysis of 22 natural strains and F1 segregation analysis. Six de novo assembled genomes revealed that genome size variation is largely attributable to genome-wide copy number variation (CNV) among strains rather than mating type-linked genomic regions or specific repeat sequences such as rDNA. Notably, about 30% of genes showed CNV even between strains that can mate with each other. Transcriptome and gene ontology analysis demonstrated that CNV is distributed nonrandomly in terms of gene functions, such that CNV was more often observed in the gene set with stage-specific expression. Furthermore, in about 30% of these genes with CNV, the expression level does not increase proportionally with the gene copy number, suggesting presence of dosage compensation, which was overrepresented in genes involved in basic biological functions, such as translation. Nonrandom patterns in gene duplications and corresponding expression changes in terms of gene functions may contribute to maintaining the high level of CNV associated with extensive genome size variation in the C. psl. complex, despite its possible detrimental effects.
Collapse
Affiliation(s)
- Yawako W Kawaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Science and Engineering, Chiba University, Chiba, Chiba, Japan
| | - Yuki Tsuchikane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yasuyuki Watano
- Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
13
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of CIN measures across mechanistic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544840. [PMID: 37398147 PMCID: PMC10312700 DOI: 10.1101/2023.06.15.544840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, 6-centromere FISH, bulk transcriptomics, and single cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples correlated well (R=0.77; p<0.01) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also correlate well (R=0.77; p<0.01) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, single-cell DNA sequencing (scDNAseq) detects CIN with high sensitivity, and correlates very well with imaging methods (R=0.83; p<0.01). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division (MDD). This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Kim Oxendine
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Vanessa L. Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison, WI, USA
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Division of Hematology Oncology and Palliative Care, Department of Medicine, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
14
|
Hunter S, Dowell RD, Hendrix J, Freeman J, Allen MA. Transcription dosage compensation does not occur in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543933. [PMID: 37333218 PMCID: PMC10274774 DOI: 10.1101/2023.06.07.543933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Trisomy 21, also known as Down syndrome, describes the genetic condition of having an extra copy of chromosome 21. The increase in DNA copy number has led to the "DNA dosage hypothesis", which claims that the level of gene transcription is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0x). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in Trisomy 21, providing support to the DNA dosage hypothesis. Results In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family of an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Conclusions Transcriptional dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
Collapse
|
15
|
Jia C, Grima R. Coupling gene expression dynamics to cell size dynamics and cell cycle events: Exact and approximate solutions of the extended telegraph model. iScience 2023; 26:105746. [PMID: 36619980 PMCID: PMC9813732 DOI: 10.1016/j.isci.2022.105746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The standard model describing the fluctuations of mRNA numbers in single cells is the telegraph model which includes synthesis and degradation of mRNA, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by the cell cycle phase, cellular growth and division, and other crucial aspects of cellular biology. Here, we derive the analytical time-dependent solution of an extended telegraph model that explicitly considers the doubling of gene copy numbers upon DNA replication, dependence of the mRNA synthesis rate on cellular volume, gene dosage compensation, partitioning of molecules during cell division, cell-cycle duration variability, and cell-size control strategies. Based on the time-dependent solution, we obtain the analytical distributions of transcript numbers for lineage and population measurements in steady-state growth and also find a linear relation between the Fano factor of mRNA fluctuations and cell volume fluctuations. We show that generally the lineage and population distributions in steady-state growth cannot be accurately approximated by the steady-state solution of extrinsic noise models, i.e. a telegraph model with parameters drawn from probability distributions. This is because the mRNA lifetime is often not small enough compared to the cell cycle duration to erase the memory of division and replication. Accurate approximations are possible when this memory is weak, e.g. for genes with bursty expression and for which there is sufficient gene dosage compensation when replication occurs.
