1
|
Brændholt M, Nikolova N, Vejlø M, Banellis L, Fardo F, Kluger DS, Allen M. The respiratory cycle modulates distinct dynamics of affective and perceptual decision-making. PLoS Comput Biol 2025; 21:e1013086. [PMID: 40424351 DOI: 10.1371/journal.pcbi.1013086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Breathing plays a critical role not only in homeostatic survival, but also in modulating other non-interoceptive perceptual and affective processes. Recent evidence from both human and rodent models indicates that neural and behavioural oscillations are influenced by respiratory state as breathing cycles from inspiration to expiration. To explore the mechanisms behind these effects, we carried out a psychophysical experiment where 41 participants categorised dot motion and facial emotion stimuli in a standardised discrimination task. When comparing behaviour across respiratory states, we found that inspiration accelerated responses in both domains. We applied a hierarchical evidence accumulation model to determine which aspects of the latent decision process best explained this acceleration. Computational modelling showed that inspiration reduced evidential decision boundaries, such that participants prioritised speed over accuracy in the motion task. In contrast, inspiration shifted the starting point of affective evidence accumulation, inducing a bias towards categorising facial expressions as more positive. These findings provide a novel computational account of how breathing modulate distinct aspects of perceptual and affective decision-dynamics.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Niia Nikolova
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Melina Vejlø
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Leah Banellis
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Micah Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Cambridge Psychiatry, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
2
|
Weijs ML, Missura S, Potok-Szybińska W, Bächinger M, Badii B, Carro-Domínguez M, Wenderoth N, Meissner SN. Modulating cortical excitability and cortical arousal by pupil self-regulation. Nat Commun 2025; 16:4552. [PMID: 40379647 DOI: 10.1038/s41467-025-59837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
The brain's arousal state (i.e., central arousal) is regulated by multiple neuromodulatory nuclei in the brainstem and significantly influences high-level cognitive processes. By exploiting the mechanistic connection between the locus coeruleus, a key regulator of central arousal, and pupil dynamics, we recently demonstrated that participants could gain volitional control over arousal-regulating centers including the locus coeruleus using a pupil-based biofeedback approach. Here, we test whether pupil-based biofeedback modulates electrophysiological markers of cortical excitability, cortical arousal, and P300 responses. Combining pupil-based biofeedback with single-pulse transcranial magnetic stimulation, electroencephalography, and an auditory oddball task reveals three main results: pupil self-regulation significantly modulates (i) cortical excitability, (ii) the electroencephalogram spectral slope, a marker of cortical arousal, and (iii) the P300 response to target tones, an event-related potential suggested to be linked to phasic locus coeruleus activity. Here, we show that pupil-based biofeedback modulates fundamental aspects of brain function. Whether this method can further be used to modulate these aspects in case of disturbances associated with neurological and psychiatric disorders needs to be investigated in future studies.
Collapse
Affiliation(s)
- Marieke Lieve Weijs
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Weronika Potok-Szybińska
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Bianca Badii
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Manuel Carro-Domínguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore.
| | - Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| |
Collapse
|
3
|
Lloyd B, Miletić S, Bazin PL, Isherwood S, Tse DHY, Håberg AK, Forstmann B, Nieuwenhuis S. Subcortical nuclei of the human ascending arousal system encode anticipated reward but do not predict subsequent memory. Cereb Cortex 2025; 35:bhaf101. [PMID: 40346825 PMCID: PMC12064850 DOI: 10.1093/cercor/bhaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 04/04/2025] [Indexed: 05/12/2025] Open
Abstract
Subcortical nuclei of the ascending arousal system (AAS) play an important role in regulating brain and cognition. However, functional MRI (fMRI) of these nuclei in humans involves unique challenges due to their size and location deep within the brain. Here, we used ultra-high-field MRI and other methodological advances to investigate the activity of 6 subcortical nuclei during reward anticipation and memory encoding: the locus coeruleus (LC), basal forebrain, median and dorsal raphe nuclei, substantia nigra, and ventral tegmental area. Participants performed a monetary incentive delay task, which successfully induced a state of reward anticipation, and a 24-h delayed surprise memory test. Region-of-interest analyses revealed that activity in all subcortical nuclei increased in anticipation of potential rewards as opposed to neutral outcomes. In contrast, activity in none of the nuclei predicted memory performance 24 h later. These findings provide new insights into the cognitive functions that are supported by the human AAS.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| | - Steven Miletić
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Pierre-Louis Bazin
- Full Brain Picture Analytics, Lage Morsweg 73, 2332XB Leiden, The Netherlands
| | - Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Desmond H Y Tse
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Asta K Håberg
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| |
Collapse
|
4
|
Au RKC, Tang AKM. The attentional boost effect: current landscape and future directions. Cogn Process 2025:10.1007/s10339-025-01266-9. [PMID: 40085301 DOI: 10.1007/s10339-025-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Cognitive functions such as attention and memory significantly impact performance in daily life and in various professions, including driving vehicles and providing healthcare services. Driven by the importance of understanding attention, early studies have explored the attentional theories and discovered the attentional boost effect (ABE). In experiments studying the ABE, participants are required to engage in two concurrent tasks: (1) memorising a sequence of briefly displayed stimuli (e.g. images or words) for a later memory test and (2) concurrently detecting a simultaneously presented target signal (e.g. pressing a button when seeing a target white square and taking no action for a distractor black square). Surprisingly, attending to a target boosts memory encoding for the concurrently presented information, contrary to the typical expectation of lowered performance owing to dual-task interference. This effect has been documented not only in behavioural experiments across different materials and modalities but also in neuroimaging investigations. This review paper is divided into several main sections, covering the behavioural evidence supporting the ABE, interpretations of the effect from neuroimaging studies, individual differences, consensus and controversies in ABE research as well as prospective future research in this area. The discussion in this review might also offer helpful insights to researchers for translating this phenomenon into real-world practical applications.
Collapse
Affiliation(s)
- Ricky K C Au
- School of Arts and Social Sciences, Hong Kong Metropolitan University, 30 Good Shepherd Street, Ho Man Tin, Hong Kong SAR, China.
| | - Alvin K M Tang
- School of Arts and Social Sciences, Hong Kong Metropolitan University, 30 Good Shepherd Street, Ho Man Tin, Hong Kong SAR, China
| |
Collapse
|
5
|
Carro-Domínguez M, Huwiler S, Oberlin S, Oesch TL, Badii G, Lüthi A, Wenderoth N, Meissner SN, Lustenberger C. Pupil size reveals arousal level fluctuations in human sleep. Nat Commun 2025; 16:2070. [PMID: 40021662 PMCID: PMC11871316 DOI: 10.1038/s41467-025-57289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Recent animal research has revealed the intricate dynamics of arousal levels that are important for maintaining proper sleep resilience and memory consolidation. In humans, changes in arousal level are believed to be a determining characteristic of healthy and pathological sleep but tracking arousal level fluctuations has been methodologically challenging. Here we measured pupil size, an established indicator of arousal levels, by safely taping the right eye open during overnight sleep and tested whether pupil size affects cortical response to auditory stimulation. We show that pupil size dynamics change as a function of important sleep events across different temporal scales. In particular, our results show pupil size to be inversely related to the occurrence of sleep spindle clusters, a marker of sleep resilience. Additionally, we found pupil size prior to auditory stimulation to influence the evoked response, most notably in delta power, a marker of several restorative and regenerative functions of sleep. Recording pupil size dynamics provides insights into the interplay between arousal levels and sleep oscillations.
