1
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025; 34:65-80. [PMID: 39105593 PMCID: PMC11705514 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Asif Rayhan
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Judd Joves
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Melissa Uhran
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Lucas Klaus
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Ronja Frigard
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Khwahish Singh
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
2
|
Sinclair BJ, Saruhashi S, Terblanche JS. Integrating water balance mechanisms into predictions of insect responses to climate change. J Exp Biol 2024; 227:jeb247167. [PMID: 38779934 DOI: 10.1242/jeb.247167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Efficient water balance is key to insect success. However, the hygric environment is changing with climate change; although there are compelling models of thermal vulnerability, water balance is often neglected in predictions. Insects survive desiccating conditions by reducing water loss, increasing their total amount of water (and replenishing it) and increasing their tolerance of dehydration. The physiology underlying these traits is reasonably well understood, as are the sources of variation and phenotypic plasticity. However, water balance and thermal tolerance intersect at high temperatures, such that mortality is sometimes determined by dehydration, rather than heat (especially during long exposures in dry conditions). Furthermore, water balance and thermal tolerance sometimes interact to determine survival. In this Commentary, we propose identifying a threshold where the cause of mortality shifts between dehydration and temperature, and that it should be possible to predict this threshold from trait measurements (and perhaps eventually a priori from physiological or -omic markers).
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - Stefane Saruhashi
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
3
|
Orchard I, Leyria J, Al-Dailami AN, Nachman RJ, Lange AB. Functional characterization of the kinin receptor in the Chagas disease vector Rhodnius prolixus; activity of native kinins and potent biostable Aib-containing insect kinin analogs. Peptides 2024; 172:171135. [PMID: 38103839 DOI: 10.1016/j.peptides.2023.171135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ronald J Nachman
- Southern Plains Agricultural Research Center, USDA, College Station, TX, USA
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
4
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569187. [PMID: 38076852 PMCID: PMC10705485 DOI: 10.1101/2023.11.29.569187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| |
Collapse
|
5
|
Abstract
Ambient temperature (Ta) is a critical abiotic factor for insects that cannot maintain a constant body temperature (Tb). Interestingly, Ta varies during the day, between seasons and habitats; insects must constantly cope with these variations to avoid reaching the deleterious effects of thermal stress. To minimize these risks, insects have evolved a set of physiological and behavioral thermoregulatory processes as well as molecular responses that allow them to survive and perform under various thermal conditions. These strategies range from actively seeking an adequate environment, to cooling down through the evaporation of body fluids and synthesizing heat shock proteins to prevent damage at the cellular level after heat exposure. In contrast, endothermy may allow an insect to fight parasitic infections, fly within a large range of Ta and facilitate nest defense. Since May (1979), Casey (1988) and Heinrich (1993) reviewed the literature on insect thermoregulation, hundreds of scientific articles have been published on the subject and new insights in several insect groups have emerged. In particular, technical advancements have provided a better understanding of the mechanisms underlying thermoregulatory processes. This present Review aims to provide an overview of these findings with a focus on various insect groups, including blood-feeding arthropods, as well as to explore the impact of thermoregulation and heat exposure on insect immunity and pathogen development. Finally, it provides insights into current knowledge gaps in the field and discusses insect thermoregulation in the context of climate change.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, The Fralin Life Science Institute, The Global Change Center, Department of Entomology, Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Lahondère C, Vinauger C, Liaw JE, Tobin KKS, Joiner JM, Riffell JA. Effect of Temperature on Mosquito Olfaction. Integr Comp Biol 2023; 63:356-367. [PMID: 37309024 PMCID: PMC10445414 DOI: 10.1093/icb/icad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Mosquitoes use a wide range of cues to find a host to feed on, eventually leading to the transmission of pathogens. Among them, olfactory cues (e.g., host-emitted odors, including CO2, and skin volatiles) play a central role in mediating host-seeking behaviors. While mosquito olfaction can be impacted by many factors, such as the physiological state of the insect (e.g., age, reproductive state), the impact of environmental temperature on the olfactory system remains unknown. In this study, we quantified the behavioral responses of Aedes aegypti mosquitoes, vectors of dengue, yellow fever, and Zika viruses, among other pathogens, to host and plant-related odors under different environmental temperatures.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jessica E Liaw
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kennedy K S Tobin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jillian M Joiner
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Martins KA, Morais CS, Broughton SJ, Lazzari CR, Bates PA, Pereira MH, Dillon RJ. Response to thermal and infection stresses in an American vector of visceral leishmaniasis. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:238-251. [PMID: 36458853 DOI: 10.1111/mve.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/31/2022] [Indexed: 05/18/2023]
Abstract
Lutzomyia longipalpis is known as one of the primary insect vectors of visceral leishmaniasis. For such ectothermic organisms, the ambient temperature is a critical life factor. However, the impact of temperature has been ignored in many induced-stress situations of the vector life. Therefore, this study explored the interaction of Lu. longipalpis with temperature by evaluating its behaviour across a thermal gradient, thermographic recordings during blood-feeding on mice, and the gene expression of heat shock proteins (HSP) when insects were exposed to extreme temperature or infected. The results showed that 72 h after blood ingestion, Lu. longipalpis became less active and preferred relatively low temperatures. However, at later stages of blood digestion, females increased their activity and remained at higher temperatures. Real-time imaging showed that the body temperature of females can adjust rapidly to the host and remain constant until the end of blood-feeding. Insects also increased the expression of HSP90(83) during blood-feeding. Our findings suggest that Lu. longipalpis interacts with temperature by using its behaviour to avoid temperature-induced physiological damage during the gonotrophic cycle. However, the expression of certain HSP might be triggered to mitigate thermal stress in situations where a behavioural response is not the best option.
