1
|
McCullough A, Huang S, Weber MM. Pathogenicity and virulence of Chlamydia trachomatis: Insights into host interactions, immune evasion, and intracellular survival. Virulence 2025; 16:2503423. [PMID: 40353442 DOI: 10.1080/21505594.2025.2503423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen and the leading cause of bacterial sexually transmitted infections and infectious blindness worldwide. All Chlamydia species share a unique biphasic developmental cycle, alternating between infectious elementary bodies (EBs) and replicative reticulate bodies (RBs). The pathogenesis of C. trachomatis is driven by a sophisticated arsenal of adhesins, conventional type III secretion system effector proteins, and inclusion membrane proteins that subvert host cellular processes to establish infection and promote survival. In this review, we highlight the molecular mechanisms underlying C. trachomatis infection, focusing on key stages of its developmental cycle, including adhesion, invasion, replication, and egress. We delve into its interactions with host cytoskeletal structures, immune signaling pathways, and intracellular trafficking systems, as well as its strategies for immune evasion and persistence. Understanding these mechanisms offers critical insights into C. trachomatis pathogenesis and identifies promising avenues for therapeutic and vaccine development.
Collapse
Affiliation(s)
- Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven Huang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
2
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
3
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
4
|
Zhang Y, Yu Z, Sun M, Du R, Gao H, Dai Q, Dong Y, Liu C, Yin M, Xu T, Zhang X, Liu J, Xu J. Redox-modulated SNX25 as a novel regulator of GPCR-G protein signaling from endosomes. Redox Biol 2024; 75:103253. [PMID: 38936254 PMCID: PMC11259961 DOI: 10.1016/j.redox.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
GPCR-G protein signaling from endosomes plays a crucial role in various physiological and pathological processes. However, the mechanism by which endosomal G protein signaling is terminated remains largely unknown. In this study, we aimed to investigate the regulatory mechanisms involved in terminating the signaling of Gα subunits from endosomes. Through structural analysis and cell-based assays, we have discovered that SNX25, a protein that targets endosomes via its PXA or PXC domain, interacts with regulator of G protein signaling (RGS) proteins (including RGS2, RGS4, RGS8, and RGS17) in a redox-regulated manner. The interaction between SNX25 and these RGS proteins enhances their GTPase-accelerating activity towards Gαi/q and their ability to bind GDP-bound (inactive form) Gαi/q. As a result, SNX25 recruits these RGS proteins to endosomes, leading to the termination of endosomal Gαi/q signaling. Furthermore, we have found that the SNX25/RGS complex also exerts a negative regulatory effect on Gαi/q signaling from the plasma membrane. This is achieved by recruiting Gαi/q to endosomes and preventing its activation on the plasma membrane. Our findings shed light on the previously unknown role of redox-modulated SNX25 in inhibiting Gαi/q signaling, thereby uncovering a novel mechanism for terminating Gαi/q signaling from endosomes. Importantly, this study expands our understanding of the regulation of GPCR-Gαi/q signaling beyond the plasma membrane.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijun Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingwei Sun
- Basic Research Center, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China
| | - Ruyue Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanhan Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiankun Dai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Cuicui Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Menghui Yin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Xiaofei Zhang
- Basic Research Center, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
5
|
Pha K, Mirrashidi K, Sherry J, Tran CJ, Herrera CM, McMahon E, Elwell CA, Engel JN. The Chlamydia effector IncE employs two short linear motifs to reprogram host vesicle trafficking. Cell Rep 2024; 43:114624. [PMID: 39154341 DOI: 10.1016/j.celrep.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Chlamydia trachomatis, a leading cause of bacterial sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs [inclusion membrane proteins]) into the inclusion membrane. Here, we characterize IncE, a multifunctional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C terminus. The proximal SLiM, by mimicking just a small portion of an R-N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) motif, binds and recruits syntaxin (STX)7- and STX12-containing vesicles to the inclusion. The distal SLiM mimics the sorting nexin (SNX)5 and SNX6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding two distinct vesicle classes, IncE brings these vesicles in close apposition with each other at the inclusion to facilitate C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to enable rapid evolution in a limited protein space to disrupt host cell processes.