Collapse
Affiliation(s)
- Manuel Carro-Domínguez
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stephanie Huwiler
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stella Oberlin
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Timona Leandra Oesch
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Center, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland.
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Basgol H, Dayan P, Franz VH. Violation of auditory regularities is reflected in pupil dynamics. Cortex 2025; 183:66-86. [PMID: 39616966 DOI: 10.1016/j.cortex.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 02/21/2025]
Abstract
The brain builds and maintains internal models and uses them to make predictions. When predictions are violated, the current model can either be updated or replaced by a new model. The latter is accompanied by pupil dilation responses (PDRs) related to locus coeruleus activity/norepinephrine release (LC-NE). Following earlier research, we investigated PDRs associated with transitions between regular and random patterns of tones in auditory sequences. We presented these sequences to participants and instructed them to find gaps (to maintain attention). Transitions from regular to random patterns induced PDRs, suggesting that an internal model attuned to the regular pattern is reset. Transitions from one regular pattern to another regular pattern also induced PDRs, suggesting that they also led to a model reset. In contrast, transitions from random patterns to regular patterns did not induce PDRs, suggesting a gradual update of model parameters. We modelled these findings, using pupil response functions to show how ongoing PDRs and pupil event rates were sensitive to the trial-by-trial changes in the information content of the auditory sequences. Expanding on previous research, we suggest that PDRs-as biomarkers for LC-NE activation-may indicate the extent of prediction violations.
Collapse
Affiliation(s)
- Hamit Basgol
- Department of Computer Science, University of Tübingen, Tübingen, Germany; Experimental Cognitive Science, University of Tübingen, Tübingen, Germany; The Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Peter Dayan
- Department of Computer Science, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Volker H Franz
- Department of Computer Science, University of Tübingen, Tübingen, Germany; Experimental Cognitive Science, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Doekemeijer RA, Cabooter Q, Wardhani IK, Verbruggen F, Boehler CN. From pupil to performance: Exploring the role of tonic norepinephrine levels in response inhibition using pretrial pupil measures. Psychophysiology 2025; 62:e14738. [PMID: 39655543 DOI: 10.1111/psyp.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/03/2025]
Abstract
Response inhibition is key to flexible behavior. Importantly, performance in any task, including response inhibition tasks, fluctuates on a moment-to-moment basis. Using pupillometry, we investigated the relationship between these behavioral fluctuations in response inhibition and naturally occurring fluctuations of norepinephrine (NE) levels in the brain before a given trial has even started. This was motivated by earlier pharmacological work suggesting a pivotal role of NE in response inhibition, in particular. We specifically used two pupillometry proxies for pretrial (tonic) NE levels, the absolute pretrial pupil size and its derivative, and investigated whether and to which degree they were related to response-inhibition performance in a stop-signal task. Specifically, we investigated the relationship to stopping success, and the speed of the go response (GoRT) and that of the stop response (SSRT). In two experiments, we showed that larger pretrial pupil measures predicted (1) lower stopping success, (2) faster GoRTs (particularly so when the go response needed to be executed in a stop context), and some evidence for (3) faster SSRTs. Taken together, our findings show a clear pattern that pretrial pupil measures predict behavioral fluctuations in response inhibition, which suggests that tonic levels of NE are involved in the regulation of these behavioral fluctuations. Yet, our work furthermore indicates that this involvement is not stopping-specific, given its effect on both the go and the stop response.
Collapse
Affiliation(s)
| | - Quinn Cabooter
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Imec-Mict-UGent, Department of Communication Sciences, Ghent University, Ghent, Belgium
| | - Intan K Wardhani
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Frederick Verbruggen
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Mocchi M, Bartoli E, Magnotti J, de Gee JW, Metzger B, Pascuzzi B, Mathura R, Pulapaka S, Goodman W, Sheth S, McGinley MJ, Bijanki K. Aperiodic spectral slope tracks the effects of brain state on saliency responses in the human auditory cortex. Sci Rep 2024; 14:30751. [PMID: 39730513 DOI: 10.1038/s41598-024-80911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations. Aperiodic '1/f slope' has emerged as a promising composite measure of these brain state dynamics. However, the relationship of 1/f slope to state-dependent processes, such as saliency, is less explored, particularly intracranially in humans. Here, we record pupil diameter as a measure of brain state and intracranial local field potentials in auditory cortical regions of human patients during an auditory oddball stimulus paradigm. We find that phasic high-gamma band responses in auditory cortical regions exhibit an inverted-u shaped relationship to tonic state, as reflected in the 1/f slope. Furthermore, salient stimuli trigger state changes, as indicated by shifts in the 1/f slope. Taken together, these findings suggest that 1/f slope tracks tonic and phasic arousal state dynamics in the human brain, increasing the interpretability of this metric and supporting it as a potential biomarker in brain disorders.
Collapse
Affiliation(s)
- Madaline Mocchi
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - John Magnotti
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jan Willem de Gee
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
- Department of Cognitive and Systems Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Texas Children's Hospital, Duncan Neurological Research Institute, Houston, USA
| | - Brian Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Bailey Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Raissa Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | | | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, USA
| | - Sameer Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Matthew J McGinley
- Department of Neuroscience, Baylor College of Medicine, Houston, USA.
- Texas Children's Hospital, Duncan Neurological Research Institute, Houston, USA.
| | - Kelly Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
9
|
Hiraga T, Hata T, Soya S, Shimoda R, Takahashi K, Soya M, Inoue K, Johansen JP, Okamoto M, Soya H. Light-exercise-induced dopaminergic and noradrenergic stimulation in the dorsal hippocampus: Using a rat physiological exercise model. FASEB J 2024; 38:e70215. [PMID: 39668509 PMCID: PMC11638517 DOI: 10.1096/fj.202400418rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Exercise activates the dorsal hippocampus that triggers synaptic and cellar plasticity and ultimately promotes memory formation. For decades, these benefits have been explored using demanding and stress-response-inducing exercise at moderate-to-vigorous intensities. In contrast, our translational research with animals and humans has focused on light-intensity exercise (light exercise) below the lactate threshold (LT), which almost anyone can safely perform with minimal stress. We found that even light exercise can stimulate hippocampal activity and enhance memory performance. Although the circuit mechanism of this boost remains unclear, arousal promotion even with light exercise implies the involvement of the ascending monoaminergic system that is essential to modulate hippocampal activity and impact memory. To test this hypothesis, we employed our physiological exercise model based on the LT of rats and immunohistochemically assessed the neuronal activation of the dorsal hippocampal sub-regions and brainstem monoaminergic neurons. Also, we monitored the extracellular concentration of monoamines in the dorsal hippocampus using in vivo microdialysis. We found that even light exercise increased neuronal activity in the dorsal hippocampal sub-regions and elevated the extracellular concentrations of noradrenaline and dopamine. Furthermore, we found that tyrosine hydroxylase-positive neurons in the locus coeruleus (LC) and the ventral tegmental area (VTA) were activated even by light exercise and were both positively correlated with the dorsal hippocampal activation. In conclusion, our findings demonstrate that light exercise stimulates dorsal hippocampal neurons, which are associated with LC-noradrenergic and VTA-dopaminergic activation. This shed light on the circuit mechanisms responsible for hippocampal neural activation during exercise, consequently enhancing memory function.
