1
|
Yang L, Li X, Shi C, Zhao B. Prmt5 is essential for intestinal stem cell maintenance and homeostasis. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:5. [PMID: 39907873 PMCID: PMC11799473 DOI: 10.1186/s13619-024-00216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 02/06/2025]
Abstract
Intestinal homeostasis relies on the continuous renewal of intestinal stem cells (ISCs), which could be epigenetically regulated. While protein arginine methyltransferase 5 (Prmt5) is known to play a key role in multiple organs as an epigenetic modifier, its specific function in maintaining intestinal homeostasis remains to be elucidated. Here, we show that Prmt5 is highly expressed in mouse crypts. The deletion of Prmt5 results in ISCs deficiency, ectopic localization of Paneth cells, and spontaneous colitis. Mechanistically, Prmt5 sustains a high level of H3K27ac accumulation by inhibiting Hdac9 expression in the intestinal epithelium, and maintains the stemness of ISCs in a cell-autonomous manner. Notably, inhibition of histone deacetylases can rescue both self-renewal and differentiation capacities of Prmt5-depleted ISCs. These findings highlight Prmt5 as a critical regulator in intestinal epithelium development and tissue homeostasis.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
3
|
He Q, Zhang Y, Li W, Chen S, Xiong J, Zhao R, Yuan K, Hu Q, Liu S, Gao G, Bedford MT, Tang DG, Xu B, Zou C, Zhang D. Inhibition of PRMT5 moderately suppresses prostate cancer growth in vivo but enhances its response to immunotherapy. Cancer Lett 2024; 602:217214. [PMID: 39218291 DOI: 10.1016/j.canlet.2024.217214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Protein arginine methylation is a common post-translational modification (PTM) catalyzed by nine protein arginine methyltransferases (PRMTs). As the major symmetric arginine methyltransferase that methylates both histone and non-histone substrates, PRMT5 plays key roles in a number of biological processes critical for development and tumorigenesis. PRMT5 overexpression has been reported in multiple cancer types including prostate cancer (PCa), but the exact biological and mechanistic understanding of PRMT5 in aggressive PCa remains ill-defined. Here, we show that PRMT5 is upregulated in PCa, correlates with worse patient survival, promotes corrupted RNA splicing, and functionally cooperates with an array of pro-tumorigenic pathways to enhance oncogenesis. PRMT5 inhibition via either genetic knockdown or pharmacological inhibition reduces stemness with paralleled differentiation and arrests cell cycle progression without causing appreciable apoptosis. Strikingly, the severity of antitumor effect of PRMT5 inhibition correlates with disease aggressiveness, with AR+ PCa being less affected. Molecular characterization pinpoints MYC, but not (or at least to a lesser degree) AR, as the main partner of PRMT5 to form a positive feedback loop to exacerbate malignancy in both AR+ and AR- PCa cells. Inspired by the surprising finding that PRMT5 negatively correlates with tumor immune infiltration and transcriptionally suppresses an immune-gene program, we further show that although PRMT5 inhibitor (PRMT5i) EPZ015666 or anti-PD-1 immunotherapy alone exhibits limited antitumor effects, combination of PRMT5i with anti-PD-1 displays superior efficacy in inhibiting castration-resistant PCa (CRPC) in vivo. Finally, to expand the potential use of PRMT5i through a synthetic lethality concept, we also perform a global CRISPR/Cas9 knockout screen to unravel that many clinical-grade drugs of known oncogenic pathways can be repurposed to target CRPC when used in combination with PRMT5i at low doses. Collectively, our findings establish a rationale to exploit PRMT5i in combination with immunotherapy or other targeted therapies to treat aggressive PCa.
Collapse
Affiliation(s)
- Qinju He
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yuanzhen Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Saisai Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Jiangling Xiong
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Ruizhe Zhao
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Current Address: Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, 14263, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, 14263, New York, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Cheng Zou
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| | - Dingxiao Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Wang C, Wu S, Hu Y, Wang J, Ru K, Zhao M. A novel arginine methylation-associated lncRNA signature effectively predicts prognosis in breast cancer patients. Front Oncol 2024; 14:1472434. [PMID: 39411134 PMCID: PMC11473254 DOI: 10.3389/fonc.2024.1472434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a disease highly associated with epigenetic modification, and arginine methylation is particularly important in its genetic regulation. However, the role of arginine methylation related lncRNAs in breast cancer has not been studied. First, we identified the related lncRNAs (from TCGA database) according to the differentially expressed genes related to arginine methylation in breast cancer. Then the lncRNAs related to protein arginine methylation were obtained by regression analysis, and the risk score model was constructed. Finally, the cell experiment and subcutaneous tumor model verified that the arginine methylation related lncRNA z68871.1 in the model had a significant effect on the proliferation and invasion of breast cancer cells. In conclusion, we successfully constructed an arginine methylation related lncRNA model, which has strong predictive ability. At the same time, this study provides an experimental basis for exploring the mechanism of arginine methylation in BC and helps to find new biomarkers of BC.
Collapse
Affiliation(s)
- Changli Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuaishuai Wu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanran Hu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Ru
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Lumahan LEV, Arif M, Whitener AE, Yi P. Regulating Androgen Receptor Function in Prostate Cancer: Exploring the Diversity of Post-Translational Modifications. Cells 2024; 13:191. [PMID: 38275816 PMCID: PMC10814774 DOI: 10.3390/cells13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Androgen receptor (AR) transcriptional activity significantly influences prostate cancer (PCa) progression. In addition to ligand stimulation, AR transcriptional activity is also influenced by a variety of post-translational modifications (PTMs). A number of oncogenes and tumor suppressors have been observed leveraging PTMs to influence AR activity. Subjectively targeting these post-translational modifiers based on their impact on PCa cell proliferation is a rapidly developing area of research. This review elucidates the modifiers, contextualizes the effects of these PTMs on AR activity, and connects these cellular interactions to the progression of PCa.