Collapse
Affiliation(s)
- Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathleen Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cuong Joseph Tran
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara M Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Bhat M, Nambiar A, Edakkandiyil L, Abraham IM, Sen R, Negi M, Manjithaya R. A genetically-encoded fluorescence-based reporter to spatiotemporally investigate mannose-6-phosphate pathway. Mol Biol Cell 2024; 35:mr6. [PMID: 38888935 PMCID: PMC11321044 DOI: 10.1091/mbc.e23-09-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
Collapse
Affiliation(s)
- Mallika Bhat
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Irine Maria Abraham
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ritoprova Sen
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Mamta Negi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Professor and chair, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
7
|
Herrera CM, McMahon E, Swaney DL, Sherry J, Pha K, Adams-Boone K, Johnson JR, Krogan NJ, Stevers M, Solomon D, Elwell C, Engel J. The Chlamydia trachomatis Inc Tri1 interacts with TRAF7 to displace native TRAF7 interacting partners. Microbiol Spectr 2024; 12:e0045324. [PMID: 38814079 PMCID: PMC11218536 DOI: 10.1128/spectrum.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inclusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor-associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen-activated protein kinase kinase kinase 2 (MEKK2), and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection.IMPORTANCEChlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis-secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrated that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections but also in understanding the role of TRAF7 in cancer.
Collapse
Affiliation(s)
- Clara M. Herrera
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Eleanor McMahon
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Jessica Sherry
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Khavong Pha
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kathleen Adams-Boone
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey R. Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Meredith Stevers
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - David Solomon
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Cherilyn Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joanne Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Pha K, Mirrashidi K, Sherry J, Tran CJ, Herrera CM, McMahon E, Elwell CA, Engel JN. The Chlamydia effector IncE employs two short linear motifs to reprogram host vesicle trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590830. [PMID: 38712241 PMCID: PMC11071397 DOI: 10.1101/2024.04.23.590830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chlamydia trachomatis, a leading cause of bacteria sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs) into the inclusion membrane. Here, we characterize IncE, a multi-functional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C-terminus. The proximal SLiM mimics an R-SNARE motif to recruit syntaxin (STX) 7 and 12-containing vesicles to the inclusion. The distal SLiM mimics the Sorting Nexin (SNX) 5 and 6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding to two distinct vesicle classes, IncE reprograms host cell trafficking to promote the formation of a class of hybrid vesicles at the inclusion that are required for C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to facilitate rapid evolution in a limited protein space to disrupt host cell processes.
Collapse
|
9
|
Sanchez L, Lensen A, Connor MG, Hamon M, Enninga J, Valenzuela C. Shigella generates distinct IAM subpopulations during epithelial cell invasion to promote efficient intracellular niche formation. Eur J Cell Biol 2024; 103:151381. [PMID: 38183814 DOI: 10.1016/j.ejcb.2023.151381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.
Collapse
Affiliation(s)
- Lisa Sanchez
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Arthur Lensen
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Michael G Connor
- Institut Pasteur, Université Paris Cité, Chromatin and Infection Unit, 75015 Paris, France
| | - Mélanie Hamon
- Institut Pasteur, Université Paris Cité, Chromatin and Infection Unit, 75015 Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| |
Collapse
|
10
|
Herrera CM, McMahon E, Swaney DL, Sherry J, Pha K, Adams-Boone K, Johnson JR, Krogan NJ, Stevers M, Solomon D, Elwell C, Engel J. The Chlamydia trachomatis Inc Tri1 interacts with TRAF7 to displace native TRAF7 interacting partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.581999. [PMID: 38464023 PMCID: PMC10925117 DOI: 10.1101/2024.02.26.581999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the US and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inc lusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen activated protein kinase kinase kinase 2 (MEKK2) and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection. Importance Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the US and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrate that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections, but also in understanding the role of TRAF7 in cancer.
