1
|
Lin X, Shao CS, Elsherbiny SM, Huang Q. Astaxanthin attenuates UV-irradiation aging process via activating JNK-1/DAF-16 in Caenorhabditis elegans. Photochem Photobiol 2025; 101:133-146. [PMID: 38695248 DOI: 10.1111/php.13958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 01/30/2025]
Abstract
Astaxanthin (AST) is a xanthophyll carotenoid with strong oxidation resistance, which can effectively scavenge various free radicals and protect organisms from oxidative damage. AST is also known to have prominent anti-aging effects, but the underlying mechanism of AST in anti-radiation aging is largely unknown. In this work, we applied ultraviolet (UV) irradiation to accelerate the aging of Caenorhabditis elegans (C. elegans) and treated the nematodes with AST to explore whether and how AST could attenuate the radiation-induced aging effect. Our results showed that AST improved the survival rate of C. elegans, reduced the aging biomarkers, and alleviated the mitochondrial dysfunction caused by the irradiation. Based on the transcriptome sequencing analysis, we identified that the key genes regulated by AST were involved in JNK-MAPK and DAF-16 longevity signaling pathways. Furthermore, we employed jnk-1 and daf-16 mutants and verified the role of the JNK-1/DAF-16 signaling pathway in the anti-aging effect. As such, this study has not only demonstrated that AST can resist the aging process caused by UV-irradiation but also revealed the anti-aging mechanism of AST through JNK-1/DAF-16 activation in C. elegans.
Collapse
Affiliation(s)
- Xiuping Lin
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms cortical foci dependent on its intrinsically disordered region and interactions with tubulins. Cell Rep 2024; 43:114776. [PMID: 39305484 PMCID: PMC11972086 DOI: 10.1016/j.celrep.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The EFA6 protein family, originally identified as Sec7 guanine nucleotide exchange factors, has also been found to regulate cortical microtubule (MT) dynamics. Here, we find that in the mature C. elegans epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). The EFA-6 IDR can form biomolecular condensates in vitro. In genetic screens for mutants with altered GFP::EFA-6 localization, we identified a gain-of-function (gf) mutation in α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. Lethality of tba-1(gf) is partially suppressed by loss of function in efa-6. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MT elimination domain (MTED). Our results reveal functionally important crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
3
|
Qiao Z, Sun X, Fu M, Zhou S, Han Y, Zhao X, Gong K, Peng C, Zhang W, Liu F, Ye C, Yang J. Co-exposure of decabromodiphenyl ethane and cadmium increases toxicity to earthworms: Enrichment, oxidative stress, damage and molecular binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134684. [PMID: 38788581 DOI: 10.1016/j.jhazmat.2024.134684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinlin Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
4
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms spatially restricted cortical foci dependent on its intrinsically disordered region and interactions with tubulins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.588158. [PMID: 38645057 PMCID: PMC11030407 DOI: 10.1101/2024.04.14.588158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Microtubules (MTs) are dynamic components of the cytoskeleton and play essential roles in morphogenesis and maintenance of tissue and cell integrity. Despite recent advances in understanding MT ultrastructure, organization, and growth control, how cells regulate MT organization at the cell cortex remains poorly understood. The EFA-6/EFA6 proteins are recently identified membrane-associated proteins that inhibit cortical MT dynamics. Here, combining visualization of endogenously tagged C. elegans EFA-6 with genetic screening, we uncovered tubulin-dependent regulation of EFA-6 patterning. In the mature epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). We further show the EFA-6 IDR is sufficient to form biomolecular condensates in vitro. In screens for mutants with altered GFP::EFA-6 localization, we identified a novel gain-of-function (gf) mutation in an α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. tba-1(gf) animals exhibit temperature-sensitive embryonic lethality, which is partially suppressed by efa-6(lf), indicating the interaction between tubulins and EFA-6 is important for normal development. TBA-1(gf) shows reduced incorporation into filamentous MTs but has otherwise mild effects on cellular MT organization. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci formation requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. The tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MTED. Our results reveal a novel crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N. Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Andrew D. Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| |