Collapse
Affiliation(s)
- Kelsilandia Aguiar Martins
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline S Morais
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Susan J Broughton
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, Tours, France
| | - Paul A Bates
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Marcos H Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rod J Dillon
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| |
Collapse
|
8
|
Lahondère C, Vinauger C, Liaw JE, Tobin KK, Joiner JM, Riffell JA. Effect of temperature on mosquito olfaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.535894. [PMID: 37090630 PMCID: PMC10120655 DOI: 10.1101/2023.04.10.535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mosquitoes use a wide range of cues to find a host to feed on, eventually leading to the transmission of pathogens. Among them, olfactory cues ( e.g. , host emitted odors, including CO 2 , and skin volatiles) play a central role in mediating host seeking behaviors. While mosquito olfaction can be impacted by many factors, such as the physiological state of the insect ( e.g. , age, reproductive state), the impact of environmental temperature on the olfactory system remains unknown. In this study, we quantified the behavioral responses of Aedes aegypti mosquitoes, vectors of dengue, yellow fever and Zika viruses, to host and plant related odors under different environmental temperatures.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jessica E. Liaw
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Jillian M. Joiner
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
9
|
Benoit JB, Lahondère C, Attardo GM, Michalkova V, Oyen K, Xiao Y, Aksoy S. Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans. INSECTS 2022; 13:997. [PMID: 36354821 PMCID: PMC9695897 DOI: 10.3390/insects13110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction. To do so, we examined the duration of pregnancy and milk gland protein expression in the tsetse fly, Glossina morsitans, that consumed a warm or cool blood meal. We noted that an optimal temperature for blood ingestion yielded a reduction in the duration of pregnancy. This decline in the duration of pregnancy is due to increased rate of blood digestion when consuming warm blood. This increased digestion likely provided more energy that leads to increased expression of transcript for milk-associated proteins. The shorter duration of pregnancy is predicted to yield an increase in population growth compared to those that consume cool or above host temperatures. These studies provide evidence that consumption of a warm blood meal is likely beneficial for specific aspects of vector biology.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology at Virginia Polytechnic Institute and State Univerity, Blacksburg, VA 24061, USA
| | - Geoffrey M. Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Veronika Michalkova
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
| |
Collapse
|
10
|
Maldonado-Ruiz LP, Urban J, Davis BN, Park JJ, Zurek L, Park Y. Dermal secretion physiology and thermoregulation in the lone star tick, Amblyomma americanum. Ticks Tick Borne Dis 2022; 13:101962. [PMID: 35525214 DOI: 10.1016/j.ttbdis.2022.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal. Physiological mechanisms that allow them to survive during hot and dry seasons include thermal tolerance and water homeostasis. Dermal fluid secretions have been described in metastriate ticks including A. americanum. We hypothesized that tick dermal secretion in the unfed tick plays a role in thermoregulation, as described in other hematophagous arthropods during blood feeding. In this study, we found that physical contact with a heat probe at 45 °C or high environmental temperature at ∼50 °C can trigger dermal secretion in A. americanum and other metastriate ticks in the off-host period. We demonstrated that dermal secretion plays a role in evaporative cooling when ticks are exposed to high temperatures. We find that type II dermal glands, having paired two cells and forming large glandular structures, are the source of dermal secretion. The secretion was triggered by an injection of serotonin, and the serotonin-mediated secretion was suppressed by a pretreatment with ouabain, a Na/K-ATPase blocker, implying that the secretion is controlled by serotonin and the downstream Na/K-ATPase.