Collapse
Affiliation(s)
- Lance Edward V. Lumahan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77204, USA
| | - Mazia Arif
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77205, USA
| | - Amy E. Whitener
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77205, USA
| | - Ping Yi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77205, USA
| |
Collapse
|
8
|
Arai S, Gao Y, Yu Z, Xie L, Wang L, Zhang T, Nouri M, Chen S, Asara JM, Balk SP. A carboxy-terminal ubiquitylation site regulates androgen receptor activity. Commun Biol 2024; 7:25. [PMID: 38182874 PMCID: PMC10770046 DOI: 10.1038/s42003-023-05709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.
Collapse
Affiliation(s)
- Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yanfei Gao
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyang Yu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tengfei Zhang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
10
|
Poulard C, Ha Pham T, Drouet Y, Jacquemetton J, Surmielova A, Kassem L, Mery B, Lasset C, Reboulet J, Treilleux I, Marangoni E, Trédan O, Le Romancer M. Nuclear PRMT5 is a biomarker of sensitivity to tamoxifen in ERα + breast cancer. EMBO Mol Med 2023; 15:e17248. [PMID: 37458145 PMCID: PMC10405064 DOI: 10.15252/emmm.202217248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Endocrine therapies targeting estrogen signaling, such as tamoxifen, have significantly improved management of estrogen receptor alpha (ERα)-positive breast cancers. However, their efficacy is limited by intrinsic and acquired resistance to treatment, and there is currently no predictive marker of response to these anti-estrogens to guide treatment decision. Here, using two independent cohorts of breast cancer patients, we identified nuclear PRMT5 expression as an independent predictive marker of sensitivity to tamoxifen. Mechanistically, we discovered that tamoxifen stimulates ERα methylation by PRMT5, a key event for its binding to corepressors such as SMRT and HDAC1, participating in the inhibition of the transcriptional activity of ERα. Although PRMT5 is mainly localized in the cytoplasm of tumor cells, our analyses show that tamoxifen triggers its nuclear translocation in tamoxifen-sensitive tumors but not in resistant ones. Hence, we unveil a biomarker of sensitivity to tamoxifen in ERα-positive breast tumors that could be used to enhance the response of breast cancer patients to endocrine therapy, by fostering its nuclear expression.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Thuy Ha Pham
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Youenn Drouet
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
| | - Julien Jacquemetton
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Ausra Surmielova
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Loay Kassem
- Clinical Oncology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Benoite Mery
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Christine Lasset
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
- CNRS UMR 5558 LBBEUniversité de LyonVilleurbanneFrance
| | | | - Isabelle Treilleux
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Pathology DepartmentCentre Leon BérardLyonFrance
| | | | - Olivier Trédan
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Muriel Le Romancer
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| |
Collapse
|
11
|
Brobbey C, Yin S, Liu L, Ball LE, Howe PH, Delaney JR, Gan W. Autophagy dictates sensitivity to PRMT5 inhibitor in breast cancer. Sci Rep 2023; 13:10752. [PMID: 37400460 DOI: 10.1038/s41598-023-37706-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes mono-methylation and symmetric di-methylation on arginine residues and has emerged as a potential antitumor target with inhibitors being tested in clinical trials. However, it remains unknown how the efficacy of PRMT5 inhibitors is regulated. Here we report that autophagy blockage enhances cellular sensitivity to PRMT5 inhibitor in triple negative breast cancer cells. Genetic ablation or pharmacological inhibition of PRMT5 triggers cytoprotective autophagy. Mechanistically, PRMT5 catalyzes monomethylation of ULK1 at R532 to suppress ULK1 activation, leading to attenuation of autophagy. As a result, ULK1 inhibition blocks PRMT5 deficiency-induced autophagy and sensitizes cells to PRMT5 inhibitor. Our study not only identifies autophagy as an inducible factor that dictates cellular sensitivity to PRMT5 inhibitor, but also unearths a critical molecular mechanism by which PRMT5 regulates autophagy through methylating ULK1, providing a rationale for the combination of PRMT5 and autophagy inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Charles Brobbey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
12
|
Kim H, Barua A, Huang L, Zhou T, Bolaji M, Zachariah S, Mitra A, Jung SY, He B, Feng Q. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery. Oncogene 2023:10.1038/s41388-023-02690-x. [PMID: 37041411 DOI: 10.1038/s41388-023-02690-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Hong Kim
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Luping Huang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Tianyi Zhou
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Modupeola Bolaji
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sharon Zachariah
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Bonnici J, Oueini R, Salah E, Johansson C, Schofield CJ, Kawamura A. The catalytic domains of all human KDM5 JmjC demethylases catalyse N-methyl arginine demethylation. FEBS Lett 2023; 597:933-946. [PMID: 36700827 PMCID: PMC10952680 DOI: 10.1002/1873-3468.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023]
Abstract
The demethylation of Nε -methyllysine residues on histones by Jumonji-C lysine demethylases (JmjC-KDMs) has been established. A subset of JmjC-KDMs has also been reported to have Nω -methylarginine residue demethylase (RDM) activity. Here, we describe biochemical screening studies, showing that the catalytic domains of all human KDM5s (KDM5A-KDM5D), KDM4E and, to a lesser extent, KDM4A/D, have both KDM and RDM activities with histone peptides. Ras GTPase-activating protein-binding protein 1 peptides were shown to be RDM substrates for KDM5C/D. No RDM activity was observed with KDM1A and the other JmjC-KDMs tested. The results highlight the potential of JmjC-KDMs to catalyse reactions other than Nε -methyllysine demethylation. Although our study is limited to peptide fragments, the results should help guide biological studies investigating JmjC functions.