Collapse
|
5
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
6
|
Alesci A, Capillo G, Fumia A, Albano M, Messina E, Spanò N, Pergolizzi S, Lauriano ER. Coelomocytes of the Oligochaeta earthworm Lumbricus terrestris (Linnaeus, 1758) as evolutionary key of defense: a morphological study. ZOOLOGICAL LETTERS 2023; 9:5. [PMID: 36871038 PMCID: PMC9985225 DOI: 10.1186/s40851-023-00203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Metazoans have several mechanisms of internal defense for their survival. The internal defense system evolved alongside the organisms. Annelidae have circulating coelomocytes that perform functions comparable to the phagocytic immune cells of vertebrates. Several studies have shown that these cells are involved in phagocytosis, opsonization, and pathogen recognition processes. Like vertebrate macrophages, these circulating cells that permeate organs from the coelomic cavity capture or encapsulate pathogens, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, they produce a range of bioactive proteins involved in immune response and perform detoxification functions through their lysosomal system. Coelomocytes can also participate in lithic reactions against target cells and the release of antimicrobial peptides. Our study immunohistochemically identify coelomocytes of Lumbricus terrestris scattered in the epidermal and the connective layer below, both in the longitudinal and in the smooth muscle layer, immunoreactive for TLR2, CD14 and α-Tubulin for the first time. TLR2 and CD14 are not fully colocalized with each other, suggesting that these coelomocytes may belong to two distinct families. The expression of these immune molecules on Annelidae coelomocytes confirms their crucial role in the internal defense system of these Oligochaeta protostomes, suggesting a phylogenetic conservation of these receptors. These data could provide further insights into the understanding of the internal defense system of the Annelida and of the complex mechanisms of the immune system in vertebrates.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Nunziacarla Spanò
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164, Messina, Italy
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
7
|
Fang J, Wang B, Fang K, Liu T, Yan S, Wang X. Assessing the bioavailability and biotoxicity of spiromesifen and its main metabolite spiromesifen-enol (M01) reveals the defense mechanisms of earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151910. [PMID: 34838556 DOI: 10.1016/j.scitotenv.2021.151910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
As a promising acaricide and potentially hazardous material, the defense mechanisms of non-target organisms to its exposure are unknown. This study investigates the bioavailability and biotoxicity of spiromesifen and spiromesifen-enol (M01), its main metabolite, in Eisenia fetida. The results showed that M01 was more persistent in the soil environment and E. fetida than spiromesifen. Transcriptome analysis indicated that the spiromesifen- and M01-induced differentially expressed genes (DEGs) were mainly enriched in lysosomal and phagosomal pathways. Analysis of the key common DEGs showed that both spiromesifen and M01 significantly influenced the lysosomes, phagosomes, antioxidant systems, and detoxification systems. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that spiromesifen and M01 damaged E. fetida epidermis and enhanced lysosomal and phagosomal activities. Significant oxidative stress effects were observed at the end of exposure. The hydroxyl free radical (·OH-) content and neutral red retention time (NRRT) could serve as sensitive early biomarkers to predict their pollution. These results revealed the synergistic effects of the epidermis, lysosomes, phagosomes, antioxidant systems, and detoxification system in resisting spiromesifen- and M01-induced damage, which could contribute to the defense mechanisms of non-target organisms against these pollutants.