Collapse
Affiliation(s)
- Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Toshiaki Hata
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaJapan
- Department of Molecular Behavioral Physiology, Institute of MedicineUniversity of TsukubaTsukubaJapan
| | - Ryo Shimoda
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Kanako Takahashi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Department of Anatomy and Neuroscience, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Center for Education in Liberal Arts and SciencesHealth Sciences University of HokkaidoIshikariJapan
| | - Joshua P. Johansen
- Laboratory for Neural Circuitry of MemoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
10
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
11
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. Sci Rep 2024; 14:24391. [PMID: 39420188 PMCID: PMC11487125 DOI: 10.1038/s41598-024-72179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Grants
- R01 MH126971 NIMH NIH HHS
- federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF) in the Center for Behavioral Brain Sciences (CBBS, ZS/2016/04/78113)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ProjectID 425899994 – Sonderforschungsbereiche 1436 (SFB 1436)
- Human Brain Project, Specific Grant Agreement 3 (SGA3), Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Sonderforschungsbereiche 1315 (SFB 1315).
- Center for Behavioral Brain Sciences (CBBS) NeuroNetzwerk 17
- the German Federal Ministry of Education and Research (BMBF, funding code 01ED2102B) under the aegis of the EU Joint Programme – Neurodegenerative Disease Research (JPND)
- Sonderforschungsbereich 1315, Project B06, Sonderforschungsbereich 1436
- Project A08, ARUK SRF2018B-004
- CBBS Neural Network (CBBS, ZS/2016/04/78113)
- NIH R01MH126971
- Otto-von-Guericke-Universität Magdeburg (3121)
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Calida Pereira
- Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Geurts LS, Ling S, Jehee JFM. Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex. J Neurosci 2024; 44:e1522232024. [PMID: 39151956 PMCID: PMC11484544 DOI: 10.1523/jneurosci.1522-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024] Open
Abstract
Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior.
Collapse
Affiliation(s)
- Laura S Geurts
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Janneke F M Jehee
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands
| |
Collapse
|
13
|
Torres AS, Robison MK, McClure SM, Brewer GA. The influence of transcranial direct current stimulation to the trigeminal nerve on attention and arousal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:860-880. [PMID: 39107465 DOI: 10.3758/s13415-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/13/2024]
Abstract
One mechanism by which transcranial direct current stimulation (tDCS) has been proposed to improve attention is by transcutaneous stimulation of cranial nerves, thereby activating the locus coeruleus (LC). Specifically, placement of the electrodes over the frontal bone and mastoid is thought to facilitate current flow across the face as a path of least resistance. The face is innervated by the trigeminal nerve, and the trigeminal nerve is interconnected with the LC. In this study, we tested whether stimulating the trigeminal nerve impacts indices of LC activity and performance on a sustained attention task. We replicated previous research that shows deterioration in task performance, increases in the rate of task-unrelated thoughts, and reduced pupil responses due to time on task irrespective of tDCS condition (sham, anodal, and cathodal stimulation). Importantly, tDCS did not influence pupil dynamics (pretrial or stimulus-evoked), self-reported attention state, nor task performance in active versus sham stimulation conditions. The findings reported here are consistent with theories about arousal centered on a hypothesized link between LC activity indexed by pupil size, task performance, and self-reported attention state but fail to support hypotheses that tDCS over the trigeminal nerve influences indices of LC function.
Collapse
Affiliation(s)
- Alexis S Torres
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Márquez I, Treviño M. Pupillary responses to directional uncertainty while intercepting a moving target. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240606. [PMID: 39359460 PMCID: PMC11444787 DOI: 10.1098/rsos.240606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Pupillary responses serve as sensitive indicators of cognitive processes, attentional shifts and decision-making dynamics. Our study investigates how directional uncertainty and target speed (V T) influence pupillary responses in a foveal tracking task involving the interception of a moving dot. Directional uncertainty, reflecting the unpredictability of the target's direction changes, was manipulated by altering the angular range (AR) from which random directions for the moving dot were extracted. Higher AR values were associated with reduced pupillary diameters, indicating that heightened uncertainty led to smaller pupil sizes. Additionally, an inverse U-shaped relationship between V T and pupillary responses suggested maximal diameters at intermediate speeds. Analysis of saccade-triggered responses showed a negative correlation between pupil diameter and directional uncertainty. Dynamic linear modelling revealed the influence of past successful collisions and other behavioural parameters on pupillary responses, emphasizing the intricate interaction between task variables and cognitive processing. Our results highlight the dynamic interplay between the directional uncertainty of a single moving target, V T and pupillary responses, with implications for understanding attentional mechanisms, decision-making processes and potential applications in emerging technologies.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico
- Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
15
|
Nassar MR. Toward a computational role for locus coeruleus/norepinephrine arousal systems. Curr Opin Behav Sci 2024; 59:101407. [PMID: 39070697 PMCID: PMC11280330 DOI: 10.1016/j.cobeha.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Brain and behavior undergo measurable changes in their underlying state and neuromodulators are thought to contribute to these fluctuations. Why do we undergo such changes, and what function could the underlying neuromodulatory systems perform? Here we examine theoretical answers to these questions with respect to the locus coeruleus/norepinephrine system focusing on peripheral markers for arousal, such as pupil diameter, that are thought to provide a window into brain wide noradrenergic signaling. We explore a computational role for arousal systems in facilitating internal state transitions that facilitate credit assignment and promote accurate perceptions in non-stationary environments. We summarize recent work that supports this idea and highlight open questions as well as alternative views of how arousal affects cognition.
Collapse
Affiliation(s)
- M R Nassar
- Brown University, Dept of Neuroscience and Carney Institute for Brain Science
| |
Collapse
|
16
|
de Gee JW, Mridha Z, Hudson M, Shi Y, Ramsaywak H, Smith S, Karediya N, Thompson M, Jaspe K, Jiang H, Zhang W, McGinley MJ. Strategic stabilization of arousal boosts sustained attention. Curr Biol 2024; 34:4114-4128.e6. [PMID: 39151432 PMCID: PMC11447271 DOI: 10.1016/j.cub.2024.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Arousal and motivation interact to profoundly influence behavior. For example, experience tells us that we have some capacity to control our arousal when appropriately motivated, such as staying awake while driving a motor vehicle. However, little is known about how arousal and motivation jointly influence decision computations, including if and how animals, such as rodents, adapt their arousal state to their needs. Here, we developed and show results from an auditory, feature-based, sustained-attention task with intermittently shifting task utility. We use pupil size to estimate arousal across a wide range of states and apply tailored signal-detection theoretic, hazard function, and accumulation-to-bound modeling approaches in a large cohort of mice. We find that pupil-linked arousal and task utility both have major impacts on multiple aspects of task performance. Although substantial arousal fluctuations persist across utility conditions, mice partially stabilize their arousal near an intermediate and optimal level when task utility is high. Behavioral analyses show that multiple elements of behavior improve during high task utility and that arousal influences some, but not all, of them. Specifically, arousal influences the likelihood and timescale of sensory evidence accumulation but not the quantity of evidence accumulated per time step while attending. In sum, the results establish specific decision-computational signatures of arousal, motivation, and their interaction in attention. So doing, we provide an experimental and analysis framework for studying arousal self-regulation in neurotypical brains and in diseases such as attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jan Willem de Gee
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA; Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; Research Priority Area Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Zakir Mridha
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Marisa Hudson
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Yanchen Shi
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Hannah Ramsaywak
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Spencer Smith
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Nishad Karediya
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Matthew Thompson
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Kit Jaspe
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Wenhao Zhang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Matthew J McGinley
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
17
|
Murphy PR, Krkovic K, Monov G, Kudlek N, Lincoln T, Donner TH. Individual differences in belief updating and phasic arousal are related to psychosis proneness. COMMUNICATIONS PSYCHOLOGY 2024; 2:88. [PMID: 39313542 PMCID: PMC11420346 DOI: 10.1038/s44271-024-00140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Many decisions entail the updating of beliefs about the state of the environment by accumulating noisy sensory evidence. This form of probabilistic reasoning may go awry in psychosis. Computational theory shows that optimal belief updating in environments subject to hidden changes in their state requires a dynamic modulation of the evidence accumulation process. Recent empirical findings implicate transient responses of pupil-linked central arousal systems to individual evidence samples in this modulation. Here, we analyzed behavior and pupil responses during evidence accumulation in a changing environment in a community sample of human participants. We also assessed their subclinical psychotic experiences (psychosis proneness). Participants most prone to psychosis showed overall less flexible belief updating profiles, with diminished behavioral impact of evidence samples occurring late during decision formation. These same individuals also exhibited overall smaller pupil responses and less reliable pupil encoding of computational variables governing the dynamic belief updating. Our findings provide insights into the cognitive and physiological bases of psychosis proneness and open paths to unraveling the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Peter R Murphy
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Psychology, Maynooth University, Co. Kildare, Ireland.