Collapse
Affiliation(s)
- Joanna Bonnici
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| | - Razanne Oueini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Catrine Johansson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Botnar Research Centre, NIHR Oxford Biomedical Research UnitUniversity of OxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| |
Collapse
|
14
|
Alegre-Martí A, Jiménez-Panizo A, Martínez-Tébar A, Poulard C, Peralta-Moreno MN, Abella M, Antón R, Chiñas M, Eckhard U, Piulats JM, Rojas AM, Fernández-Recio J, Rubio-Martínez J, Le Romancer M, Aytes Á, Fuentes-Prior P, Estébanez-Perpiñá E. A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. SCIENCE ADVANCES 2023; 9:eade2175. [PMID: 36921044 PMCID: PMC10017050 DOI: 10.1126/sciadv.ade2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.
Collapse
Affiliation(s)
- Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Alba Jiménez-Panizo
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Adrián Martínez-Tébar
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Coralie Poulard
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - M. Núria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Montserrat Abella
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Marcos Chiñas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca, 61740 Morelos, Mexico
| | - Ulrich Eckhard
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Josep M. Piulats
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Ana M. Rojas
- Computational Biology and Bioinformatics, Andalusian Center for Developmental Biology (CABD-CSIC), 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), CSIC-UR-Gobierno de La Rioja, 26007 Logroño, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Muriel Le Romancer
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - Álvaro Aytes
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
15
|
Feng Q, Kim H, Barua A, Huang L, Bolaji M, Zachariah S, Jung SY, He B, Zhou T, Mitra A. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with snRNP biogenesis machinery. RESEARCH SQUARE 2023:rs.3.rs-2035901. [PMID: 36865141 PMCID: PMC9980208 DOI: 10.21203/rs.3.rs-2035901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
|
16
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
17
|
Giannareas N, Zhang Q, Yang X, Na R, Tian Y, Yang Y, Ruan X, Huang D, Yang X, Wang C, Zhang P, Manninen A, Wang L, Wei GH. Extensive germline-somatic interplay contributes to prostate cancer progression through HNF1B co-option of TMPRSS2-ERG. Nat Commun 2022; 13:7320. [PMID: 36443337 PMCID: PMC9705428 DOI: 10.1038/s41467-022-34994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.
Collapse
Affiliation(s)
- Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rong Na
- Division of Urology, Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yijun Tian
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Yuan HF, Zhao M, Zhao LN, Yun HL, Yang G, Geng Y, Wang YF, Zheng W, Yuan Y, Song TQ, Niu JQ, Zhang XD. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Acta Pharmacol Sin 2022; 43:2373-2385. [PMID: 35046516 PMCID: PMC9433386 DOI: 10.1038/s41401-021-00841-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
The protein arginine methyltransferase 5 (PRMT5), which is highly expressed in tumour tissues, plays a crucial role in cancer development. However, the mechanism by which PRMT5 promotes cancer growth is poorly understood. Here, we report that PRMT5 contributes to lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Mass spectrometric analysis identified PRMT5 lysine 387 as its succinylation site. Moreover, the desuccinylation of PRMT5 K387 enhances the methyltransferase activity of PRMT5. SIRT7 catalyses the desuccinylation of PRMT5 in cells. The SIRT7-mediated dessuccinylation of PRMT5 lysine 387 fails to bind to STUB1, decreasing PRMT5 ubiquitination and increasing the interaction between PRMT5 and Mep50, which promotes the formation of the PRMT5-Mep50 octamer. The PRMT5-Mep50 octamer increases PRMT5 methyltransferase activity, leading to arginine methylation of SREBP1a. The symmetric dimethylation of SREBP1a increases the levels of cholesterol, fatty acid, and triglyceride biogenesis in the cells, escaping degradation through the ubiquitin-proteasome pathway. Functionally, the desuccinylation of PRMT5 K387 promotes lipid metabolism reprogramming, tumour growth and metastasis in vitro and in vivo in tumours.
Collapse
Affiliation(s)
- Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Na Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hao-Lin Yun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Fei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Zheng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jun-Qi Niu
- Department of Hepatology, the First Hospital, Jilin University, Jilin, 130021, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
19
|
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol (Dordr) 2022; 45:831-859. [PMID: 36036882 DOI: 10.1007/s13402-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce. CONCLUSIONS AND PERSPECTIVES In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
Collapse
|
20
|
Feustel K, Falchook GS. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:58-67. [PMID: 36034581 PMCID: PMC9390703 DOI: 10.36401/jipo-22-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT
Protein arginine methyltransferase 5 (PRMT5) inhibitors are a new class of antineoplastic agents showing promising preliminary clinical efficacy. Targeting an enzyme involved in a wide array of cellular and transcriptional pro-oncogenic processes, this class offers multifaceted tumor-suppressive effects. Partial response has been seen in adenoid cystic carcinoma from both GSK3326595 and JNJ-64619178, with four cases of stable disease seen with PRT543. Highly significant is a durable complete response in isocitrate dehydrogenase 1-mutated glioblastoma multiforme with PRT811. Both alone and in combination with existing chemotherapies and immunotherapies, this class shows promising preliminary data, particularly in cancers with splicing mutations and DNA damage repair deficiencies. Further studies are warranted, and there are clinical trials to come whose data will be telling of the efficacy of PRMT5 inhibitors in both hematologic and solid malignancies. The aim of this study is to compile available results of PRMT5 inhibitors in oncology clinical trials.