Collapse
Affiliation(s)
- Jianwei Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Binning Wang
- College of Land Science and Technology, China Agricultural University (CAU), Beijing 100083, China
| | - Kuan Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Tong Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| | - Saihong Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuguo Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| |
Collapse
|
8
|
Ma Y, Xie J, Wijaya CS, Xu S. From wound response to repair - lessons from C. elegans. CELL REGENERATION 2021; 10:5. [PMID: 33532882 PMCID: PMC7855202 DOI: 10.1186/s13619-020-00067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
As a result of evolution, the ability to repair wounds allows organisms to combat environment insults. Although the general process of wound healing at the tissue level has been described for decades, the detailed molecular mechanisms regarding the early wound response and rapid wound repair at the cellular level remain little understood. Caenorhabditis elegans is a model organism widely used in the field of development, neuroscience, programmed cell death etc. The nematode skin is composed of a large epidermis associated with a transparent extracellular cuticle, which likely has a robust capacity for epidermal repair. Yet, until the last decades, relatively few studies had directly analyzed the wound response and repair process. Here we review recent findings in how C. elegans epidermis responds to wounding and initiates early actin-polymerization-based wound closure as well as later membrane repair. We also discussed some remained outstanding questions for future study.
Collapse
Affiliation(s)
- Yicong Ma
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Xie
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chandra Sugiarto Wijaya
- Center for Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Suhong Xu
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Center for Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
10
|
Castiglioni VG, Pires HR, Rosas Bertolini R, Riga A, Kerver J, Boxem M. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. eLife 2020; 9:e62067. [PMID: 33300872 PMCID: PMC7755398 DOI: 10.7554/elife.62067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Helena R Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Rodrigo Rosas Bertolini
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Jana Kerver
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
11
|
Fu H, Zhou H, Yu X, Xu J, Zhou J, Meng X, Zhao J, Zhou Y, Chisholm AD, Xu S. Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling. Nat Commun 2020; 11:1050. [PMID: 32103012 PMCID: PMC7044169 DOI: 10.1038/s41467-020-14885-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Organisms respond to tissue damage through the upregulation of protective responses which restore tissue structure and metabolic function. Mitochondria are key sources of intracellular oxidative metabolic signals that maintain cellular homeostasis. Here we report that tissue and cellular wounding triggers rapid and reversible mitochondrial fragmentation. Elevated mitochondrial fragmentation either in fzo-1 fusion-defective mutants or after acute drug treatment accelerates actin-based wound closure. Wounding triggered mitochondrial fragmentation is independent of the GTPase DRP-1 but acts via the mitochondrial Rho GTPase MIRO-1 and cytosolic Ca2+. The fragmented mitochondria and accelerated wound closure of fzo-1 mutants are dependent on MIRO-1 function. Genetic and transcriptomic analyzes show that enhanced mitochondrial fragmentation accelerates wound closure via the upregulation of mtROS and Cytochrome P450. Our results reveal how mitochondrial dynamics respond to cellular and tissue injury and promote tissue repair. Mitochondria are important organelles that generate and respond to signals to maintain cellular homeostasis. Here the authors show that wounding triggers GTPase MIRO-1- and calcium-dependent mitochondrial fragmentation, which aids tissue wound repair through cytochrome P450 and mitochondrial reactive oxygen species.
Collapse
Affiliation(s)
- Hongying Fu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hengda Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China
| | - Xinghai Yu
- Department of System Biology, School of Life Science, Wuhan University, 430072, Wuhan, China
| | - Jingxiu Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China
| | - Jinghua Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xinan Meng
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jianzhi Zhao
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yu Zhou
- Department of System Biology, School of Life Science, Wuhan University, 430072, Wuhan, China
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China. .,Women's Hospital of Zhejiang University, School of Medicine Hangzhou, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Taffoni C, Omi S, Huber C, Mailfert S, Fallet M, Rupprecht JF, Ewbank JJ, Pujol N. Microtubule plus-end dynamics link wound repair to the innate immune response. eLife 2020; 9:e45047. [PMID: 31995031 PMCID: PMC7043892 DOI: 10.7554/elife.45047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
The skin protects animals from infection and physical damage. In Caenorhabditis elegans, wounding the epidermis triggers an immune reaction and a repair response, but it is not clear how these are coordinated. Previous work implicated the microtubule cytoskeleton in the maintenance of epidermal integrity (Chuang et al., 2016). Here, by establishing a simple wounding system, we show that wounding provokes a reorganisation of plasma membrane subdomains. This is followed by recruitment of the microtubule plus end-binding protein EB1/EBP-2 around the wound and actin ring formation, dependent on ARP2/3 branched actin polymerisation. We show that microtubule dynamics are required for the recruitment and closure of the actin ring, and for the trafficking of the key signalling protein SLC6/SNF-12 toward the injury site. Without SNF-12 recruitment, there is an abrogation of the immune response. Our results suggest that microtubule dynamics coordinate the cytoskeletal changes required for wound repair and the concomitant activation of innate immunity.