| | - Katarina Krkovic
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Gina Monov
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Kudlek
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Lincoln
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
18
|
Doll L, Dykstra AR, Gutschalk A. Perceptual awareness of near-threshold tones scales gradually with auditory cortex activity and pupil dilation. iScience 2024; 27:110530. [PMID: 39175766 PMCID: PMC11338958 DOI: 10.1016/j.isci.2024.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Negative-going responses in sensory cortex co-vary with perceptual awareness of sensory stimuli. Given that this awareness negativity has also been observed for undetected stimuli, some have challenged its role for perception. To address this question, we combined magnetoencephalography, electroencephalography, and pupillometry to study how sustained attention and response criterion affect the auditory awareness negativity. Participants first detected distractor sounds and denied hearing task-irrelevant near-threshold tones, which evoked neither awareness negativity nor pupil dilation. These same tones evoked both responses when task-relevant, stronger for hit but also present for miss trials. Participants then rated their perception on a six-point scale to test whether response criterion explains the presence of these responses for miss trials. Decreasing perception ratings were associated with gradually reduced evoked responses, consistent with signal detection theory. These results support the concept of an awareness negativity that is modulated by attention but does not require a non-linear threshold mechanism.
Collapse
Affiliation(s)
- Laura Doll
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Andrew R. Dykstra
- School of Communication Sciences and Disorders, University of Central Florida, Orlando, FL, USA
| | - Alexander Gutschalk
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Campbell I, Beckers E, Sharifpour R, Berger A, Paparella I, Aizpurua JFB, Koshmanova E, Mortazavi N, Sherif S, Vandewalle G. Impact of light on task-evoked pupil responses during cognitive tasks. J Sleep Res 2024; 33:e14101. [PMID: 37974557 DOI: 10.1111/jsr.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Light has many non-image-forming functions including modulation of pupil size and stimulation of alertness and cognition. Part of these non-image-forming effects may be mediated by the brainstem locus coeruleus. The processing of sensory inputs can be associated with a transient pupil dilation that is likely driven in part by the phasic activity of the locus coeruleus. In the present study, we aimed to characterise the task-evoked pupil response associated with auditory inputs under different light levels and across two cognitive tasks. We continuously monitored the pupil of 20 young healthy participants (mean [SD] 24.05 [4.0] years; 14 women) whilst they completed an attentional and an emotional auditory task whilst exposed to repeated 30-40-s blocks of light interleaved with darkness periods. Blocks could either consist of monochromatic orange light (0.16 melanopic equivalent daylight illuminance (EDI) lux) or blue-enriched white light of three different levels [37, 92, 190 melanopic EDI lux; 6500 K]. For the analysis, 15 and then 14 participants were included in the attentional and emotional tasks, respectively. Generalised linear mixed models showed a significant main effect of light level on the task-evoked pupil responses triggered by the attentional and emotional tasks (p ≤ 0.0001). The impact of light was different for the target versus non-target stimulus of the attentional task but was not different for the emotional and neutral stimulus of the emotional task. There is a smaller sustained pupil size during brighter light blocks but, a higher light level triggers a stronger task-evoked pupil response to auditory stimulation, presumably through the recruitment of the locus coeruleus.
Collapse
Affiliation(s)
- Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Algermissen J, den Ouden HEM. Pupil dilation reflects effortful action invigoration in overcoming aversive Pavlovian biases. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:720-739. [PMID: 38773022 PMCID: PMC11233311 DOI: 10.3758/s13415-024-01191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
"Pavlovian" or "motivational" biases describe the phenomenon that the valence of prospective outcomes modulates action invigoration: Reward prospect invigorates action, whereas punishment prospect suppresses it. The adaptive role of these biases in decision-making is still unclear. One idea is that they constitute a fast-and-frugal decision strategy in situations characterized by high arousal, e.g., in presence of a predator, which demand a quick response. In this pre-registered study (N = 35), we tested whether such a situation-induced via subliminally presented angry versus neutral faces-leads to increased reliance on Pavlovian biases. We measured trial-by-trial arousal by tracking pupil diameter while participants performed an orthogonalized Motivational Go/NoGo Task. Pavlovian biases were present in responses, reaction times, and even gaze, with lower gaze dispersion under aversive cues reflecting "freezing of gaze." The subliminally presented faces did not affect responses, reaction times, or pupil diameter, suggesting that the arousal manipulation was ineffective. However, pupil dilations reflected facets of bias suppression, specifically the physical (but not cognitive) effort needed to overcome aversive inhibition: Particularly strong and sustained dilations occurred when participants managed to perform Go responses to aversive cues. Conversely, no such dilations occurred when they managed to inhibit responses to Win cues. These results suggest that pupil diameter does not reflect response conflict per se nor the inhibition of prepotent responses, but specifically effortful action invigoration as needed to overcome aversive inhibition. We discuss our results in the context of the "value of work" theory of striatal dopamine.
Collapse
Affiliation(s)
- Johannes Algermissen
- Donders Institute for Brain, Radboud University, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6526 GD, Nijmegen, The Netherlands.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Hanneke E M den Ouden
- Donders Institute for Brain, Radboud University, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6526 GD, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605407. [PMID: 39131302 PMCID: PMC11312456 DOI: 10.1101/2024.07.27.605407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Calida Pereira
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck
| |
Collapse
|
22
|
Wang R, Wang X, Platt ML, Sheng F. Decomposing loss aversion from a single neural signal. iScience 2024; 27:110153. [PMID: 39006480 PMCID: PMC11245989 DOI: 10.1016/j.isci.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
People often display stronger aversion to losses than appetite for equivalent gains, a widespread phenomenon known as loss aversion. The prevailing theory attributes loss aversion to a valuation bias that amplifies losses relative to gains. An alternative account attributes loss aversion to a response bias that avoids choices that might result in loss. By modeling the temporal dynamics of scalp electrical activity during decisions to accept or reject gambles within a sequential sampling framework, we decomposed valuation bias and response bias from a single event-related neural signal, the P3. Specifically, we found valuation bias manifested as larger sensitivity of P3 to losses than gains, which was localizable to reward-related brain regions. By contrast, response bias manifested as larger P3 preceding gamble acceptance than rejection and was localizable to motor cortex. Our study reveals the dissociable neural biomarkers of response bias and valuation bias underpinning loss-averse decisions.