Collapse
Affiliation(s)
| | - Joshua Urban
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Brianna N Davis
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Jessica J Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic; Department of Microbiology, Nutrition and Dietetics, Czech Agricultural University, Prague, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA.
| |
Collapse
|
11
|
Ayub M, Lange AB, Orchard I. Identification and characterization of the SIFamide receptor in the hemimetabolous Chagas disease vector, Rhodnius prolixus Stål, 1859, (Hemiptera, Reduviidae, Triatominae). Peptides 2021; 143:170600. [PMID: 34175354 DOI: 10.1016/j.peptides.2021.170600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Within arthropods, the SIFamide family of neuropeptides appears to be involved in the modulation of a range of physiological and behavioral events. In Rhodnius prolixus, we have previously shown the presence of SIFamidergic-like processes in neurohemal release sites and provided evidence for a role for Rhopr-SIFa in modulating heartbeat frequency and feeding behaviors. Here, the R. prolixus SIFamide receptor (RhoprSIFR) has been identified, cloned, and sequenced. Sequence analyses show high similarity and identity between the RhoprSIFR and other cloned SIFamide receptors. Quantitative PCR shows that the RhoprSIFR transcript is found in a variety of tissues, including those involved in feeding and reproduction. In unfed insects, high transcript expression is observed in the central nervous system and midgut, suggesting a role of Rhopr-SIFa in various processes related to feeding and digestion. Expression of the RhoprSIFR transcript changes between unfed, 24 h post-fed, and 7 d post-fed conditions. Expression of the RhoprSIFR transcript significantly increases in the anterior midgut and posterior midgut 7 d post-feeding and knockdown of the RhoprSIFR transcript significantly reduces the size of blood meal consumed. This data suggests a possible role for Rhopr-SIFa in regulating long-term post-feeding osmotic balance and digestion of the blood meal. Lastly, transcript expression of Rhopr-SIFa and RhoprSIFR also varies temporally in relation to the reproductive stage, suggesting an involvement of this signaling pathway in reproductive activities. Identification of the RhoprSIFR and its expression profile now provide tools for a more detailed understanding into the precise coordination of feeding and other physiological processes in R. prolixus.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
12
|
Rodríguez M, Pagola L, Norry FM, Ferrero P. Cardiac performance in heat-stressed flies of heat-susceptible and heat-resistant Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104268. [PMID: 34171365 DOI: 10.1016/j.jinsphys.2021.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Thermotolerance is a complex trait that can greatly differ between heat-susceptible (HS) and heat-adapted populations of small insects including Drosophila, with short-term effects after a sub-lethal level of heat stress on many physiological functions. Cardiac performance could accordingly be more robust in heat-resistant (HR) than in HS individuals under heat stress. Here, we tested heart performance under heat-stress effects in two recombinant inbred lines (RIL) of Drosophila melanogaster that dramatically differ in heat knockdown resistance. Heart rate did not strongly differ between heat-susceptible and heat-tolerant flies after a sub-lethal heat stress. Instead, heat-susceptible flies showed a much higher arrhythmia incidence, a longer duration of each heartbeat, and a larger amount of bradycardia than heat-tolerant flies. The highly conserved cardiac proteins SERCA, RyR and NCX that participate in the excitation/contraction coupling, did not differ in activity level between HR and HS flies. Available information for both RIL suggests that heart performance under heat stress may be linked, at least partially, to candidate genes of previously identified quantitative trait loci (QTL) for thermotolerance. This study indicates that HR flies can be genetically more robust in their heart performance than HS flies under even sub-lethal levels of heat stress.
Collapse
Affiliation(s)
- Maia Rodríguez
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Buenos Aires, Argentina
| | - Lucía Pagola
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Buenos Aires, Argentina
| | - Fabian M Norry
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina.
| | - Paola Ferrero
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Buenos Aires, Argentina; Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Lazzari CR, Fauquet A, Lahondère C, Araújo RN, Pereira MH. Soft ticks perform evaporative cooling during blood-feeding. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104197. [PMID: 33545105 DOI: 10.1016/j.jinsphys.2021.104197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Feeding on the blood of warm-blooded vertebrates is associated to thermal stress in haematophagous arthropods. It has been demonstrated that blood-sucking insects protect their physiological integrity either by synthesising heat-shock proteins or by means of thermoregulatory mechanisms. In this work, we describe the first thermoregulatory mechanism in a tick species, Ornithodoros rostratus. By performing real-time infrared thermography during feeding on mice we found that this acarian eliminates big amounts of fluid (urine) through their coxal glands; this fluid quickly spreads over the cuticular surface and its evaporation cools-down the body of the tick. The spread of the fluid is possible thanks to capillary diffusion through the sculptured exoskeleton of Ornithodoros. We discuss our findings in the frame of the adaptive strategies to cope with the thermal stress experienced by blood-sucking arthropods at each feeding event on warm-blooded hosts.