Collapse
Affiliation(s)
- Kavanya Feustel
- 1 Sky Ridge Medical Center, HCA Continental Division, Lone Tree, CO, USA
| | | |
Collapse
|
21
|
Gao X, Wang Y, Ribeiro CF, Manokaran C, Chang H, Von T, Rodrigues S, Cizmecioglu O, Jia S, Korpal M, Korn JM, Wang Z, Schmit F, Jiang L, Pagliarini R, Yang Y, Sethi I, Signoretti S, Yuan GC, Loda M, Zhao JJ, Roberts TM. Blocking PI3K p110β Attenuates Development of PTEN-Deficient Castration-Resistant Prostate Cancer. Mol Cancer Res 2022; 20:673-685. [PMID: 35105671 PMCID: PMC9081176 DOI: 10.1158/1541-7786.mcr-21-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
A common outcome of androgen deprivation in prostate cancer therapy is disease relapse and progression to castration-resistant prostate cancer (CRPC) via multiple mechanisms. To gain insight into the recent clinical findings that highlighted genomic alterations leading to hyperactivation of PI3K, we examined the roles of the commonly expressed p110 catalytic isoforms of PI3K in a murine model of Pten-null invasive CRPC. While blocking p110α had negligible effects in the development of Pten-null invasive CRPC, either genetic or pharmacologic perturbation of p110β dramatically slowed CRPC initiation and progression. Once fully established, CRPC tumors became partially resistant to p110β inhibition, indicating the acquisition of new dependencies. Driven by our genomic analyses highlighting potential roles for the p110β/RAC/PAK1 and β-catenin pathways in CRPC, we found that combining p110β with RAC/PAK1 or tankyrase inhibitors significantly reduced the growth of murine and human CRPC organoids in vitro and in vivo. Because p110β activity is dispensable for most physiologic processes, our studies support novel therapeutic strategies both for preventing disease progression into CRPC and for treating CRPC. IMPLICATIONS This work establishes p110β as a promising target for preventing the progression of primary PTEN-deficient prostate tumors to CRPC, and for treating established CRPC in combination with RAC/PAK1 or tankyrase inhibitors.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, SC, USA
| | - Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Caroline F. Ribeiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Cherubin Manokaran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Thanh Von
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Silvia Rodrigues
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Onur Cizmecioglu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Shidong Jia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Manav Korpal
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Joshua M. Korn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Zhigang Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Fabienne Schmit
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Lan Jiang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Raymond Pagliarini
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Yi Yang
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| |
Collapse
|
22
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
23
|
Tang S, Sethunath V, Metaferia NY, Nogueira MF, Gallant DS, Garner ER, Lairson LA, Penney CM, Li J, Gelbard MK, Alaiwi SA, Seo JH, Hwang JH, Strathdee CA, Baca SC, AbuHammad S, Zhang X, Doench JG, Hahn WC, Takeda DY, Freedman ML, Choi PS, Viswanathan SR. A genome-scale CRISPR screen reveals PRMT1 as a critical regulator of androgen receptor signaling in prostate cancer. Cell Rep 2022; 38:110417. [PMID: 35196489 PMCID: PMC9036938 DOI: 10.1016/j.celrep.2022.110417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nebiyou Y Metaferia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marina F Nogueira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emma R Garner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A Lairson
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher M Penney
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maya K Gelbard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sarah Abou Alaiwi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shatha AbuHammad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - David Y Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Peter S Choi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett 2022; 530:181-189. [PMID: 35033589 PMCID: PMC8832285 DOI: 10.1016/j.canlet.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which play critical roles in both normal tissue development and homeostasis and have been implicated in development and progression of a variety of cancers. In prostate cancer, gene fusion and overexpression of ETS factors ERG, FLI1, ETV1, ETV4 and ETV5 have been found in half of prostate cancer patients in Caucasian men and define the largest genetic subtype of prostate cancer. This review summarizes the data on the discovery, modeling, molecular taxonomy, lineage plasticity and therapeutic targeting of ETS family members in prostate cancer.
Collapse
Affiliation(s)
- Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
26
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
|
27
|
Mazzu YZ, Liao Y, Nandakumar S, Sjöström M, Jehane LE, Ghale R, Govindarajan B, Gerke TA, Lee GSM, Luo JH, Chinni SR, Mucci LA, Feng FY, Kantoff PW. Dynamic expression of SNAI2 in prostate cancer predicts tumor progression and drug sensitivity. Mol Oncol 2021; 16:2451-2469. [PMID: 34792282 PMCID: PMC9251866 DOI: 10.1002/1878-0261.