Collapse
|
11
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
12
|
Chen Q, Sun M, Han X, Xu H, Liu Y. Structural determinants specific for retromer protein sorting nexin 5 in regulating subcellular retrograde membrane trafficking. J Biomed Res 2023; 37:492-506. [PMID: 37964759 PMCID: PMC10687533 DOI: 10.7555/jbr.37.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/16/2023] Open
Abstract
The endosomal trafficking of signaling membrane proteins, such as receptors, transporters and channels, is mediated by the retromer-mediated sorting machinery, composed of a cargo-selective vacuolar protein sorting trimer and a membrane-deforming subunit of sorting nexin proteins. Recent studies have shown that the isoforms, sorting nexin 5 (SNX5) and SNX6, have played distinctive regulatory roles in retrograde membrane trafficking. However, the molecular insight determined functional differences within the proteins remains unclear. We reported that SNX5 and SNX6 had distinct binding affinity to the cargo protein vesicular monoamine transporter 2 (VMAT2). SNX5, but not SNX6, specifically interacted with VMAT2 through the Phox domain, which contains an alpha-helix binding motif. Using chimeric mutagenesis, we identified that several key residues within this domain were unique in SNX5, but not SNX6, and played an auxiliary role in its binding to VMAT2. Importantly, we generated a set of mutant SNX6, in which the corresponding key residues were mutated to those in SNX5. In addition to the gain in binding affinity to VMAT2, their overexpression functionally rescued the altered retrograde trafficking of VMAT2 induced by siRNA-mediated depletion of SNX5. These data strongly suggest that SNX5 and SNX6 have different functions in retrograde membrane trafficking, which is determined by the different structural elements within the Phox domain of two proteins. Our work provides a new information on the role of SNX5 and SNX6 in the molecular regulation of retrograde membrane trafficking and vesicular membrane targeting in monoamine neurotransmission and neurological diseases.
Collapse
Affiliation(s)
- Qing Chen
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meiheng Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Neuroscience, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
14
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
16
|
Luís MP, Pereira IS, Bugalhão JN, Simões CN, Mota C, Romão MJ, Mota LJ. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Infect Immun 2023; 91:e0040522. [PMID: 36877064 PMCID: PMC10112248 DOI: 10.1128/iai.00405-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.
Collapse
Affiliation(s)
- Maria Pequito Luís
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Serrano Pereira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana N. Bugalhão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina N. Simões
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
17
|
ESCPE-1 mediates retrograde endosomal sorting of the SARS-CoV-2 host factor Neuropilin-1. Proc Natl Acad Sci U S A 2022; 119:e2201980119. [PMID: 35696571 PMCID: PMC9231623 DOI: 10.1073/pnas.2201980119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.
Collapse
|
18
|
Xu H, Chang F, Jain S, Heller BA, Han X, Liu Y, Edwards RH. SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3. J Cell Biol 2022; 221:e202106083. [PMID: 35426896 PMCID: PMC9016777 DOI: 10.1083/jcb.202106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Shweta Jain
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Bradley Austin Heller
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Departments of Pharmacology and Biological Chemistry, University of Pittsburgh, Pittsburgh, PA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Zhou C, Wu Z, Du W, Que H, Wang Y, Ouyang Q, Jian F, Yuan W, Zhao Y, Tian R, Li Y, Chen Y, Gao S, Wong CCL, Rong Y. Recycling of autophagosomal components from autolysosomes by the recycler complex. Nat Cell Biol 2022; 24:497-512. [PMID: 35332264 DOI: 10.1038/s41556-022-00861-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Autolysosomes contain components from autophagosomes and lysosomes. The contents inside the autolysosomal lumen are degraded during autophagy, while the fate of autophagosomal components on the autolysosomal membrane remains unknown. Here we report that the autophagosomal membrane components are not degraded, but recycled from autolysosomes through a process coined in this study as autophagosomal components recycling (ACR). We further identified a multiprotein complex composed of SNX4, SNX5 and SNX17 essential for ACR, which we termed 'recycler'. In this, SNX4 and SNX5 form a heterodimer that recognizes autophagosomal membrane proteins and is required for generating membrane curvature on autolysosomes, both via their BAR domains, to mediate the cargo sorting process. SNX17 interacts with both the dynein-dynactin complex and the SNX4-SNX5 dimer to facilitate the retrieval of autophagosomal membrane components. Our discovery of ACR and identification of the recycler reveal an important retrieval and recycling pathway on autolysosomes.
Collapse
Affiliation(s)
- Chuchu Zhou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Du
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huilin Que
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufen Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Ouyang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Jian
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weigang Yuan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tian
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. A bacterial membrane sculpting protein with BAR domain-like activity. eLife 2021; 10:60049. [PMID: 34643180 PMCID: PMC8687657 DOI: 10.7554/elife.60049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.