Collapse
Affiliation(s)
- Chen Jia
- Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| |
Collapse
|
16
|
Sun LL, Li H, Yan TH, Cao YB, Jiang YY, Yang F. Aneuploidy enables cross-tolerance to unrelated antifungal drugs in Candida parapsilosis. Front Microbiol 2023; 14:1137083. [PMID: 37113223 PMCID: PMC10126355 DOI: 10.3389/fmicb.2023.1137083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Candida parapsilosis is an emerging major human fungal pathogen. Echinocandins are first-line antifungal drugs for the treatment of invasive Candida infections. In clinical isolates, tolerance to echinocandins in Candida species is mostly due to point mutations of FKS genes, which encode the target protein of echinocandins. However, here, we found chromosome 5 trisomy was the major mechanism of adaptation to the echinocandin drug caspofungin, and FKS mutations were rare events. Chromosome 5 trisomy conferred tolerance to echinocandin drugs caspofungin and micafungin and cross-tolerance to 5-flucytosine, another class of antifungal drugs. The inherent instability of aneuploidy caused unstable drug tolerance. Tolerance to echinocandins might be due to increased copy number and expression of CHS7, which encodes chitin synthase. Although copy number of chitinase genes CHT3 and CHT4 was also increased to the trisomic level, the expression was buffered to the disomic level. Tolerance to 5-flucytosine might be due to the decreased expression of FUR1. Therefore, the pleiotropic effect of aneuploidy on antifungal tolerance was due to the simultaneous regulation of genes on the aneuploid chromosome and genes on euploid chromosomes. In summary, aneuploidy provides a rapid and reversible mechanism of drug tolerance and cross-tolerance in C. parapsilosis.
Collapse
Affiliation(s)
- Liu-liu Sun
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong-bing Cao
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Yuan-ying Jiang
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Feng Yang
| |
Collapse
|
17
|
Concentration fluctuations in growing and dividing cells: Insights into the emergence of concentration homeostasis. PLoS Comput Biol 2022; 18:e1010574. [PMID: 36194626 PMCID: PMC9565450 DOI: 10.1371/journal.pcbi.1010574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Intracellular reaction rates depend on concentrations and hence their levels are often regulated. However classical models of stochastic gene expression lack a cell size description and cannot be used to predict noise in concentrations. Here, we construct a model of gene product dynamics that includes a description of cell growth, cell division, size-dependent gene expression, gene dosage compensation, and size control mechanisms that can vary with the cell cycle phase. We obtain expressions for the approximate distributions and power spectra of concentration fluctuations which lead to insight into the emergence of concentration homeostasis. We find that (i) the conditions necessary to suppress cell division-induced concentration oscillations are difficult to achieve; (ii) mRNA concentration and number distributions can have different number of modes; (iii) two-layer size control strategies such as sizer-timer or adder-timer are ideal because they maintain constant mean concentrations whilst minimising concentration noise; (iv) accurate concentration homeostasis requires a fine tuning of dosage compensation, replication timing, and size-dependent gene expression; (v) deviations from perfect concentration homeostasis show up as deviations of the concentration distribution from a gamma distribution. Some of these predictions are confirmed using data for E. coli, fission yeast, and budding yeast.
Collapse
|
18
|
Ragipani B, Albritton SE, Morao AK, Mesquita D, Kramer M, Ercan S. Increased gene dosage and mRNA expression from chromosomal duplications in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac151. [PMID: 35731207 PMCID: PMC9339279 DOI: 10.1093/g3journal/jkac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Collapse
Affiliation(s)
- Bhavana Ragipani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Diogo Mesquita
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
19
|
Bowers RR, Jones CM, Paz EA, Barrows JK, Armeson K, Long D, Delaney J. SWAN pathway-network identification of common aneuploidy-based oncogenic drivers. Nucleic Acids Res 2022; 50:3673-3692. [PMID: 35380699 PMCID: PMC9023287 DOI: 10.1093/nar/gkac200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Haploinsufficiency drives Darwinian evolution. Siblings, while alike in many aspects, differ due to monoallelic differences inherited from each parent. In cancer, solid tumors exhibit aneuploid genetics resulting in hundreds to thousands of monoallelic gene-level copy-number alterations (CNAs) in each tumor. Aneuploidy patterns are heterogeneous, posing a challenge to identify drivers in this high-noise genetic environment. Here, we developed Shifted Weighted Annotation Network (SWAN) analysis to assess biology impacted by cumulative monoallelic changes. SWAN enables an integrated pathway-network analysis of CNAs, RNA expression, and mutations via a simple web platform. SWAN is optimized to best prioritize known and novel tumor suppressors and oncogenes, thereby identifying drivers and potential druggable vulnerabilities within cancer CNAs. Protein homeostasis, phospholipid dephosphorylation, and ion transport pathways are commonly suppressed. An atlas of CNA pathways altered in each cancer type is released. These CNA network shifts highlight new, attractive targets to exploit in solid tumors.