Collapse
Affiliation(s)
- Ruining Wang
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyi Wang
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael L Platt
- Wharton Neuroscience Initiative, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Sheng
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Wharton Neuroscience Initiative, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Pharmacological Elevation of Catecholamine Levels Improves Perceptual Decisions, But Not Metacognitive Insight. eNeuro 2024; 11:ENEURO.0019-24.2024. [PMID: 39029953 PMCID: PMC11287790 DOI: 10.1523/eneuro.0019-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Perceptual decisions are often accompanied by a feeling of decision confidence. Where the parietal cortex is known for its crucial role in shaping such perceptual decisions, metacognitive evaluations are thought to additionally rely on the (pre)frontal cortex. Because of this supposed neural differentiation between these processes, perceptual and metacognitive decisions may be divergently affected by changes in internal (e.g., attention, arousal) and external (e.g., task and environmental demands) factors. Although intriguing, causal evidence for this hypothesis remains scarce. Here, we investigated the causal effect of two neuromodulatory systems on behavioral and neural measures of perceptual and metacognitive decision-making. Specifically, we pharmacologically elevated levels of catecholamines (with atomoxetine) and acetylcholine (with donepezil) in healthy adult human participants performing a visual discrimination task in which we gauged decision confidence, while electroencephalography was measured. Where cholinergic effects were not robust, catecholaminergic enhancement improved perceptual sensitivity, while at the same time leaving metacognitive sensitivity unaffected. Neurally, catecholaminergic elevation did not affect sensory representations of task-relevant visual stimuli but instead enhanced well-known decision signals measured over the centroparietal cortex, reflecting the accumulation of sensory evidence over time. Crucially, catecholaminergic enhancement concurrently impoverished neural markers measured over the frontal cortex linked to the formation of metacognitive evaluations. Enhanced catecholaminergic neuromodulation thus improves perceptual but not metacognitive decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Johannes J Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Monov G, Stein H, Klock L, Gallinat J, Kühn S, Lincoln T, Krkovic K, Murphy PR, Donner TH. Linking Cognitive Integrity to Working Memory Dynamics in the Aging Human Brain. J Neurosci 2024; 44:e1883232024. [PMID: 38760163 PMCID: PMC11211717 DOI: 10.1523/jneurosci.1883-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small, older adults committed more false alarms than younger adults. The computational model explained the participants' behavior well. The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise correlated with the participants' clinically assessed cognitive integrity. Our results are consistent with the idea that the stability of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of individuals diagnosed with MCI.
Collapse
Affiliation(s)
- Gina Monov
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Henrik Stein
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Leonie Klock
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Juergen Gallinat
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Simone Kühn
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tania Lincoln
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Katarina Krkovic
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Peter R Murphy
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychology, Maynooth University, Co. Kildare, Ireland
| | - Tobias H Donner
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin 10115, Germany
| |
Collapse
|
25
|
Misselhorn J, Fiene M, Radecke JO, Engel AK, Schneider TR. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. J Neurosci 2024; 44:e1510232024. [PMID: 38729759 PMCID: PMC11209665 DOI: 10.1523/jneurosci.1510-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Collapse
Affiliation(s)
- Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck 23562, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
26
|
Menicucci D, Animali S, Malloggi E, Gemignani A, Bonanni E, Fornai F, Giorgi FS, Binda P. Correlated P300b and phasic pupil-dilation responses to motivationally significant stimuli. Psychophysiology 2024; 61:e14550. [PMID: 38433453 DOI: 10.1111/psyp.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Malloggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Silcox JW, Bennett K, Copeland A, Ferguson SH, Payne BR. The Costs (and Benefits?) of Effortful Listening for Older Adults: Insights from Simultaneous Electrophysiology, Pupillometry, and Memory. J Cogn Neurosci 2024; 36:997-1020. [PMID: 38579256 DOI: 10.1162/jocn_a_02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Although the impact of acoustic challenge on speech processing and memory increases as a person ages, older adults may engage in strategies that help them compensate for these demands. In the current preregistered study, older adults (n = 48) listened to sentences-presented in quiet or in noise-that were high constraint with either expected or unexpected endings or were low constraint with unexpected endings. Pupillometry and EEG were simultaneously recorded, and subsequent sentence recognition and word recall were measured. Like young adults in prior work, we found that noise led to increases in pupil size, delayed and reduced ERP responses, and decreased recall for unexpected words. However, in contrast to prior work in young adults where a larger pupillary response predicted a recovery of the N400 at the cost of poorer memory performance in noise, older adults did not show an associated recovery of the N400 despite decreased memory performance. Instead, we found that in quiet, increases in pupil size were associated with delays in N400 onset latencies and increased recognition memory performance. In conclusion, we found that transient variation in pupil-linked arousal predicted trade-offs between real-time lexical processing and memory that emerged at lower levels of task demand in aging. Moreover, with increased acoustic challenge, older adults still exhibited costs associated with transient increases in arousal without the corresponding benefits.
Collapse
|
28
|
Kim AJ, Nguyen K, Mather M. Eye movements reveal age differences in how arousal modulates saliency priority but not attention processing speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592619. [PMID: 38766110 PMCID: PMC11100628 DOI: 10.1101/2024.05.06.592619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The arousal-biased competition theory posits that inducing arousal increases attentional priority of salient stimuli while reducing priority of non-pertinent stimuli. However, unlike in young adults, older adults rarely exhibit shifts in priority under increased arousal, and prior studies have proposed different neural mechanisms to explain how arousal differentially modulates selective attention in older adults. Therefore, we investigated how the threat of unpredictable shock differentially modulates attentional control mechanisms in young and older adults by observing eye movements. Participants completed two oculomotor search tasks in which the salient distractor was typically captured by attention (singleton search) or proactively suppressed (feature search). We found that arousal did not modulate attentional priority for any stimulus among older adults nor affect the speed of attention processing in either age group. Furthermore, we observed that arousal modulated pupil sizes and found a correlation between evoked pupil responses and oculomotor function. Our findings suggest age differences in how the locus coeruleus-noradrenaline system interacts with neural networks of attention and oculomotor function.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- University of Southern California, School of Gerontology
| | | | - Mara Mather
- University of Southern California, School of Gerontology
| |
Collapse
|
29
|
Vidal M, Onderdijk KE, Aguilera AM, Six J, Maes PJ, Fritz TH, Leman M. Cholinergic-related pupil activity reflects level of emotionality during motor performance. Eur J Neurosci 2024; 59:2193-2207. [PMID: 37118877 DOI: 10.1111/ejn.15998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Pupil size covaries with the diffusion rate of the cholinergic and noradrenergic neurons throughout the brain, which are essential to arousal. Recent findings suggest that slow pupil fluctuations during locomotion are an index of sustained activity in cholinergic axons, whereas phasic dilations are related to the activity of noradrenergic axons. Here, we investigated movement induced arousal (i.e., by singing and swaying to music), hypothesising that actively engaging in musical behaviour will provoke stronger emotional engagement in participants and lead to different qualitative patterns of tonic and phasic pupil activity. A challenge in the analysis of pupil data is the turbulent behaviour of pupil diameter due to exogenous ocular activity commonly encountered during motor tasks and the high variability typically found between individuals. To address this, we developed an algorithm that adaptively estimates and removes pupil responses to ocular events, as well as a functional data methodology, derived from Pfaffs' generalised arousal, that provides a new statistical dimension on how pupil data can be interpreted according to putative neuromodulatory signalling. We found that actively engaging in singing enhanced slow cholinergic-related pupil dilations and having the opportunity to move your body while performing amplified the effect of singing on pupil activity. Phasic pupil oscillations during motor execution attenuated in time, which is often interpreted as a measure of sense of agency over movement.