Collapse
Affiliation(s)
- Daniel A Phillips
- Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Grace W Chong
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Lauren Ann Metskas
- Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Aleksandr E Miklos
- BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
| | - Grant J Jensen
- Biology and Bioengineering, California Institute of Technology, Pasadena, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| |
Collapse
|
21
|
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics 2021; 18:483-502. [PMID: 34351250 DOI: 10.1080/14789450.2021.1962302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestin, GAT and VHS modules, membrane-perturbing annexin, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids and assembled bacterial and viral particles. EXPERT OPINION The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses, and lipidons as lipid "codons" recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
23
|
Yong X, Mao L, Shen X, Zhang Z, Billadeau DD, Jia D. Targeting Endosomal Recycling Pathways by Bacterial and Viral Pathogens. Front Cell Dev Biol 2021; 9:648024. [PMID: 33748141 PMCID: PMC7970000 DOI: 10.3389/fcell.2021.648024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Andersen SE, Bulman LM, Steiert B, Faris R, Weber MM. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Pathog Dis 2021; 79:ftaa078. [PMID: 33512479 PMCID: PMC7862739 DOI: 10.1093/femspd/ftaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.
Collapse
Affiliation(s)
- Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lanci M Bulman
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
27
|
Cui Y, Yang Z, Flores-Rodriguez N, Follett J, Ariotti N, Wall AA, Parton RG, Teasdale RD. Formation of retromer transport carriers is disrupted by the Parkinson disease-linked Vps35 D620N variant. Traffic 2021; 22:123-136. [PMID: 33347683 DOI: 10.1111/tra.12779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022]
Abstract
Retromer core complex is an endosomal scaffold that plays a critical role in orchestrating protein trafficking within the endosomal system. Here we characterized the effect of the Parkinson's disease-linked Vps35 D620N in the endo-lysosomal system using Vps35 D620N rescue cell models. Vps35 D620N fully rescues the lysosomal and autophagy defects caused by retromer knock-out. Analogous to Vps35 knock out cells, the endosome-to-trans-Golgi network transport of cation-independent mannose 6-phosphate receptor (CI-M6PR) is impaired in Vps35 D620N rescue cells because of a reduced capacity to form endosome transport carriers. Cells expressing the Vps35 D620N variant have altered endosomal morphology, resulting in smaller, rounder structures with less tubule-like branches. At the molecular level retromer incorporating Vps35 D620N variant has a decreased binding to retromer associated proteins wiskott-aldrich syndrome protein and SCAR homologue (WASH) and SNX3 which are known to associate with retromer to form the endosome transport carriers. Hence, the partial defects on retrograde protein trafficking carriers in the presence of Vps35 D620N represents an altered cellular state able to cause Parkinson's disease.
Collapse
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Neftali Flores-Rodriguez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jordan Follett
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam A Wall
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Rohan D Teasdale
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
29
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
30
|
Host and Bacterial Glycolysis during Chlamydia trachomatis Infection. Infect Immun 2020; 88:IAI.00545-20. [PMID: 32900818 DOI: 10.1128/iai.00545-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the leading cause of noncongenital blindness and causative agent of the most common sexually transmitted infection of bacterial origin. With a reduced genome, C. trachomatis is dependent on its host for survival, in part due to a need for the host cell to compensate for incomplete bacterial metabolic pathways. However, relatively little is known regarding how C. trachomatis is able to hijack host cell metabolism. In this study, we show that two host glycolytic enzymes, aldolase A and pyruvate kinase, as well as lactate dehydrogenase, are enriched at the C. trachomatis inclusion membrane during infection. Inclusion localization was not species specific, since a similar phenotype was observed with C. muridarum Time course experiments showed that the number of positive inclusions increased throughout the developmental cycle. In addition, these host enzymes colocalized to the same inclusion, and their localization did not appear to be dependent on sustained bacterial protein synthesis or on intact host actin, vesicular trafficking, or microtubules. Depletion of the host glycolytic enzyme aldolase A resulted in decreased inclusion size and infectious progeny production, indicating a role for host glycolysis in bacterial growth. Finally, quantitative PCR analysis showed that expression of C. trachomatis glycolytic enzymes inversely correlated with host enzyme localization at the inclusion. We discuss potential mechanisms leading to inclusion localization of host glycolytic enzymes and how it could benefit the bacteria. Altogether, our findings provide further insight into the intricate relationship between host and bacterial metabolism during Chlamydia infection.