Collapse
Affiliation(s)
- Robert R Bowers
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Christian M Jones
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Edwin A Paz
- Departments of Neurology, Neurobiology, and Cell Biology, and the Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - John K Barrows
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Kent E Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
de la Cerda Garcia-Caro R, Hokamp K, Roche F, Thompson G, Timouma S, Delneri D, Bond U. Aneuploidy influences the gene expression profiles in Saccharomyces pastorianus group I and II strains during fermentation. PLoS Genet 2022; 18:e1010149. [PMID: 35389986 PMCID: PMC9032419 DOI: 10.1371/journal.pgen.1010149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of representative Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of the strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains. Saccharomyces pastorianus are yeasts used for making lager type beers and are natural hybrids of two other yeasts, Saccharomyces cerevisiae and Saccharomyces eubayanus. The hybrids formed just 500–600 years ago, and the combined parental genomes are responsible for the clean crisp flavours associated with lager beers. There are two types of lager yeasts: Group I strains have lost a significant portion of S. cerevisiae chromosomes, while the Group II strains contain the full S. cerevisiae complement. Both contain the full set of S. eubayanus chromosomes. An unusual consequence of the hybridisation is that the genomes of lager yeasts are aneuploid with the copy numbers of chromosomes ranging from 1–6. Aneuploidy is often associated with cancer in humans and therefore an understanding of how aneuploidy contributes to gene expression in lager yeasts may provide insights into its role in tumour cells. Here, we show that gene expression patterns are influenced by chromosomal aneuploidy with transcript levels directly correlated with gene dosage. We also examined the role played by the parental genomes in the gene expression profiles under fermentation conditions and show that while both genomes contribute to the transcript pools, S. eubayanus genes are over-represented during fermentation.
Collapse
Affiliation(s)
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Fiona Roche
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Georgia Thompson
- Moyne Institute, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ursula Bond
- Moyne Institute, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
- * E-mail:
| |
Collapse
|
21
|
Gene Amplification as a Mechanism of Yeast Adaptation to Nonsense Mutations in Release Factor Genes. Genes (Basel) 2021; 12:genes12122019. [PMID: 34946968 PMCID: PMC8701342 DOI: 10.3390/genes12122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.
Collapse
|
22
|
García-Martínez J, Medina DA, Bellvís P, Sun M, Cramer P, Chávez S, Pérez-Ortín JE. The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA (NEW YORK, N.Y.) 2021; 27:1281-1290. [PMID: 34272303 PMCID: PMC8456998 DOI: 10.1261/rna.078774.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Gene expression in eukaryotes does not follow a linear process from transcription to translation and mRNA degradation. Instead it follows a circular process in which cytoplasmic mRNA decay crosstalks with nuclear transcription. In many instances, this crosstalk contributes to buffer mRNA at a roughly constant concentration. Whether the mRNA buffering concept operates on the total mRNA concentration or at the gene-specific level, and if the mechanism to do so is a global or a specific one, remain unknown. Here we assessed changes in mRNA concentrations and their synthesis rates along the transcriptome of aneuploid strains of the yeast Saccharomyces cerevisiae We also assessed mRNA concentrations and their synthesis rates in nonsense-mediated decay (NMD) targets in euploid strains. We found that the altered synthesis rates in the genes from the aneuploid chromosome and the changes in their mRNA stabilities were not counterbalanced. In addition, the stability of NMD targets was not specifically compensated by the changes in synthesis rate. We conclude that there is no genetic compensation of NMD mRNA targets in yeast, and total mRNA buffering uses mostly a global system rather than a gene-specific one.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Daniel A Medina
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Pablo Bellvís
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Mai Sun
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
- Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, planta 3ª C.P. 14006 Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| |
Collapse
|
23
|
Barney JB, Chandrashekarappa DG, Soncini SR, Schmidt MC. Drug resistance in diploid yeast is acquired through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. PLoS Genet 2021; 17:e1009800. [PMID: 34555030 PMCID: PMC8460028 DOI: 10.1371/journal.pgen.1009800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Previous studies of adaptation to the glucose analog, 2-deoxyglucose, by Saccharomyces cerevisiae have utilized haploid cells. In this study, diploid cells were used in the hope of identifying the distinct genetic mechanisms used by diploid cells to acquire drug resistance. While haploid cells acquire resistance to 2-deoxyglucose primarily through recessive alleles in specific genes, diploid cells acquire resistance through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. Dominant-acting, missense alleles in all three subunits of yeast AMP-activated protein kinase confer resistance to 2-deoxyglucose. Dominant-acting, nonsense alleles in the REG1 gene, which encodes a negative regulator of AMP-activated protein kinase, confer 2-deoxyglucose resistance through haploinsufficiency. Most of the resistant strains isolated in this study achieved resistance through aneuploidy. Cells with a monosomy of chromosome 4 are resistant to 2-deoxyglucose. While this genetic strategy comes with a severe fitness cost, it has the advantage of being readily reversible when 2-deoxyglucose selection is lifted. Increased expression of the two DOG phosphatase genes on chromosome 8 confers resistance and was achieved through trisomies and tetrasomies of that chromosome. Finally, resistance was also mediated by increased expression of hexose transporters, achieved by duplication of a 117 kb region of chromosome 4 that included the HXT3, HXT6 and HXT7 genes. The frequent use of aneuploidy as a genetic strategy for drug resistance in diploid yeast and human tumors may be in part due to its potential for reversibility when selection pressure shifts.