Collapse
Affiliation(s)
- Marc Vidal
- IPEM, Ghent University, Ghent, Belgium
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Ana M Aguilera
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
| | - Joren Six
- IPEM, Ghent University, Ghent, Belgium
| | | | - Thomas Hans Fritz
- IPEM, Ghent University, Ghent, Belgium
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | |
Collapse
|
30
|
Vilotijević A, Mathôt S. Functional benefits of cognitively driven pupil-size changes. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1672. [PMID: 38149763 DOI: 10.1002/wcs.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Pupil-size changes are typically associated with the pupil light response (PLR), where they are driven by the physical entry of light into the eye. However, pupil-size changes are also influenced by various cognitive processes, where they are driven by higher-level cognition. For example, the strength of the PLR is not solely affected by physical properties of the light but also by cognitive factors, such as whether the source of light is attended or not, which results in an increase or decrease in the strength of the PLR. Surprisingly, although cognitively driven pupil-size changes have been the focus of extensive research, their possible functions are rarely discussed. Here we consider the relative (dis)advantages of small versus large pupils in different situations from a theoretical point of view, and compare these to empirical results showing how pupil size actually changes in these situations. Based on this, we suggest that cognitively driven pupil-size changes optimize vision either through preparation, embodied representations, or a differential emphasis on central or peripheral vision. More generally, we argue that cognitively driven pupil-size changes are a form of sensory tuning: a subtle adjustment of the eyes to optimize vision for the current situation and the immediate future. This article is categorized under: Neuroscience > Cognition Neuroscience > Physiology Neuroscience > Behavior.
Collapse
Affiliation(s)
- Ana Vilotijević
- Department of Psychology, University of Groningen, The Netherlands
| | | |
Collapse
|
31
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
32
|
Pulcu E, Guinea C, Clemens H, Harmer CJ, Murphy SE. Value-based decision-making between affective and non-affective memories. iScience 2024; 27:109329. [PMID: 38482501 PMCID: PMC10933545 DOI: 10.1016/j.isci.2024.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 02/06/2025] Open
Abstract
Affective biases can change how past events are recalled from memory. To capture mechanisms underlying affective memory formation, recall, and bias, we studied value-based decision-making (VBDM) between reward memories encoded in different mood states. Our findings suggest that following discrete affective events, created by large magnitude wins and losses on a Wheel of Fortune (WoF), healthy volunteers display an overall positive memory bias [favoring higher probability shapes learned after a WoF win compared with those learnt after a WoF loss outcome]. During this VBDM process, participants' pupils constrict before decision-onset for higher-value choices, and remained dilated for a sustained period after choice. Sustained pupil dilation was particularly sensitive to the reward values of abstract memories encoded in a positive mood. Taken together, we demonstrate that experimentally induced affective memories are recalled with a positive bias, and pupil-linked central arousal systems are actively engaged during VBDM between affective and non-affective memories.
Collapse
Affiliation(s)
- Erdem Pulcu
- University of Oxford, Department of Psychiatry, Warneford Hospital, OX3 7JX Oxford, UK
| | - Calum Guinea
- University of Oxford, Department of Psychiatry, Warneford Hospital, OX3 7JX Oxford, UK
| | - Hannah Clemens
- University of Oxford, Department of Psychiatry, Warneford Hospital, OX3 7JX Oxford, UK
| | - Catherine J. Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, OX3 7JX Oxford, UK
| | - Susannah E. Murphy
- University of Oxford, Department of Psychiatry, Warneford Hospital, OX3 7JX Oxford, UK
| |
Collapse
|
33
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
34
|
Beerendonk L, Mejías JF, Nuiten SA, de Gee JW, Fahrenfort JJ, van Gaal S. A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc Natl Acad Sci U S A 2024; 121:e2312898121. [PMID: 38277436 PMCID: PMC10835062 DOI: 10.1073/pnas.2312898121] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.
Collapse
Affiliation(s)
- Lola Beerendonk
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| | - Jorge F. Mejías
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Stijn A. Nuiten
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Universitäre Psychiatrische Kliniken Basel, Wilhelm Klein-Strasse 27, Basel4002, Switzerland
| | - Jan Willem de Gee
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Johannes J. Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| |
Collapse
|
35
|
Lloyd B, Nieuwenhuis S. The effect of reward-induced arousal on the success and precision of episodic memory retrieval. Sci Rep 2024; 14:2105. [PMID: 38267573 PMCID: PMC10808342 DOI: 10.1038/s41598-024-52486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Moment-to-moment fluctuations in arousal can have large effects on learning and memory. For example, when neutral items are predictive of a later reward, they are often remembered better than neutral items without a reward association. This reward anticipation manipulation is thought to induce a heightened state of arousal, resulting in stronger encoding. It is unclear, however, whether these arousal-induced effects on encoding are 'all-or-none', or whether encoding precision varies from trial to trial with degree of arousal. Here, we examined whether trial-to-trial variability in reward-related pupil-linked arousal might correspond to variability in participants' long-term memory encoding precision. We tested this using a location memory paradigm in which half of the to-be-encoded neutral items were linked to later monetary reward, while the other half had no reward association. After the encoding phase, we measured immediate item location memory on a continuous scale, allowing us to assess both memory success and memory precision. We found that pre-item baseline pupil size and pupil size during item encoding were not related to subsequent memory performance. In contrast, the anticipation of instrumental reward increased pupil size, and a smaller anticipatory increase in pupil size was linked to greater subsequent memory success but not memory precision.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
36
|
Meissner SN, Bächinger M, Kikkert S, Imhof J, Missura S, Carro Dominguez M, Wenderoth N. Self-regulating arousal via pupil-based biofeedback. Nat Hum Behav 2024; 8:43-62. [PMID: 37904022 PMCID: PMC10810759 DOI: 10.1038/s41562-023-01729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jenny Imhof
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Manuel Carro Dominguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| |
Collapse
|
37
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
38
|
Bussu G, Portugal AM, Wilsson L, Kleberg JL, Falck-Ytter T. Manipulation of phasic arousal by auditory cues is associated with subsequent changes in visual orienting to faces in infancy. Sci Rep 2023; 13:22072. [PMID: 38086954 PMCID: PMC10716513 DOI: 10.1038/s41598-023-49373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
This eye-tracking study investigated the effect of sound-induced arousal on social orienting under different auditory cue conditions in 5-month-old (n = 25; n = 13 males) and 10-month-old infants (n = 21; n = 14 males) participating in a spontaneous visual search task. Results showed: (1) larger pupil dilation discriminating between high and low volume (b = 0.02, p = 0.007), but not between social and non-social sounds (b = 0.004, p = 0.64); (2) faster visual orienting (b = - 0.09, p < 0.001) and better social orienting at older age (b = 0.94, p < 0.001); (3) a fast habituation effect on social orienting after high-volume sounds (χ2(2) = 7.39, p = 0.025); (4) a quadratic association between baseline pupil size and target selection (b = - 1.0, SE = 0.5, χ2(1) = 4.04, p = 0.045); (5) a positive linear association between pupil dilation and social orienting (b = 0.09, p = 0.039). Findings support adaptive gain theories of arousal, extending the link between phasic pupil dilation and task performance to spontaneous social orienting in infancy.