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is a highly heterogeneous disease, understanding the crosstalk between complex genomic and epigenomic alterations will aid in developing targeted therapeutics. We demonstrate that, even though snail family transcriptional repressor 2 (SNAI2) is frequently amplified in prostate cancer, it is epigenetically silenced in this disease, with dynamic changes in SNAI2 levels showing distinct clinical relevance. Integrative clinical data from 18 prostate cancer cohorts and experimental evidence showed that gene fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2–ERG fusion) is involved in the silencing of SNAI2. We created a silencer score to evaluate epigenetic repression of SNAI2, which can be reversed by treatment with DNA methyltransferase inhibitors and histone deacetylase inhibitors. Silencing of SNAI2 facilitated tumor cell proliferation and luminal differentiation. Furthermore, SNAI2 has a major influence on the tumor microenvironment by reactivating tumor stroma and creating an immunosuppressive microenvironment in prostate cancer. Importantly, SNAI2 expression levels in part determine sensitivity to the cancer drugs dasatinib and panobinostat. For the first time, we defined the distinct clinical relevance of SNAI2 expression at different disease stages. We elucidated how epigenetic silencing of SNAI2 controls the dynamic changes of SNAI2 expression that are essential for tumor initiation and progression and discovered that restoring SNAI2 expression by treatment with panobinostat enhances dasatinib sensitivity, indicating a new therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - YuRou Liao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lina E Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Travis A Gerke
- Prostate Cancer Clinical Trials Consortium, New York, NY, USA
| | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
Grypari IM, Logotheti S, Zolota V, Troncoso P, Efstathiou E, Bravou V, Melachrinou M, Logothetis C, Tzelepi V. The protein arginine methyltransferases (PRMTs) PRMT1 and CARM1 as candidate epigenetic drivers in prostate cancer progression. Medicine (Baltimore) 2021; 100:e27094. [PMID: 34516499 PMCID: PMC8428700 DOI: 10.1097/md.0000000000027094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Epigenetic changes are implicated in prostate cancer (PCa) progression and resistance to therapy. Arginine residue methylation is an understudied histone post-translational modification that is increasingly associated with cancer progression and is catalyzed by enzymes called protein arginine methyltransferases (PRMTs). The molecular consequences of aberrant expression of PRMTs in PCa and the relationship between PRMTs and PCa progression are largely unknown. Using immunohistochemistry, we examined the expression of PRMT1 and CARM1, two of the best-studied PRMTs, in 288 patients across the spectrum of PCa and correlated them with markers of androgen receptor (AR) signaling, and milestones of carcinogenesis. Our findings indicate that PRMT1 and CARM1 are upregulated early in PCa progression, and that CARM1 is further upregulated after therapy. In addition, a correlation of CARM1 with AR post-translational modifications was noted in the setting of therapy resistance, highlighting CARM1 as one of the adaptation mechanisms of PCa cells in an androgen-depleted environment. Finally, CARM1 correlated with markers of cell cycle regulation, and both CARM1 and PRMT1 correlated with markers of epithelial-to-mesenchymal transition signaling. Taken together these findings indicate that an epigenetic network drives PCa progression through enhancement of milestone pathways including AR signaling, the cell cycle, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Souzana Logotheti
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
29
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
30
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
31
|
PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther 2021; 29:264-276. [PMID: 33854218 DOI: 10.1038/s41417-021-00327-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.
Collapse
|
32
|
Fu Z, Rais Y, Bismar TA, Hyndman ME, Le XC, Drabovich AP. Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. Mol Cell Proteomics 2021; 20:100075. [PMID: 33771697 PMCID: PMC8102805 DOI: 10.1016/j.mcpro.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023] Open
Abstract
TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Chakrapani B, Khan MIK, Kadumuri RV, Gupta S, Verma M, Awasthi S, Govindaraju G, Mahesh A, Rajavelu A, Chavali S, Dhayalan A. The uncharacterized protein FAM47E interacts with PRMT5 and regulates its functions. Life Sci Alliance 2021; 4:e202000699. [PMID: 33376131 PMCID: PMC7772775 DOI: 10.26508/lsa.202000699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues in various proteins affecting diverse cellular processes such as transcriptional regulation, splicing, DNA repair, differentiation, and cell cycle. Elevated levels of PRMT5 are observed in several types of cancers and are associated with poor clinical outcomes, making PRMT5 an important diagnostic marker and/or therapeutic target for cancers. Here, using yeast two-hybrid screening, followed by immunoprecipitation and pull-down assays, we identify a previously uncharacterized protein, FAM47E, as an interaction partner of PRMT5. We report that FAM47E regulates steady-state levels of PRMT5 by affecting its stability through inhibition of its proteasomal degradation. Importantly, FAM47E enhances the chromatin association and histone methylation activity of PRMT5. The PRMT5-FAM47E interaction affects the regulation of PRMT5 target genes expression and colony-forming capacity of the cells. Taken together, we identify FAM47E as a protein regulator of PRMT5, which promotes the functions of this versatile enzyme. These findings imply that disruption of PRMT5-FAM47E interaction by small molecules might be an alternative strategy to attenuate the oncogenic function(s) of PRMT5.
Collapse
Affiliation(s)
- Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Somlee Gupta
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | |
Collapse
|
34
|
Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer. Nat Commun 2021; 12:734. [PMID: 33531470 PMCID: PMC7854732 DOI: 10.1038/s41467-020-20820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation. Gene fusions involving the ERG transcription factor and point mutations in the ubiquitin ligase adaptor SPOP are two truncal mutations that are mutually exclusively present in prostate cancer. Here, the authors show that mutations in SPOP render prostate tumor cells sensitive to antiandrogen therapy and that the presence of ERG promotes sensitivity to high dose of androgen and SPOP inhibition.