Collapse
Affiliation(s)
- Jordan B. Barney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Samantha R. Soncini
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
24
|
Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proc Natl Acad Sci U S A 2020; 117:30566-30576. [PMID: 33203674 DOI: 10.1073/pnas.2009506117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy, defined as whole chromosome gains and losses, is associated with poor patient prognosis in many cancer types. However, the condition causes cellular stress and cell cycle delays, foremost in G1 and S phase. Here, we investigate how aneuploidy causes both slow proliferation and poor disease outcome. We test the hypothesis that aneuploidy brings about resistance to chemotherapies because of a general feature of the aneuploid condition-G1 delays. We show that single chromosome gains lead to increased resistance to the frontline chemotherapeutics cisplatin and paclitaxel. Furthermore, G1 cell cycle delays are sufficient to increase chemotherapeutic resistance in euploid cells. Mechanistically, G1 delays increase drug resistance to cisplatin and paclitaxel by reducing their ability to damage DNA and microtubules, respectively. Finally, we show that our findings are clinically relevant. Aneuploidy correlates with slowed proliferation and drug resistance in the Cancer Cell Line Encyclopedia (CCLE) dataset. We conclude that a general and seemingly detrimental effect of aneuploidy, slowed proliferation, provides a selective benefit to cancer cells during chemotherapy treatment.
Collapse
|
25
|
Knapp BD, Odermatt P, Rojas ER, Cheng W, He X, Huang KC, Chang F. Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. Cell Syst 2019; 9:434-445.e6. [PMID: 31706948 PMCID: PMC6911364 DOI: 10.1016/j.cels.2019.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of "supergrowth" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Pascal Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenpeng Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 941586, USA.
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Soto M, Raaijmakers JA, Medema RH. Consequences of Genomic Diversification Induced by Segregation Errors. Trends Genet 2019; 35:279-291. [DOI: 10.1016/j.tig.2019.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
|
28
|
Hwang S, Gustafsson HT, O'Sullivan C, Bisceglia G, Huang X, Klose C, Schevchenko A, Dickson RC, Cavaliere P, Dephoure N, Torres EM. Serine-Dependent Sphingolipid Synthesis Is a Metabolic Liability of Aneuploid Cells. Cell Rep 2019; 21:3807-3818. [PMID: 29281829 DOI: 10.1016/j.celrep.2017.11.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022] Open
Abstract
Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness of aneuploid cells. Remarkably, the fitness of aneuploid cells improves or deteriorates upon genetically decreasing or increasing ceramides, respectively. Combined targeting of serine and sphingolipid synthesis could be exploited to specifically target cancer cells, the vast majority of which are aneuploid.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H Tobias Gustafsson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ciara O'Sullivan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gianna Bisceglia
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Christian Klose
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Andrej Schevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Robert C Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Paola Cavaliere
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
29
|
Kechavarzi BD, Wu H, Doman TN. Bottom-up, integrated -omics analysis identifies broadly dosage-sensitive genes in breast cancer samples from TCGA. PLoS One 2019; 14:e0210910. [PMID: 30653567 PMCID: PMC6336338 DOI: 10.1371/journal.pone.0210910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
The massive genomic data from The Cancer Genome Atlas (TCGA), including proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC), provides a unique opportunity to study cancer systematically. While most observations are made from a single type of genomics data, we apply big data analytics and systems biology approaches by simultaneously analyzing DNA amplification, mRNA and protein abundance. Using multiple genomic profiles, we have discovered widespread dosage compensation for the extensive aneuploidy observed in TCGA breast cancer samples. We do identify 11 genes that show strong correlation across all features (DNA/mRNA/protein) analogous to that of the well-known oncogene HER2 (ERBB2). These genes are generally less well-characterized regarding their role in cancer and we advocate their further study. We also discover that shRNA knockdown of these genes has an impact on cancer cell growth, suggesting a vulnerability that could be used for cancer therapy. Our study shows the advantages of systematic big data methodologies and also provides future research directions.