Collapse
|
31
|
Meyer MD, Ryck JD, Goormachtig S, Van Damme P. Keeping in Touch with Type-III Secretion System Effectors: Mass Spectrometry-Based Proteomics to Study Effector-Host Protein-Protein Interactions. Int J Mol Sci 2020; 21:E6891. [PMID: 32961832 PMCID: PMC7555288 DOI: 10.3390/ijms21186891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein-protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector-host protein-protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector-host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes.
Collapse
Affiliation(s)
- Margaux De Meyer
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Medical Biotechnology, Technologiepark 75, 9052 Zwijnaarde, Belgium
| | - Joren De Ryck
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
| |
Collapse
|
32
|
Faris R, Merling M, Andersen SE, Dooley CA, Hackstadt T, Weber MM. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection. Cell Rep 2020; 26:3380-3390.e5. [PMID: 30893609 DOI: 10.1016/j.celrep.2019.02.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 01/25/2023] Open
Abstract
Chlamydial infection requires the formation of a membrane-bound vacuole, termed the inclusion, that undergoes extensive interactions with select host organelles. The importance of the Inc protein CT229 in the formation and maintenance of the chlamydial inclusion was recently highlighted by studies demonstrating that its absence during infection results in reduced bacterial replication, premature inclusion lysis, and host cell death. Previous reports have indicated that CT229 binds Rab GTPases; however, the physiological implications of this interaction are unknown. Here, we show that CT229 regulates host multivesicular trafficking by recruiting multiple Rab GTPases and their cognate effectors to the inclusion. We demonstrate that CT229 specifically modulates clathrin-coated vesicle trafficking and regulates the trafficking of transferrin and the mannose-6-phosphate receptor, both of which are crucial for proper chlamydial development. This study highlights CT229 as a master regulator of multiple host vesicular trafficking pathways essential for chlamydial infection.
Collapse
Affiliation(s)
- Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marlena Merling
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Cheryl A Dooley
- Host Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA
| | - Ted Hackstadt
- Host Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Yong X, Zhao L, Deng W, Sun H, Zhou X, Mao L, Hu W, Shen X, Sun Q, Billadeau DD, Xue Y, Jia D. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol 2020; 18:e3000631. [PMID: 32150533 PMCID: PMC7082075 DOI: 10.1371/journal.pbio.3000631] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Endocytic recycling of internalized transmembrane proteins is essential for many important physiological processes. Recent studies have revealed that retromer-related Sorting Nexin family (SNX)–Bin/Amphiphysin/Rvs (BAR) proteins can directly recognize cargoes like cation-independent mannose 6-phosphate receptor (CI-MPR) and Insulin-like growth factor 1 receptor (IGF1R); however, it remains poorly understood how SNX-BARs select specific cargo proteins and whether they recognize additional ligands. Here, we discovered that the binding between SNX-BARs and CI-MPR or IGF1R is mediated by the phox-homology (PX) domain of SNX5 or SNX6 and a bipartite motif, termed SNX-BAR-binding motif (SBM), in the cargoes. Using this motif, we identified over 70 putative SNX-BAR ligands, many of which play critical roles in apoptosis, cell adhesion, signal transduction, or metabolite homeostasis. Remarkably, SNX-BARs could cooperate with both SNX27 and retromer in the recycling of ligands encompassing the SBM, PDZ-binding motif, or both motifs. Overall, our studies establish that SNX-BARs function as a direct cargo-selecting module for a large set of transmembrane proteins transiting the endosome, in addition to their roles in phospholipid recognition and biogenesis of tubular structures. Internalized transmembrane proteins can be recognized by specific protein complexes and diverted away from the degradation process. This study identifies a new sorting motif recognized by retromer-linked SNX-BAR proteins and reveals a large repertoire of potential cargoes recycled by the SNX-BAR proteins.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Wankun Deng
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbin Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Wenfeng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qingxiang Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yu Xue
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
35
|
Weeratunga S, Paul B, Collins BM. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol 2020; 65:17-27. [PMID: 32155566 DOI: 10.1016/j.ceb.2020.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport-mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.