Collapse
|
35
|
Zhou W, Su Y, Zhang Y, Han B, Liu H, Wang X. Endothelial Cells Promote Docetaxel Resistance of Prostate Cancer Cells by Inducing ERG Expression and Activating Akt/mTOR Signaling Pathway. Front Oncol 2021; 10:584505. [PMID: 33425737 PMCID: PMC7793734 DOI: 10.3389/fonc.2020.584505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Docetaxel is a first-line chemotherapy for the treatment of patients with castration-resistant prostate cancer (CRPC). Despite the good initial response of docetaxel, drug resistance will inevitably occur. Mechanisms underlying docetaxel resistance are not well elaborated. Endothelial cells (ECs) have been implicated in the progression and metastasis of prostate cancer. However, little attention has been paid to the role of endothelial cells in the development of docetaxel resistance in prostate cancer. Here, we sought to investigate the function and mechanism of endothelial cells involving in the docetaxel resistance of prostate cancer. We found that endothelial cells significantly promoted the proliferation of prostate cancer cells and decreased their sensitivity to docetaxel. Mechanistically, basic fibroblast growth factor (FGF2) secreted by endothelial cells leads to the upregulation of ETS related gene (ERG) expression and activation of the Akt/mTOR signaling pathway in prostate cancer cells to promote docetaxel resistance. In summary, these findings demonstrate a microenvironment-dependent mechanism mediating chemoresistance of prostate cancer and suggest that targeting FGF/FGFR signaling might represent a promising therapeutic strategy to overcome docetaxel resistance.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Su
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|
37
|
Beketova E, Fang S, Owens JL, Liu S, Chen X, Zhang Q, Asberry AM, Deng X, Malola J, Huang J, Li C, Pili R, Elzey BD, Ratliff TL, Wan J, Hu CD. Protein Arginine Methyltransferase 5 Promotes pICln-Dependent Androgen Receptor Transcription in Castration-Resistant Prostate Cancer. Cancer Res 2020; 80:4904-4917. [PMID: 32999000 PMCID: PMC7669631 DOI: 10.1158/0008-5472.can-20-1228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The majority of advanced prostate cancer therapies aim to inhibit androgen receptor (AR) signaling. However, AR reactivation inevitably drives disease progression to castration-resistant prostate cancer (CRPC). Here we demonstrate that protein arginine methyltransferase 5 (PRMT5) functions as an epigenetic activator of AR transcription in CRPC, requiring cooperation with a methylosome subunit pICln. In vitro and in xenograft tumors in mice, targeting PRMT5 or pICln suppressed growth of CRPC cells. Full-length AR and AR-V7 transcription activation required both PRMT5 and pICln but not MEP50. This activation of transcription was accompanied by PRMT5-mediated symmetric dimethylation of H4R3 at the proximal AR promoter. Further, knockdown of PRMT5 abolished the binding of pICln (but not vice versa) to the AR proximal promoter region, suggesting that PRMT5 recruits pICln to the AR promoter to activate AR transcription. Differential gene expression analysis in 22Rv1 cells confirmed that PRMT5 and pICln both regulate the androgen signaling pathway. In addition, PRMT5 and pICln protein expression positively correlated with AR and AR-V7 protein expression in CRPC tissues and their expression was highly correlated at the mRNA level across multiple publicly available CRPC datasets. Our results suggest that targeting PRMT5 or pICln may be explored as a novel therapy for CRPC treatment by suppressing expression of AR and AR splice variants to circumvent AR reactivation. SIGNIFICANCE: This study provides evidence that targeting PRMT5 can eliminate expression of AR and can be explored as a novel therapeutic approach to treat metastatic hormone-naïve and castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Elena Beketova
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.,Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana
| | - Shuyi Fang
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Jake L Owens
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,The Indiana University Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, North Caroline
| | - Qingfu Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Caroline
| | - Andrew M Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.,Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jonathan Malola
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Caroline
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida College of Pharmacy, Gainesville, Florida
| | - Roberto Pili
- Department of Medical Oncology, Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Jun Wan
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,The Indiana University Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana.,The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
38
|
Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. ENDOCRINES 2020. [DOI: 10.3390/endocrines1020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MEN1 mutation predisposes patients to multiple endocrine neoplasia type 1 (MEN1), a genetic syndrome associated with the predominant co-occurrence of endocrine tumors. Intriguingly, recent evidence has suggested that MEN1 could also be involved in the development of breast and prostate cancers, two major hormone-related cancers. The first clues as to its possible role arose from the identification of the physical and functional interactions between the menin protein, encoded by MEN1, and estrogen receptor α and androgen receptor. In parallel, our team observed that aged heterozygous Men1 mutant mice developed cancerous lesions in mammary glands of female and in the prostate of male mutant mice at low frequencies, in addition to endocrine tumors. Finally, observations made both in MEN1 patients and in sporadic breast and prostate cancers further confirmed the role played by menin in these two cancers. In this review, we present the currently available data concerning the complex and multifaceted involvement of MEN1 in these two types of hormone-dependent cancers.
Collapse
|
39
|
Lee KH, Kim BC, Jeong SH, Jeong CW, Ku JH, Kim HH, Kwak C. Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int J Mol Sci 2020; 21:5658. [PMID: 32781788 PMCID: PMC7460860 DOI: 10.3390/ijms21165658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Male
- Methylation
- Mice, Inbred NOD
- Middle Aged
- Neoplasm Invasiveness
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Transcription, Genetic/drug effects
- Tumor Burden/drug effects
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Byung-Chan Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Seung-Hwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34052, Korea;
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
40
|
Abstract
Protein methyl transferases play critical roles in numerous regulatory pathways that underlie cancer development, progression and therapy-response. Here we discuss the function of PRMT5, a member of the nine-member PRMT family, in controlling oncogenic processes including tumor intrinsic, as well as extrinsic microenvironmental signaling pathways. We discuss PRMT5 effect on histone methylation and methylation of regulatory proteins including those involved in RNA splicing, cell cycle, cell death and metabolic signaling. In all, we highlight the importance of PRMT5 regulation and function in cancer, which provide the foundation for therapeutic modalities targeting PRMT5.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
41
|
Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, Malouf GG. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 2020; 37:3059-3082. [PMID: 32445185 PMCID: PMC7467409 DOI: 10.1007/s12325-020-01379-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic processes are essential for normal development and the maintenance of tissue-specific gene expression in mammals. Changes in gene expression and malignant cellular transformation can result from disruption of epigenetic mechanisms, and global disruption in the epigenetic landscape is a key feature of cancer. The study of epigenetics in cancer has revealed that human cancer cells harbor both genetic alterations and epigenetic abnormalities that interplay at all stages of cancer development. Unlike genetic mutations, epigenetic aberrations are potentially reversible through epigenetic therapy, providing a therapeutically relevant treatment option. Histone methyltransferase inhibitors are emerging as an epigenetic therapy approach with great promise in the field of clinical oncology. The recent accelerated approval of the enhancer of zeste homolog 2 (EZH2; also known as histone-lysine N-methyltransferase EZH2) inhibitor tazemetostat for metastatic or locally advanced epithelioid sarcoma marks the first approval of such a compound for the treatment of cancer. Many other histone methyltransferase inhibitors are currently in development, some of which are being tested in clinical studies. This review focuses on histone methyltransferase inhibitors, highlighting their potential in the treatment of cancer. We also discuss the role for such epigenetic drugs in overcoming epigenetically driven drug resistance mechanisms, and their value in combination with other therapeutic approaches such as immunotherapy.