Collapse
Affiliation(s)
- Clara Taffoni
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Shizue Omi
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Caroline Huber
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Sébastien Mailfert
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Mathieu Fallet
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | | | - Jonathan J Ewbank
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Nathalie Pujol
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| |
Collapse
|
13
|
Zafari F, Shirian S, Sadeghi M, Teimourian S, Bakhtiyari M. CD93 hematopoietic stem cells improve diabetic wound healing by VEGF activation and downregulation of DAPK-1. J Cell Physiol 2019; 235:2366-2376. [PMID: 31549396 DOI: 10.1002/jcp.29142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023]
Abstract
Diabetes is associated with numerous complications, such as diabetic skin wounds or ulcerations. The aim of this study was to evaluate experimentally the effectiveness of applying polycaprolactone (PCL)-gelatin scaffold, with or without rat CD93 hematopoietic stem cells (HSCs), in diabetic wound healing in a rat model. CD93 HSCs were aseptically isolated from rat bone marrow using fluorescent activated cell sorting (FACS) method and FACS-SORTER. A total of 25 Wistar rats were divided into five groups including Group I (sham, nondiabetic, and wound covered only with sterile dressing), II (control, diabetic rat), III (CD93 HSCs alone), IV (PCL-gelatin scaffold), and V (CD93 HSCs+PCL-gelatin scaffold). Animals were killed on Days 7, 14, or 28 posttreatment and histological sections were blindly evaluated by two expert pathologists. Death-associated protein kinase 1 (DAPK-1) gene and vesicular endothelial growth factors (VEGF) protein expression were evaluated using reverse transcription-polymerase chain reaction and western blot, respectively. The thickest and the thinnest epidermises microscopically were belonged to CD93+HSCs+scaffold and the control group, respectively. The growth rate of the epidermis and adnexal epithelia was the highest in both the cell and cell+scaffold groups. Evaluation of the protein expression level of VEGF indicated that the expression levels of this growth factor were the most on Day 7 posttreatment in sham, HSCs alone, and HSCs cell+scaffold groups. While the lowest expression levels of this growth factor was detected in the control and scaffold groups. The gene expression level of DAPK-1 on Day 7 posttreatment was higher than that of the Day 14 posttreatment in all groups. The highest and lowest gene expression levels of DAPK-1 belonged to control and sham groups, respectively. According to our findings, CD93 HSCs offer new prospects for the treatment of diabetic ulcers and concomitant application of these cells with PCL-gelatin nanofiber scaffold significantly improves diabetic wound treatment.