Collapse
Affiliation(s)
- Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Blessy Paul
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia; University of Texas Southwestern Medical Center, Department of Cell Biology, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
36
|
The vacuole guard hypothesis: how intravacuolar pathogens fight to maintain the integrity of their beloved home. Curr Opin Microbiol 2020; 54:51-58. [PMID: 32044688 DOI: 10.1016/j.mib.2020.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Intravacuolar bacterial pathogens establish intracellular niches by constructing membrane-encompassed compartments. The vacuoles surrounding the bacteria are remarkably stable, facilitating microbial replication and preventing exposure to host cytoplasmically localized innate immune sensing mechanisms. To maintain integrity of the membrane compartment, the pathogen is armed with defensive weapons that prevent loss of vacuole integrity and potential exposure to host innate signaling. In some cases, the microbial components that maintain vacuolar integrity have been identified, but the basis for why the compartment degrades in their absence is unclear. In this review, we point out that lessons from the microbial-programmed degradation of the vacuole by the cytoplasmically localized Shigella flexneri provide crucial insights into how degradation of pathogen vacuoles occurs. We propose that in the absence of bacterial-encoded guard proteins, aberrant trafficking of host membrane-associated components results in a dysfunctional pathogen compartment. As a consequence, the vacuole is poisoned and replication is terminated.
Collapse
|
37
|
Affiliation(s)
- Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
38
|
Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol 2019; 21:1219-1233. [PMID: 31576058 PMCID: PMC6778059 DOI: 10.1038/s41556-019-0393-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargos with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargos including the cation-independent mannose-6-phosphate receptor and semaphorin 4C by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a β-hairpin that binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargos share this motif and require SNX5/SNX6 for their recycling. These include cargos involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the ‘Endosomal SNX-BAR sorting complex for promoting exit 1’ (ESCPE-1), which couples sorting motif recognition to BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.
Collapse
|
39
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
41
|
Klose M, Salloum JE, Gonschior H, Linder S. SNX3 drives maturation of Borrelia phagosomes by forming a hub for PI(3)P, Rab5a, and galectin-9. J Cell Biol 2019; 218:3039-3059. [PMID: 31337623 PMCID: PMC6719455 DOI: 10.1083/jcb.201812106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease. Klose et al. show that SNX3 drives processing of internalized B. burgdorferi by binding PI(3)P on the phagosome surface and recruiting galectin-9 vesicles, thus forming a convergence point for the endosomal recycling machinery during processing of spirochetes. The spirochete Borrelia burgdorferi, the causative agent of Lyme disease, is internalized by macrophages and processed in phagolysosomes. Phagosomal compaction, a crucial step in phagolysosome maturation, is driven by contact of Rab5a-positive vesicles with the phagosomal coat. We show that the sorting nexin SNX3 is transported with Rab5a vesicles and that its PX domain enables vesicle–phagosome contact by binding to PI(3)P in the phagosomal coat. Moreover, the C-terminal region of SNX3 recruits galectin-9, a lectin implicated in protein and membrane recycling, which we identify as a further regulator of phagosome compaction. SNX3 thus forms a hub for two distinct vesicle populations, constituting a convergence point for the endosomal recycling machinery, to contribute to phagosome maturation and intracellular processing of borreliae. These data also suggest that the helical shape of B. burgdorferi itself, providing sites of high curvature and thus local PI(3)P enrichment at phagosomes, may be one of the driving elements underlying the efficient elimination of spirochetes by immune cells.
Collapse
Affiliation(s)
- Matthias Klose
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Johann E Salloum
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
A Role for the VPS Retromer in Brucella Intracellular Replication Revealed by Genomewide siRNA Screening. mSphere 2019; 4:4/3/e00380-19. [PMID: 31243080 PMCID: PMC6595151 DOI: 10.1128/msphere.00380-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.
Collapse
|
43
|
Chandra M, Chin YKY, Mas C, Feathers JR, Paul B, Datta S, Chen KE, Jia X, Yang Z, Norwood SJ, Mohanty B, Bugarcic A, Teasdale RD, Henne WM, Mobli M, Collins BM. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun 2019; 10:1528. [PMID: 30948714 PMCID: PMC6449406 DOI: 10.1038/s41467-019-09355-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
Phox homology (PX) domains are membrane interacting domains that bind to phosphatidylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri-phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family.