Collapse
Affiliation(s)
- Giorgia Bussu
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden.
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden
| | - Lowe Wilsson
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Johan Lundin Kleberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Terje Falck-Ytter
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
39
|
Braun A, Donner TH. Adaptive biasing of action-selective cortical build-up activity by stimulus history. eLife 2023; 12:RP86740. [PMID: 38054952 DOI: 10.7554/elife.86740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.
Collapse
Affiliation(s)
- Anke Braun
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Narasimhan S, Schriver BJ, Wang Q. Adaptive decision-making depends on pupil-linked arousal in rats performing tactile discrimination tasks. J Neurophysiol 2023; 130:1541-1551. [PMID: 37964751 PMCID: PMC11068411 DOI: 10.1152/jn.00309.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Perceptual decision-making is a dynamic cognitive process and is shaped by many factors, including behavioral state, reward contingency, and sensory environment. To understand the extent to which adaptive behavior in decision-making is dependent on pupil-linked arousal, we trained head-fixed rats to perform perceptual decision-making tasks and systematically manipulated the probability of Go and No-go stimuli while simultaneously measuring their pupil size in the tasks. Our data demonstrated that the animals adaptively modified their behavior in response to the changes in the sensory environment. The response probability to both Go and No-go stimuli decreased as the probability of the Go stimulus being presented decreased. Analyses within the signal detection theory framework showed that while the animals' perceptual sensitivity was invariant, their decision criterion increased as the probability of the Go stimulus decreased. Simulation results indicated that the adaptive increase in the decision criterion will increase possible water rewards during the task. Moreover, the adaptive decision-making is dependent on pupil-linked arousal as the increase in the decision criterion was the largest during low pupil-linked arousal periods. Taken together, our results demonstrated that the rats were able to adjust their decision-making to maximize rewards in the tasks, and that adaptive behavior in perceptual decision-making is dependent on pupil-linked arousal.NEW & NOTEWORTHY Perceptual decision-making is a dynamic cognitive process and is shaped by many factors. However, the extent to which changes in sensory environment result in adaptive decision-making remains poorly understood. Our data provided new experimental evidence demonstrating that the rats were able to adaptively modify their decision criterion to maximize water reward in response to changes in the statistics of the sensory environment. Furthermore, the adaptive decision-making is dependent on pupil-linked arousal.
Collapse
Affiliation(s)
- Shreya Narasimhan
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Brian J Schriver
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| |
Collapse
|
41
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Catecholaminergic neuromodulation and selective attention jointly shape perceptual decision-making. eLife 2023; 12:RP87022. [PMID: 38038722 PMCID: PMC10691802 DOI: 10.7554/elife.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Psychiatry (UPK), University of BaselBaselSwitzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
- Amsterdam NeuroscienceAmsterdamNetherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
42
|
Mazancieux A, Mauconduit F, Amadon A, Willem de Gee J, Donner TH, Meyniel F. Brainstem fMRI signaling of surprise across different types of deviant stimuli. Cell Rep 2023; 42:113405. [PMID: 37950868 PMCID: PMC10698303 DOI: 10.1016/j.celrep.2023.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023] Open
Abstract
Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine). We combine human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items in a "local-global" paradigm that distinguishes between deviance based on the stimulus probability and the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the detection of task-relevant deviant items recruits the same multiple subcortical systems across computationally different types of deviance.
Collapse
Affiliation(s)
- Audrey Mazancieux
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.
| | - Franck Mauconduit
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Alexis Amadon
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Jan Willem de Gee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florent Meyniel
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Institut de neuromodulation, GHU Paris, psychiatrie et neurosciences, centre hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France.
| |
Collapse
|
43
|
Kim JH, Yin C, Merriam EP, Roth ZN. Pupil Size Is Sensitive to Low-Level Stimulus Features, Independent of Arousal-Related Modulation. eNeuro 2023; 10:ENEURO.0005-23.2023. [PMID: 37699706 PMCID: PMC10585606 DOI: 10.1523/eneuro.0005-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Similar to a camera aperture, pupil size adjusts to the surrounding luminance. Unlike a camera, pupil size is additionally modulated both by stimulus properties and by cognitive processes, including attention and arousal, though the interdependence of these factors is unclear. We hypothesized that different stimulus properties interact to jointly modulate pupil size while remaining independent from the impact of arousal. We measured pupil responses from human observers to equiluminant stimuli during a demanding rapid serial visual presentation (RSVP) task at fixation and tested how response amplitude depends on contrast, spatial frequency, and reward level. We found that under constant luminance, unattended stimuli evoke responses that are separable from changes caused by general arousal or attention. We further uncovered a double-dissociation between task-related responses and stimulus-evoked responses, suggesting that different sources of pupil size modulation are independent of one another. Our results shed light on neural pathways underlying pupillary response.
Collapse
Affiliation(s)
- June Hee Kim
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Christine Yin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Zvi N Roth
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Groot JM, Miletic S, Isherwood SJS, Tse DHY, Habli S, Håberg AK, Forstmann BU, Bazin PL, Mittner M. Echoes from Intrinsic Connectivity Networks in the Subcortex. J Neurosci 2023; 43:6609-6618. [PMID: 37562962 PMCID: PMC10538587 DOI: 10.1523/jneurosci.1020-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Steven Miletic
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Scott J S Isherwood
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sarah Habli
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, 8900, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, 8900, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, 7006, Norway
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Pierre-Louis Bazin
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Departments of Neurophysics and Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany
| | - Matthias Mittner
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
45
|
Mathôt S, Vilotijević A. Methods in cognitive pupillometry: Design, preprocessing, and statistical analysis. Behav Res Methods 2023; 55:3055-3077. [PMID: 36028608 PMCID: PMC10556184 DOI: 10.3758/s13428-022-01957-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
Cognitive pupillometry is the measurement of pupil size to investigate cognitive processes such as attention, mental effort, working memory, and many others. Currently, there is no commonly agreed-upon methodology for conducting cognitive-pupillometry experiments, and approaches vary widely between research groups and even between different experiments from the same group. This lack of consensus makes it difficult to know which factors to consider when conducting a cognitive-pupillometry experiment. Here we provide a comprehensive, hands-on guide to methods in cognitive pupillometry, with a focus on trial-based experiments in which the measure of interest is the task-evoked pupil response to a stimulus. We cover all methodological aspects of cognitive pupillometry: experimental design, preprocessing of pupil-size data, and statistical techniques to deal with multiple comparisons when testing pupil-size data. In addition, we provide code and toolboxes (in Python) for preprocessing and statistical analysis, and we illustrate all aspects of the proposed workflow through an example experiment and example scripts.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS, Groningen, The Netherlands.