Collapse
|
42
|
Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proc Natl Acad Sci U S A 2020; 117:8584-8592. [PMID: 32220959 PMCID: PMC7165421 DOI: 10.1073/pnas.1922159117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Progress in studying the androgen receptor (AR), the primary drug target in prostate cancer, has been hampered by challenges in expressing and purifying active multidomain AR for use in cell-free biochemical reconstitution assays. Here we successfully express full-length and truncated AR variants and demonstrate that the oncogenic ETS protein ERG, responsible for half of all prostate cancers, enhances the ability of AR to bind DNA through direct interaction with AR. In addition to providing a biochemical system to evaluate AR activity on different DNA templates, our findings provide insight into why ERG-positive prostate cancers have an expanded AR cistrome. The androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive. Using purified proteins, we report a minimal cell-free system that demonstrates interdomain cooperativity between the ligand (LBD) and DNA binding domains (DBD) of AR, and its autoinhibition by the N terminus of AR. Furthermore, we identify ERG as a cofactor that activates AR’s ability to bind DNA in both high and lower affinity contexts through direct interaction within a newly identified AR-interacting motif (AIM) in the ETS domain, independent of ERG’s own DNA binding ability. Finally, we present evidence that this interaction is conserved among ETS factors whose expression is altered in prostate cancer. Our work highlights, at a biochemical level, how tumor-initiating ETS translocations result in reprogramming of the AR cistrome.
Collapse
|
43
|
Zhu S, Zhao D, Li C, Li Q, Jiang W, Liu Q, Wang R, Fazli L, Li Y, Zhang L, Yi Y, Meng Q, Wang W, Wang G, Zhang M, Zu X, Zhao W, Deng T, Yu J, Dong X, Chen K, Cao Q. BMI1 is directly regulated by androgen receptor to promote castration-resistance in prostate cancer. Oncogene 2020; 39:17-29. [PMID: 31462713 PMCID: PMC7386438 DOI: 10.1038/s41388-019-0966-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
B lymphoma Mo-MLV insertion region 1 (BMI1) has been reported to be an oncoprotein. BMI1 represses tumor suppressors to promote cell proliferation, epithelial-mesenchymal transition (EMT), and cancer progression. Although it is known that the expression of BMI1 is increased in many cancer types, the mechanism of BMI1 upregulation is not yet clear. We performed integrative analysis for 3 sets of prostate cancer (PCa) genomic data, and found that BMI1 and androgen receptor (AR) were positively correlated, suggesting that AR might regulate BMI1. Next, we showed that dihydrotestosterone (DHT) upregulated both mRNA and protein levels of BMI1 and that BMI1 was increased in castration-resistant prostate cancer (CRPC) from both human patients and a mouse xenograph model. We further identified an AR binding site in the promoter/enhancer region of BMI1, and confirmed BMI1 as the direct target of AR using gene-editing technology. We also demonstrated that high expression of BMI1 is critical for the development of castration-resistance. Our data also suggest that BMI1-specific inhibitors could be an effective treatment of CRPC.
Collapse
Affiliation(s)
- Sen Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Chao Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaqia Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qipeng Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Rui Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Yinan Li
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Lili Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yang Yi
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qingshu Meng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Wanyi Wang
- Center for Research Design & Analysis, Office of Research and Sponsored Programs, Texas Woman's University, Houston, TX, 77030, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Min Zhang
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tuo Deng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, 410011, China
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Wen S, Niu Y, Huang H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J Urol 2019; 7:203-218. [PMID: 33024699 PMCID: PMC7525085 DOI: 10.1016/j.ajur.2019.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western countries. Androgen receptor (AR) signaling plays key roles in the development of PCa. Androgen deprivation therapy (ADT) remains the standard therapy for advanced PCa. In addition to its ligand androgen, accumulating evidence indicates that posttranscriptional modification is another important mechanism to regulate AR activities during the progression of PCa, especially in castration resistant prostate cancer (CRPC). To date, a number of posttranscriptional modifications of AR have been identified, including phosphorylation (e.g. by CDK1), acetylation (e.g. by p300 and recognized by BRD4), methylation (e.g. by EZH2), ubiquitination (e.g. by SPOP), and SUMOylation (e.g. by PIAS1). These modifications are essential for the maintenance of protein stability, nuclear localization and transcriptional activity of AR. This review summarizes posttranslational modifications that influence androgen-dependent and -independent activities of AR, PCa progression and therapy resistance. We further emphasize that in addition to androgen, posttranslational modification is another important way to regulate AR activity, suggesting that targeting AR posttranslational modifications, such as proteolysis targeting chimeras (PROTACs) of AR, represents a potential and promising alternate for effective treatment of CRPC. Potential areas to be investigated in the future in the field of AR posttranslational modifications are also discussed.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, USA
| |
Collapse
|
45
|
Sang X, Han H, Li T, Lin SX. Mutual regulations and breast cancer cell control by steroidogenic enzymes: Dual sex-hormone receptor modulation upon 17β-HSD7 inhibition. J Steroid Biochem Mol Biol 2019; 193:105411. [PMID: 31207361 DOI: 10.1016/j.jsbmb.2019.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17β-HSD1, 17β-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17β-HSD7, STS, 11β-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17β-HSD7, STS and 11β-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17β-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17β-HSD7 and ERα.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
46
|
Rakow S, Pullamsetti SS, Bauer UM, Bouchard C. Assaying epigenome functions of PRMTs and their substrates. Methods 2019; 175:53-65. [PMID: 31542509 DOI: 10.1016/j.ymeth.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.