Collapse
Affiliation(s)
- Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Caroline Mas
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Integrated Structural Biology Grenoble, Grenoble, France
| | - J Ryan Feathers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Sanchari Datta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Xinying Jia
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mehdi Mobli
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
44
|
Wolle MA, West SK. Ocular Chlamydia trachomatis infection: elimination with mass drug administration. Expert Rev Anti Infect Ther 2019; 17:189-200. [PMID: 30698042 DOI: 10.1080/14787210.2019.1577136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ocular Chlamydia trachomatis infection, the causative agent for trachoma, is responsible for 1.9 million cases of visual loss worldwide. Mass Drug Administration (MDA) with azithromycin to entire trachoma-endemic districts is part of the World Health Organization's public health strategy for trachoma elimination. Areas covered: Background on C. trachomatis and the epidemiology of trachoma are presented, followed by a review of the antibiotics for treatment and the need for a public health approach to trachoma elimination. The effectiveness of mass drug administration is presented, concluding with challenges to trachoma elimination in the future. Expert opinion: MDA using azithromycin is a key component of the public health strategy for trachoma elimination. With high coverage in children, there is good evidence that MDA drops the community pool of infection. There are challenges to trachoma elimination by the year 2020, and the drug donation program for country MDAs will be integral to ongoing efforts.
Collapse
Affiliation(s)
- Meraf A Wolle
- a Dana Center for Preventive Ophthalmology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Sheila K West
- a Dana Center for Preventive Ophthalmology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
45
|
Abstract
Chlamydia trachomatis resides and replicates within a membranous vacuole, termed the inclusion. A group of Type III secreted effector proteins, the inclusion membrane proteins (Inc), are embedded within the inclusion membrane and facilitate the interaction of the inclusion with host cell organelles. These interactions are vital for bacterial replication and allow for the acquisition of essential nutrients from the host cell. However, it is not known if Inc proteins function independently or require interactions with other Inc proteins to function. This chapter describes a system to test the homotypic/heterotypic interactions of Inc proteins through the coinfection of Chlamydia strains expressing differently tagged inclusion membrane proteins. Our approach takes advantage of the natural homotypic fusion of inclusions and allows for the study of Inc protein interactions when they are embedded within the inclusion membrane.
Collapse
Affiliation(s)
- Rachel Ende
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Isabelle Derré
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
46
|
Cui Y, Carosi JM, Yang Z, Ariotti N, Kerr MC, Parton RG, Sargeant TJ, Teasdale RD. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol 2018; 218:615-631. [PMID: 30559172 PMCID: PMC6363445 DOI: 10.1083/jcb.201806153] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
The molecular actions of retromer in the endolysosomal system remain unclear and controversial. Cui et al. demonstrate the essential role of retromer in the selective incorporation of cargo into a specific type of endosome transport carrier and the maintenance of lysosomal function. Retromer is a peripheral membrane protein complex that coordinates multiple vesicular trafficking events within the endolysosomal system. Here, we demonstrate that retromer is required for the maintenance of normal lysosomal morphology and function. The knockout of retromer subunit Vps35 causes an ultrastructural alteration in lysosomal structure and aberrant lysosome function, leading to impaired autophagy. At the whole-cell level, knockout of retromer Vps35 subunit reduces lysosomal proteolytic capacity as a consequence of the improper processing of lysosomal hydrolases, which is dependent on the trafficking of the cation-independent mannose 6-phosphate receptor (CI-M6PR). Incorporation of CI-M6PR into endosome transport carriers via a retromer-dependent process is restricted to those tethered by GCC88 but not golgin-97 or golgin-245. Finally, we show that this retromer-dependent retrograde cargo trafficking pathway requires SNX3, but not other retromer-associated cargo binding proteins, such as SNX27 or SNX-BAR proteins. Therefore, retromer does contribute to the retrograde trafficking of CI-M6PR required for maturation of lysosomal hydrolases and lysosomal function.