Collapse
Affiliation(s)
- Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université de Tours, France.
| | - Aurélie Fauquet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université de Tours, France
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ricardo N Araújo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos H Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Reinhold JM, Shaw R, Lahondère C. Beat the heat: Culex quinquefasciatus regulates its body temperature during blood feeding. J Therm Biol 2021; 96:102826. [PMID: 33627266 DOI: 10.1016/j.jtherbio.2020.102826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022]
Abstract
Mosquitoes are regarded as one of the most dangerous animals on earth. Because they are responsible for the spread of a wide range of both human and animal pathogens, research of the underlying mechanisms of their feeding behavior and physiology is critical. Among disease vector mosquitoes, Culex quinquefasciatus, a known carrier of West Nile virus and Western Equine Encephalitis, remains relatively understudied. As blood-sucking insects, adaptations (either at the molecular or physiological level) while feeding on warm blood are crucial to their survival, as overheating can result in death due to heat stress. Our research aims to determine how Cx. quinquefasciatus copes with the heat associated with warm blood meal ingestion and possibly uncover the adaptations this species uses to avoid thermal stress. Through the use of thermographic imaging, we analyzed the body temperature of Cx. quinquefasciatus while blood feeding. Infrared thermography has allowed us to identify a cooling strategy, evaporative cooling via the production of fluid droplets, and an overall low body temperature in comparison to the blood temperature during feeding. Understanding Cx. quinquefasciatus' adaptations and the strategies they employ to reduce their body temperature while blood feeding constitutes the first step towards discovering potential targets that could be used for their control.
Collapse
Affiliation(s)
- Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ryan Shaw
- Departement of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Sloan MA, Sadlova J, Lestinova T, Sanders MJ, Cotton JA, Volf P, Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasit Vectors 2021; 14:15. [PMID: 33407867 PMCID: PMC7789365 DOI: 10.1186/s13071-020-04498-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 02/13/2023] Open
Abstract
Background Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. Methods The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. Results Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. Conclusions The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.![]()
Collapse
Affiliation(s)
- Megan A Sloan
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - James A Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
16
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
17
|
Benoit JB, Lazzari CR, Denlinger DL, Lahondère C. Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts. CURRENT OPINION IN INSECT SCIENCE 2019; 34:7-11. [PMID: 31247421 DOI: 10.1016/j.cois.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Blood feeding in arthropods has evolved in multiple lineages. This feeding preference provides a source of ample proteins and lipids for egg production and survival, but ingestion of a large warm blood-meal can boost the arthropod's body temperature 15°-20°C within seconds to minutes. This represents one of, if not the most, rapid thermal change documented under a natural setting. Here, we describe mechanisms of thermoregulation and thermotolerance in arthropods during blood feeding. The ability to prevent blood-induced thermal damage is a fundamental physiological adaptation linked to the use of warm-blooded vertebrates as food sources. Specific functional and comparative studies have identified unique and divergent mechanisms that suppress or repair thermal stress during blood feeding. These mechanisms include countercurrent heat exchange, evaporative cooling, and upregulation of stress associated proteins.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, France
| | - David L Denlinger
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
18
|
Barbosa da Silva H, Godoy RSM, Martins GF. The Basic Plan of the Adult Heart Is Conserved Across Different Species of Adult Mosquitoes, But the Morphology of Heart-Associated Tissues Varies. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:984-996. [PMID: 31245826 DOI: 10.1093/jme/tjz045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 06/09/2023]
Abstract
The heart is a pivotal organ in insects because it performs a number of different tasks, such as circulating nutrients, hormones, and excreta. In this study, the morphologies of the heart and associated tissues, including pericardial cells (PCs) and alary muscles (AMs), in the hematophagous mosquitoes Anopheles aquasalis Curry (Diptera: Culicidae), Aedes aegypti L. (Diptera: Culicidae), and Culex quinquefasciatus Say (Diptera: Culicidae), and the phytophagous Toxorhynchites theobaldi Dyar & Knab (Diptera: Culicidae) were compared using different microscopy techniques. Mosquito hearts are located across the median dorsal region of the whole abdomen. Paired incurrent openings in the heart wall (ostia) are found in the intersegmental regions (segments 2-7) of the abdomen, while an excurrent opening is located in the terminal cone of Ae. aegypti. The sides of the heart contain PC that are more numerous in An. aquasalis and Th. theobaldi. In these two species, PC form a cord of as closely aggregated cells, but in Ae. aegypti and Cx. quinquefasciatus, PC occur in pairs with two or four PC pairs per intersegmental region. In Th. theobaldi, AM binds to all regions of the heart, whereas in other mosquitoes they only bind in the intersegmental regions. The basic plan of the adult heart was conserved across all the adult mosquitoes investigated in this study. This conserved organization was expected because this organ plays an important role in the maintenance of individual homeostasis. However, the species had different PC and of AM morphologies. These morphological differences seem to be related to distinct physiological requirements of mosquito circulatory system.