Collapse
Affiliation(s)
- Bobak D. Kechavarzi
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
- Eli Lilly, Indianapolis, IN, United States of America
- * E-mail:
| | - Huanmei Wu
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
| | - Thompson N. Doman
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
- Eli Lilly, Indianapolis, IN, United States of America
| |
Collapse
|
30
|
Chunduri NK, Storchová Z. The diverse consequences of aneuploidy. Nat Cell Biol 2019; 21:54-62. [PMID: 30602769 DOI: 10.1038/s41556-018-0243-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Aneuploidy, or imbalanced chromosome number, has profound effects on eukaryotic cells. In humans, aneuploidy is associated with various pathologies, including cancer, which suggests that it mediates a proliferative advantage under these conditions. Here, we discuss physiological changes triggered by aneuploidy, such as altered cell growth, transcriptional changes, proteotoxic stress, genomic instability and response to interferons, and how cancer cells adapt to the changing aneuploid genome.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
31
|
Deng X, Sha Y, Lv Z, Wu Y, Zhang A, Wang F, Liu B. The Capacity to Buffer and Sustain Imbalanced D-Subgenome Chromosomes by the BBAA Component of Hexaploid Wheat Is an Evolved Dominant Trait. FRONTIERS IN PLANT SCIENCE 2018; 9:1149. [PMID: 30131821 PMCID: PMC6090280 DOI: 10.3389/fpls.2018.01149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Successful generation of pentaploid wheat (genome, BBAAD) via interspecific hybridization between tetraploid wheat (BBAA) and hexaploid wheat (BBAADD) holds great promise to mutually exchange desirable traits between the two cultivated wheat species, as well as providing a novel facet for evolutionary studies of polyploid wheat. Taking advantage of the viable and fertile nature of an extracted tetraploid wheat (ETW) with a BBAA genome that is virtually identical with the BBAA component of a hexaploid common wheat, and a synthetic hexaploid wheat, we constructed four pentaploid wheats with several distinct yet complementary features, of which harboring homozygous BBAA subgenomes is a common feature. By using a combined FISH/GISH method that enables diagnosing all individual wheat chromosomes, we precisely karyotyped a larger number of cohorts from the immediate progenies of each of the four pentaploid wheats. We found that the BBAA component of hexaploid common wheat possesses a significantly stronger capacity to buffer and sustain imbalanced D genome chromosomes and appears to harbor more structural chromosome variations than the BBAA genome of tetraploid wheat. We also document that this stronger capacity of the hexaploid BBAA subgenomes behaves as a genetically controlled dominant trait. Our findings bear implications to the known greater than expected level of genetic diversity in, and the remarkable adaptability of, hexaploid common wheat as a staple crop of global significance, as well as in using pentaploidy as intermediates for reciprocal introgression of useful traits between tetraploid and hexaploid wheat cultivars.