Collapse
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Julian M Carosi
- Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus C Kerr
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy J Sargeant
- Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Rohan D Teasdale
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Martinez E, Siadous FA, Bonazzi M. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. FEMS Microbiol Rev 2018; 42:425-447. [PMID: 29596635 DOI: 10.1093/femsre/fuy013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Co-evolution of bacterial pathogens with their hosts led to the emergence of a stunning variety of strategies aiming at the evasion of host defences, colonisation of host cells and tissues and, ultimately, the establishment of a successful infection. Pathogenic bacteria are typically classified as extracellular and intracellular; however, intracellular lifestyle comes in many different flavours: some microbes rapidly escape to the cytosol whereas other microbes remain within vacuolar compartments and harness membrane trafficking pathways to generate their host-derived, pathogen-specific replicative niche. Here we review the current knowledge on a variety of vacuolar lifestyles, the effector proteins used by bacteria as tools to take control of the host cell and the main membrane trafficking signalling pathways targeted by vacuolar pathogens as source of membranes and nutrients. Finally, we will also discuss how host cells have developed countermeasures to sense the biogenesis of the aberrant organelles harbouring bacteria. Understanding the dialogue between bacterial and eukaryotic proteins is the key to unravel the molecular mechanisms of infection and in turn, this may lead to the identification of new targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Eric Martinez
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| | | | - Matteo Bonazzi
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
48
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
49
|
Kumagai K, Elwell CA, Ando S, Engel JN, Hanada K. Both the N- and C- terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT. Biochem Biophys Res Commun 2018; 505:1070-1076. [PMID: 30314703 DOI: 10.1016/j.bbrc.2018.09.168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a membranous compartment, the inclusion, in host cells. Its intracellular life cycle requires host sphingolipids, which are in part acquired through the ER-Golgi localized ceramide transport protein (CERT). The Chlamydia-encoded inclusion membrane protein IncD is composed of two closely linked long hydrophobic domains with their N- and C-termini exposed to the host cytosol. IncD binds directly to the pleckstrin homology (PH) domain of CERT, likely redirecting ceramide to the inclusion. The precise regions of IncD required for this interaction have not been delineated. Using co-transfection studies together with phylogenetic studies, we demonstrate that both the IncD N- and C-terminal regions are required for binding to the CERT PH domain and define key interaction residues. Native gel electrophoresis analysis demonstrates that the transmembrane region of IncD forms SDS-resistant but dithiothreitol-sensitive homodimers, which in turn can assemble to form higher order oligomers through additional N- and C-terminal domain contacts. IncD oligomerization may facilitate high affinity binding to CERT, allowing C. trachomatis to efficiently redirect host ceramide to the inclusion.
Collapse
Affiliation(s)
- Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Shuji Ando
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
50
|
Patrick KL, Wojcechowskyj JA, Bell SL, Riba MN, Jing T, Talmage S, Xu P, Cabello AL, Xu J, Shales M, Jimenez-Morales D, Ficht TA, de Figueiredo P, Samuel JE, Li P, Krogan NJ, Watson RO. Quantitative Yeast Genetic Interaction Profiling of Bacterial Effector Proteins Uncovers a Role for the Human Retromer in Salmonella Infection. Cell Syst 2018; 7:323-338.e6. [PMID: 30077634 PMCID: PMC6160342 DOI: 10.1016/j.cels.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
Abstract
Intracellular bacterial pathogens secrete a repertoire of effector proteins into host cells that are required to hijack cellular pathways and cause disease. Despite decades of research, the molecular functions of most bacterial effectors remain unclear. To address this gap, we generated quantitative genetic interaction profiles between 36 validated and putative effectors from three evolutionarily divergent human bacterial pathogens and 4,190 yeast deletion strains. Correlating effector-generated profiles with those of yeast mutants, we recapitulated known biology for several effectors with remarkable specificity and predicted previously unknown functions for others. Biochemical and functional validation in human cells revealed a role for an uncharacterized component of the Salmonella SPI-2 translocon, SseC, in regulating maintenance of the Salmonella vacuole through interactions with components of the host retromer complex. These results exhibit the power of genetic interaction profiling to discover and dissect complex biology at the host-pathogen interface.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Jason A Wojcechowskyj
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Morgan N Riba
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Tao Jing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sara Talmage
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Pengbiao Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Ana L Cabello
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA; Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA; Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA.
| |
Collapse
|