Collapse
Affiliation(s)
- Fariba Zafari
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhou Q, Wang L, Chen H, Xu B, Xu W, Sheng Y, Duan Y. 2,3',4,4',5-Pentachlorobiphenyl induced autophagy of the thyrocytes via DAPK2/PKD/VPS34 pathway. Arch Toxicol 2019; 93:1639-1648. [PMID: 31020377 DOI: 10.1007/s00204-019-02458-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
2,3',4,4',5-Pentachlorobiphenyl (PCB118) has been shown to cause thyroidal ultrastructure lesions, but the underlying mechanism remains elusive. This study aimed to elucidate the mechanism by which PCB118 induces the abnormalities of the thyrocytes. Wistar rats were injected intraperitoneally with PCB118 (0, 10, 100 and 1000 μg/kg/d) for 13 weeks, and FRTL-5 cells were treated with PCB118 (0, 0.25, 2.5 and 25 nM). Transmission electron microscopy showed typical autophagosomes in the thyroid of PCB118-treated rats. Immunofluorescence staining showed dose-dependent increase of autophagy in FRTL-5 cells exposed to PCB118. In vivo and vitro studies found that Tubulin beta 3 class III (Tubb3) mRNA and protein levels decreased significantly, while Death-associated protein kinase 2 (DAPK2) increased after PCB118 exposure, and the binding between Tubb3 and DAPK2 was enhanced by PCB118 in a dose-dependent manner. Moreover, PCB118 resulted in the upregulation of Protein kinase D (PKD) and downregulation of Phosphatidylinositol 3-kinase (VPS34) in mRNA levels, and the activation of PKD and VPS34 phosphorylation. Additionally, Tubb3 small interfering RNA (siTubb3) suppressed DAPK2 protein expression and PKD phosphorylation in FRTL-5 cells, while VPS34 phosphorylation was inhibited by siPKD. Furthermore, DAPK2, PKD and VPS34 were upregulated by Tubb3 overexpression following PCB118 exposure. Our results demonstrate that low concentrations of PCB118 could promote thyroid autophagy formation and cause the abnormalities in thyroidal ultrastructure, and these effects are likely to be mediated by DAPK2/PKD/VPS34 dependent pathway.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Li Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Bojin Xu
- Endocrinology Department, School of Medicine, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenli Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Duan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
15
|
Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules 2019; 9:biom9040151. [PMID: 30999631 PMCID: PMC6523460 DOI: 10.3390/biom9040151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological effect of multiple natural biomolecules such as IFN-γ, TNF-α, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 protein required for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered.
Collapse
|
16
|
Gong T, Yan Y, Zhang J, Liu S, Liu H, Gao J, Zhou X, Chen J, Shi A. PTRN-1/CAMSAP promotes CYK-1/formin-dependent actin polymerization during endocytic recycling. EMBO J 2018; 37:embj.201798556. [PMID: 29567645 DOI: 10.15252/embj.201798556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN-1 is required for the recycling of clathrin-independent cargo hTAC-GFP The N-terminal calponin homology (CH) domain and central coiled-coils (CC) region of PTRN-1 can synergistically sustain the flow of hTAC-GFP We identified CYK-1/formin as a binding partner of PTRN-1. The N-terminal GTPase-binding domain (GBD) of CYK-1 serves as the binding interface for the PTRN-1 CH domain. The presence of the PTRN-1 CH domain promoted CYK-1-mediated actin polymerization, which suggests that the PTRN-1-CH:CYK-1-GBD interaction efficiently relieves autoinhibitory interactions within CYK-1. As expected, the overexpression of the CYK-1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC-GFP overaccumulation phenotype in ptrn-1 mutants. We conclude that the PTRN-1 CH domain is required to stimulate CYK-1 to facilitate actin dynamics during endocytic recycling.
Collapse
Affiliation(s)
- Ting Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Takeda M, Sami MM, Wang YC. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat Cell Biol 2017; 20:36-45. [PMID: 29203884 DOI: 10.1038/s41556-017-0001-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. We show that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism.
Collapse
Affiliation(s)
- Michiko Takeda
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Mustafa M Sami
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
19
|
Chen F, Chisholm AD, Jin Y. Tissue-specific regulation of alternative polyadenylation represses expression of a neuronal ankyrin isoform in C. elegans epidermal development. Development 2017; 144:698-707. [PMID: 28087624 DOI: 10.1242/dev.146001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In C. elegans, several ankyrin isoforms are produced from the unc-44 locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase dapk-1 We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of sydn-1 blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of dapk-1 These effects of sydn-1 are mediated by ssup-72 autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in dapk-1 mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA .,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|