Collapse
Affiliation(s)
- Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
32
|
Zhu J, Tsai HJ, Gordon MR, Li R. Cellular Stress Associated with Aneuploidy. Dev Cell 2018; 44:420-431. [PMID: 29486194 DOI: 10.1016/j.devcel.2018.02.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Aneuploidy, chromosome stoichiometry that deviates from exact multiples of the haploid compliment of an organism, exists in eukaryotic microbes, several normal human tissues, and the majority of solid tumors. Here, we review the current understanding about the cellular stress states that may result from aneuploidy. The topics of aneuploidy-induced proteotoxic, metabolic, replication, and mitotic stress are assessed in the context of the gene dosage imbalance observed in aneuploid cells. We also highlight emerging findings related to the downstream effects of aneuploidy-induced cellular stress on the immune surveillance against aneuploid cells.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
33
|
Mena A, Medina DA, García-Martínez J, Begley V, Singh A, Chávez S, Muñoz-Centeno MC, Pérez-Ortín JE. Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 2017; 45:12401-12412. [PMID: 29069448 PMCID: PMC5716168 DOI: 10.1093/nar/gkx974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme.
Collapse
Affiliation(s)
- Adriana Mena
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Daniel A Medina
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - José García-Martínez
- Departamento de Genética and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Victoria Begley
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mari C Muñoz-Centeno
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
34
|
Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nat Commun 2017; 8:1212. [PMID: 29089484 PMCID: PMC5663699 DOI: 10.1038/s41467-017-01422-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is mostly caused by a trisomy of the entire Chromosome 21 (Trisomy 21, T21). Here, we use SWATH mass spectrometry to quantify protein abundance and protein turnover in fibroblasts from a monozygotic twin pair discordant for T21, and to profile protein expression in 11 unrelated DS individuals and matched controls. The integration of the steady-state and turnover proteomic data indicates that protein-specific degradation of members of stoichiometric complexes is a major determinant of T21 gene dosage outcome, both within and between individuals. This effect is not apparent from genomic and transcriptomic data. The data also reveal that T21 results in extensive proteome remodeling, affecting proteins encoded by all chromosomes. Finally, we find broad, organelle-specific post-transcriptional effects such as significant downregulation of the mitochondrial proteome contributing to T21 hallmarks. Overall, we provide a valuable proteomic resource to understand the origin of DS phenotypic manifestations. Trisomy 21 (T21) is a major cause of Down syndrome but little is known about its impact on the cellular proteome. Here, the authors define the proteome of T21 fibroblasts and its turnover and also map proteomic differences in monozygotic T21-discordant twins, revealing extensive, organelle-specific changes caused by T21.
Collapse
|
35
|
Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B. Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. PLANT PHYSIOLOGY 2017; 175:828-847. [PMID: 28821592 PMCID: PMC5619904 DOI: 10.1104/pp.17.00819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.
Collapse
Affiliation(s)
- Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
36
|
Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch. G3-GENES GENOMES GENETICS 2017; 7:233-246. [PMID: 27836908 PMCID: PMC5217112 DOI: 10.1534/g3.116.036160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aneuploidy, a state in which the chromosome number deviates from a multiple of the haploid count, significantly impacts human health. The phenotypic consequences of aneuploidy are believed to arise from gene expression changes associated with the altered copy number of genes on the aneuploid chromosomes. To dissect the mechanisms underlying altered gene expression in aneuploids, we used RNA-seq to measure transcript abundance in colonies of the haploid Saccharomyces cerevisiae strain F45 and two aneuploid derivatives harboring disomies of chromosomes XV and XVI. F45 colonies display complex “fluffy” morphologies, while the disomic colonies are smooth, resembling laboratory strains. Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor simply by their karyotype. Surprisingly, the environmental stress response (ESR) was induced in F45, relative to the two disomes. We also identified genes whose expression reflected a nonlinear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Expression changes in aneuploids appear to reflect a mixture of effects shared between different aneuploidies and effects unique to perturbing the copy number of particular chromosomes, including nonlinear copy number interactions between genes. The balance between these two phenomena is likely to be genotype- and environment-specific.
Collapse
|
37
|
Do C, Xing Z, Yu YE, Tycko B. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models. Epigenomics 2016; 9:189-207. [PMID: 27911079 PMCID: PMC5549717 DOI: 10.2217/epi-2016-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An important line of postgenomic research seeks to understand how genetic factors can influence epigenetic patterning. Here we review epigenetic effects of chromosomal aneuploidies, focusing on findings in Down syndrome (DS, trisomy 21). Recent work in human DS and mouse models has shown that the extra chromosome 21 acts in trans to produce epigenetic changes, including differential CpG methylation (DS-DM), in specific sets of downstream target genes, mostly on other chromosomes. Mechanistic hypotheses emerging from these data include roles of chromosome 21-linked methylation pathway genes (DNMT3L and others) and transcription factor genes (RUNX1, OLIG2, GABPA, ERG and ETS2) in shaping the patterns of DS-DM. The findings may have broader implications for trans-acting epigenetic effects of chromosomal and subchromosomal aneuploidies in other human developmental and neuropsychiatric disorders, and in cancers.