Collapse
Affiliation(s)
- Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
47
|
Zhu F, Rui L. PRMT5 in gene regulation and hematologic malignancies. Genes Dis 2019; 6:247-257. [PMID: 32042864 PMCID: PMC6997592 DOI: 10.1016/j.gendis.2019.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development, cell growth, proliferation, and differentiation. Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs), which are classified as type I and type II enzymes responsible for the formation of asymmetric and symmetric dimethylarginine, respectively. PRMT5 is the main type II enzyme that catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by generating repressive histone marks, including H2AR3me2s, H3R8me2s, and H4R3me2s. PRMT5 can also methylate nonhistone proteins such as the transcription factors p53, E2F1 and p65. Modifications of these proteins by PRMT5 are involved in diverse cellular processes, including transcription, translation, DNA repair, RNA processing, and metabolism. A growing literature demonstrates that PRMT5 expression is upregulated in hematologic malignancies, including leukemia and lymphoma, where PRMT5 regulates gene expression to promote cancer cell proliferation. Targeting PRMT5 by specific inhibitors has emerged as a potential therapeutic strategy to treat these diseases.
Collapse
Affiliation(s)
| | - Lixin Rui
- Department of Medicine and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| |
Collapse
|
48
|
Qin Y, Hu Q, Xu J, Ji S, Dai W, Liu W, Xu W, Sun Q, Zhang Z, Ni Q, Zhang B, Yu X, Xu X. PRMT5 enhances tumorigenicity and glycolysis in pancreatic cancer via the FBW7/cMyc axis. Cell Commun Signal 2019; 17:30. [PMID: 30922330 PMCID: PMC6440122 DOI: 10.1186/s12964-019-0344-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The epigenetic factor protein arginine methyltransferase 5 (PRMT5) has been reported to play vital roles in a wide range of cellular processes, such as gene transcription, genomic organization, differentiation and cell cycle control. However, its role in pancreatic cancer remains unclear. Our study aimed to investigate the roles of PRMT5 in pancreatic cancer prognosis and progression and to explore the underlying molecular mechanism. METHODS Real-time PCR, immunohistochemistry and analysis of a dataset from The Cancer Genome Atlas (TCGA) were performed to study the expression of PRMT5 at the mRNA and protein levels in pancreatic cancer. Cell proliferation assays, including cell viability, colony formation ability and subcutaneous mouse model assays, were utilized to confirm the role of PRMT5 in cell proliferation and tumorigenesis. A Seahorse extracellular flux analyzer, a glucose uptake kit, a lactate level measurement kit and the measurement of 18F-FDG (fluorodeoxyglucose) uptake by PET/CT (positron emission tomography/computed tomography) imaging were used to verify the role of PRMT5 in aerobic glycolysis, which sustains cell proliferation. The regulatory effect of PRMT5 on cMyc, a master regulator of oncogenesis and aerobic glycolysis, was explored by quantitative PCR and protein stability measurements. RESULTS PRMT5 expression was significantly upregulated in pancreatic cancer tissues compared with that in adjacent normal tissues. Clinically, elevated expression of PRMT5 was positively correlated with worse overall survival in pancreatic cancer patients. Silencing PRMT5 expression inhibited the proliferation of pancreatic cancer cells both in vitro and in vivo. Moreover, PRMT5 regulated aerobic glycolysis in vitro in cell lines, in vivo in pancreatic cancer patients and in a xenograft mouse model used to measure 18F-FDG uptake. We found that mechanistically, PRMT5 posttranslationally regulated cMyc stability via F-box/WD repeat-containing protein 7 (FBW7), an E3 ubiquitin ligase that controls cMyc degradation. Moreover, PRMT5 epigenetically regulated the expression of FBW7 in pancreatic cancer cells. CONCLUSIONS The present study demonstrated that PRMT5 epigenetically silenced the expression of the tumor suppressor FBW7, leading to increased cMyc levels and the subsequent enhancement of the proliferation of and aerobic glycolysis in pancreatic cancer cells. The PRMT5/FBW7/cMyc axis could be a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
49
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
50
|
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9:36705-36718. [PMID: 30613353 PMCID: PMC6291173 DOI: 10.18632/oncotarget.26404] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are known for their ability to catalyze methylation of specific arginine residues in a wide variety of cellular proteins, which are involved in a plethora of processes including signal transduction, transcription, and more recently DNA recombination. All members of the PRMT family can be grouped into three main classes depending on the type of methylation they catalyze. Type I PRMTs induce monomethylation and asymmetric dimethylation, while type II PRMTs catalyze monomethylation and symmetric dimethylation of specific arginine residues. In contrast, type III PRMTs carry out only monomethylation of arginine residues. In this review, we will focus on PRMT5, a type II PRMT essential for viability and normal development, which has been shown to be overexpressed in a wide variety of cancer cell types, owing it to the crucial role it plays in controlling key growth regulatory pathways. Furthermore, the role of PRMT5 in regulating expression and stability of key transcription factors that control normal stem cell function as well as cancer stem cell renewal will be discussed. We will review recent work that shows that through its ability to methylate various cellular proteins, PRMT5 functions as a master epigenetic regulator essential for growth and development, and we will highlight studies that have examined its dysregulation and the effects of its inhibition on cancer cell growth.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|