| | - Ana Vilotijević
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS, Groningen, The Netherlands
| |
Collapse
|
46
|
Lloyd B, de Voogd LD, Mäki-Marttunen V, Nieuwenhuis S. Pupil size reflects activation of subcortical ascending arousal system nuclei during rest. eLife 2023; 12:e84822. [PMID: 37367220 PMCID: PMC10299825 DOI: 10.7554/elife.84822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Neuromodulatory nuclei that are part of the ascending arousal system (AAS) play a crucial role in regulating cortical state and optimizing task performance. Pupil diameter, under constant luminance conditions, is increasingly used as an index of activity of these AAS nuclei. Indeed, task-based functional imaging studies in humans have begun to provide evidence of stimulus-driven pupil-AAS coupling. However, whether there is such a tight pupil-AAS coupling during rest is not clear. To address this question, we examined simultaneously acquired resting-state fMRI and pupil-size data from 74 participants, focusing on six AAS nuclei: the locus coeruleus, ventral tegmental area, substantia nigra, dorsal and median raphe nuclei, and cholinergic basal forebrain. Activation in all six AAS nuclei was optimally correlated with pupil size at 0-2 s lags, suggesting that spontaneous pupil changes were almost immediately followed by corresponding BOLD-signal changes in the AAS. These results suggest that spontaneous changes in pupil size that occur during states of rest can be used as a noninvasive general index of activity in AAS nuclei. Importantly, the nature of pupil-AAS coupling during rest appears to be vastly different from the relatively slow canonical hemodynamic response function that has been used to characterize task-related pupil-AAS coupling.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden UniversityLeidenNetherlands
| | - Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University NijmegenNijmegenNetherlands
- Behavioural Science Institute, Radboud UniversityNijmegenNetherlands
| | | | | |
Collapse
|
47
|
Fietz J, Pöhlchen D, Brückl TM, Brem AK, Padberg F, Czisch M, Sämann PG, Spoormaker VI. Data-Driven Pupil Response Profiles as Transdiagnostic Readouts for the Detection of Neurocognitive Functioning in Affective and Anxiety Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023:S2451-9022(23)00149-0. [PMID: 37348604 DOI: 10.1016/j.bpsc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Neurocognitive functioning is a relevant transdiagnostic dimension in psychiatry. As pupil size dynamics track cognitive load during a working memory task, we aimed to explore if this parameter allows identification of psychophysiological subtypes in healthy participants and patients with affective and anxiety disorders. METHODS Our sample consisted of 226 participants who completed the n-back task during simultaneous functional magnetic resonance imaging and pupillometry measurements. We used latent class growth modeling to identify clusters based on pupil size in response to cognitive load. In a second step, these clusters were compared on affective and anxiety symptom levels, performance in neurocognitive tests, and functional magnetic resonance imaging activity. RESULTS The clustering analysis resulted in two distinct pupil response profiles: one with a stepwise increasing pupil size with increasing cognitive load (reactive group) and one with a constant pupil size across conditions (nonreactive group). A larger increase in pupil size was significantly associated with better performance in neurocognitive tests in executive functioning and sustained attention. Statistical maps of parametric modulation of pupil size during the n-back task showed the frontoparietal network in the positive contrast and the default mode network in the negative contrast. The pupil response profile of the reactive group was associated with more thalamic activity, likely reflecting better arousal upregulation and less deactivation of the limbic system. CONCLUSIONS Pupil measurements have the potential to serve as a highly sensitive psychophysiological readout for detection of neurocognitive deficits in the core domain of executive functioning, adding to the development of valid transdiagnostic constructs in psychiatry.
Collapse
Affiliation(s)
- Julia Fietz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tanja M Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Victor I Spoormaker
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
48
|
Pajkossy P, Gesztesi G, Racsmány M. How uncertain are you? Disentangling expected and unexpected uncertainty in pupil-linked brain arousal during reversal learning. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:578-599. [PMID: 36823250 PMCID: PMC10390386 DOI: 10.3758/s13415-023-01072-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
During decision making, we are continuously faced with two sources of uncertainty regarding the links between stimuli, our actions, and outcomes. On the one hand, our expectations are often probabilistic, that is, stimuli or actions yield the expected outcome only with a certain probability (expected uncertainty). On the other hand, expectations might become invalid due to sudden, unexpected changes in the environment (unexpected uncertainty). Several lines of research show that pupil-linked brain arousal is a sensitive indirect measure of brain mechanisms underlying uncertainty computations. Thus, we investigated whether it is involved in disentangling these two forms of uncertainty. To this aim, we measured pupil size during a probabilistic reversal learning task. In this task, participants had to figure out which of two response options led to reward with higher probability, whereby sometimes the identity of the more advantageous response option was switched. Expected uncertainty was manipulated by varying the reward probability of the advantageous choice option, whereas the level of unexpected uncertainty was assessed by using a Bayesian computational model estimating change probability and resulting uncertainty. We found that both aspects of unexpected uncertainty influenced pupil responses, confirming that pupil-linked brain arousal is involved in model updating after unexpected changes in the environment. Furthermore, high level of expected uncertainty impeded the detection of sudden changes in the environment, both on physiological and behavioral level. These results emphasize the role of pupil-linked brain arousal and underlying neural structures in handling situations in which the previously established contingencies are no longer valid.
Collapse
Affiliation(s)
- P Pajkossy
- Department of Cognitive Science, Budapest University of Technology and Economics, Műegyetem rkp 3, Budapest, 1111, Hungary.
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| | - G Gesztesi
- Department of Cognitive Science, Budapest University of Technology and Economics, Műegyetem rkp 3, Budapest, 1111, Hungary
| | - M Racsmány
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Psychology, University of Szeged, Szeged, Hungary
- Center for Cognitive Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
49
|
Abstract
This article offers a collection of observations that highlight the value of time course data in pupillometry and points out ways in which these observations create deeper understanding of listening effort. The main message is that listening effort should be considered on a moment-to-moment basis rather than as a singular amount. A review of various studies and the reanalysis of data reveal distinct signatures of effort before a stimulus, during a stimulus, in the moments after a stimulus, and changes over whole experimental testing sessions. Collectively these observations motivate questions that extend beyond the "amount" of effort, toward understanding how long the effort lasts, and how precisely someone can allocate effort at specific points in time or reduce effort at other times. Apparent disagreements between studies are reconsidered as informative lessons about stimulus selection and the nature of pupil dilation as a reflection of decision making rather than the difficulty of sensory encoding.
Collapse
Affiliation(s)
- Matthew B. Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
50
|
Lempert KM, Carballeira C, Sehgal S, Kable JW. Pupillometric evidence for a temporal expectations-based account of persistence under temporal uncertainty. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01100-9. [PMID: 37081224 DOI: 10.3758/s13415-023-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
People often quit waiting for delayed rewards when the exact timing of those rewards is uncertain. This behavior often has been attributed to self-control failure. Another possibility is that quitting is the result of a rational decision-making process in the face of uncertainty, based on the decision-maker's expectations about the possible arrival times of the awaited reward. There are forms of temporal expectations (e.g., heavy-tailed) under which the expected time remaining until a reward arrives actually increases as time elapses. In those cases, the rational strategy is to quit waiting when the expected reward is no longer worth the expected time remaining. To arbitrate between the "limited self-control" and "temporal expectations" accounts of persistence, we measured pupil diameter during a persistence task, as a physiological marker of surprise (phasic responses) and effort (pre-decision diameter). Phasic pupil responses were elevated in response to reward receipt. Critically, the extent to which pupils dilated following rewards depended on the delay: people showed larger pupillary surprise responses the more delayed the reward was. This result suggests that people expect the reward less the longer they wait for it-a form of temporal expectations under which limiting persistence is rational. Moreover, predecision pupil diameter before quit events was not associated with how long the participant had been waiting, but rather, depended on how atypical the quit decision was compared with the participant's usual behavior. These data provide physiological evidence for a temporal expectations account of persistence under temporal uncertainty.
Collapse
Affiliation(s)
- Karolina M Lempert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, 11530, USA
| | - Caroline Carballeira
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sakshi Sehgal
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|