Collapse
Affiliation(s)
- Catherine Do
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program & Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program & Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's disease & the Aging Brain, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
38
|
Abstract
We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.
Collapse
|
39
|
Peng W, Song R, Acar M. Noise reduction facilitated by dosage compensation in gene networks. Nat Commun 2016; 7:12959. [PMID: 27694830 PMCID: PMC5063963 DOI: 10.1038/ncomms12959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network. A mathematical analysis provides intuitive insights into these results and a novel stochastic model tracking cell-volume and cell-cycle predicts the experimental results. Our work implies that noise is a selectable trait tunable by evolution.
Collapse
Affiliation(s)
- Weilin Peng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - Ruijie Song
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, Connecticut 06511, USA
| | - Murat Acar
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
| |
Collapse
|
40
|
Lee H, Cho DY, Whitworth C, Eisman R, Phelps M, Roote J, Kaufman T, Cook K, Russell S, Przytycka T, Oliver B. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster. PLoS Genet 2016; 12:e1006295. [PMID: 27599372 PMCID: PMC5012587 DOI: 10.1371/journal.pgen.1006295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
Abstract
Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.
Collapse
Affiliation(s)
- Hangnoh Lee
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cale Whitworth
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert Eisman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Melissa Phelps
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John Roote
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kevin Cook
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven Russell
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Wheeler BS, Anderson E, Frøkjær-Jensen C, Bian Q, Jorgensen E, Meyer BJ. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. eLife 2016; 5. [PMID: 27572259 PMCID: PMC5047749 DOI: 10.7554/elife.17365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI:http://dx.doi.org/10.7554/eLife.17365.001 DNA inside cells is packaged into structures called chromosomes, each of which contains numerous genes. Many organisms, including humans, have two copies of most chromosomes in their cells. If the process of cell division goes awry, cells can end up with too many or too few copies of their chromosomes, which can cause serious illnesses. Sex chromosomes pose a conundrum for cells. In humans, females have two copies of the X chromosome, whereas males only have one. This means that males have half the copy number (dose) of genes on the X chromosome. Human cells correct this imbalance by suppressing the activity, or expression, of most of the genes on one of the X chromosomes in females. “Dosage compensation” also occurs in the roundworm species Caenorhabditis elegans, because male worms have one X chromosome whilst hermaphrodites have two. The dosage compensation mechanism in roundworms differs from that in humans. It involves turning down the expression of both hermaphrodite X chromosomes by half. The process is enacted by a dosage compensation complex that binds to specific sites along both hermaphrodite X chromosomes. Dosage compensation mechanisms that reduce X chromosome expression in females cause sex chromosomes to have lower gene expression than non-sex chromosomes. Modern sex chromosomes evolved from a pair of non-sex chromosomes, and males lost one copy of all of the genes located on those ancestral chromosomes. This evolutionary history causes both sexes to have lower gene expression from X chromosomes than the other chromosomes, raising the question of whether a mechanism exists to balance out the difference in gene expression between sex chromosomes and non-sex chromosomes. Wheeler et al. now show that the expression of any foreign gene artificially added to the X chromosomes of C. elegans is equalized between males and hermaphrodites despite the difference in gene dose. The equalization works regardless of where on the X chromosome the new gene is added. The foreign gene does not need to be adjacent to a binding site for the dosage compensation complex. These results indicate that dosage compensation mechanisms regulate gene expression on a chromosome-wide scale. Wheeler et al. also show that genes added to X chromosomes are expressed at half the level as the same genes added to non-sex chromosomes. These results mean that no chromosome-wide mechanism balances gene expression levels between the X chromosome and the non-sex chromosomes. It remains unknown how C. elegans, and many other living organisms, evolved to tolerate a lower level of gene expression from the sex chromosomes. Instead of a chromosome-wide mechanism, it is likely that individual genes evolved different ways to alter their expression levels. Working out what these mechanisms are remains a challenge for further research. DOI:http://dx.doi.org/10.7554/eLife.17365.002
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erika Anderson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christian Frøkjær-Jensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|