Collapse
|
19
|
Brito RN, Geraldo JA, Monteiro FA, Lazoski C, Souza RCM, Abad-Franch F. Transcriptome-based molecular systematics: Rhodnius montenegrensis (Triatominae) and its position within the Rhodnius prolixus-Rhodnius robustus cryptic-species complex. Parasit Vectors 2019; 12:305. [PMID: 31208458 PMCID: PMC6580618 DOI: 10.1186/s13071-019-3558-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rhodnius montenegrensis (Triatominae), a potential vector of Chagas disease, was described after R. robustus-like bugs from southwestern Amazonia. Mitochondrial cytb sequence near-identity with sympatric R. robustus (genotype II) raised doubts about the taxonomic status of R. montenegrensis, but comparative studies have reported fairly clear morphological and genetic differences between R. montenegrensis and laboratory stocks identified as R. robustus. Here, we use a transcriptome-based approach to investigate this apparent paradox. RESULTS We retrieved publicly-available transcriptome sequence-reads from R. montenegrensis and from the R. robustus stocks used as the taxonomic benchmark in comparative studies. We (i) aligned transcriptome sequence-reads to mitochondrial (cytb) and nuclear (ITS2, D2-28S and AmpG) query sequences (47 overall) from members of the R. prolixus-R. robustus cryptic-species complex and related taxa; (ii) computed breadth- and depth-coverage for the 259 consensus sequences generated by these alignments; and, for each locus, (iii) appraised query sequences and full-breadth-coverage consensus sequences in terms of nucleotide-sequence polymorphism and phylogenetic relations. We found evidence confirming that R. montenegrensis and R. robustus genotype II are genetically indistinguishable and, hence, implying that they are, in all likelihood, the same species. Furthermore, we found compelling genetic evidence that the benchmark 'R. robustus' stocks used in R. montenegrensis description and in later transcriptome-based comparisons are in fact R. prolixus, although likely mixed to some degree with R. robustus (probably genotype II, a.k.a. R. montenegrensis). CONCLUSIONS We illustrate how public-domain genetic/transcriptomic data can help address challenging issues in disease-vector systematics. In our case-study, taxonomic confusion apparently stemmed from the misinterpretation of sequence-data analyses and misidentification of taxonomic-benchmark stocks. More generally, and together with previous reports of mixed and/or misidentified Rhodnius spp. laboratory colonies, our results call into question the conclusions of many studies (on morphology, genetics, physiology, behavior, bionomics or interactions with microorganisms including trypanosomes) based on non-genotyped 'R. prolixus' or 'R. robustus' stocks. Correct species identification is a prerequisite for investigating the factors that underlie the physiological, behavioral or ecological differences between primary domestic vectors of Chagas disease, such as R. prolixus, and their sylvatic, medically less-relevant relatives such as R. robustus (s.l.) including R. montenegrensis.
Collapse
Affiliation(s)
- Raíssa N. Brito
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Juliana A. Geraldo
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fernando A. Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita C. M. Souza
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fernando Abad-Franch
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
20
|
Lazzari CR, Fauquet A, Lahondère C. Keeping cool: Kissing bugs avoid cannibalism by thermoregulating. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:29-33. [PMID: 29447846 DOI: 10.1016/j.jinsphys.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Kissing bugs possess a highly developed thermal sense and when starved, they attempt to bite any object which temperature is close to that of a warm-blooded host. At each feeding event, these insects take massive meals in just a few minutes. One could then expect fed-bugs being heated-up by the ingested warm blood and so becoming attractive to starved conspecifics. This is not however the case, arising the question about why cannibalism is very rare among these insects. Recently, the ability of thermoregulating during feeding has been demonstrated in Rhodnius prolixus. These bugs possess a countercurrent heat-exchanger that cools down the ingested blood, before it reaches the abdomen. We hypothesise that avoiding thermal stress is not the only adaptive advantages of this mechanism, but could also help avoiding cannibalism. We tested this hypothesis by quantifying cannibalism by never-fed first-instar larvae on: (1) just-fed 5th instar bugs, (2) artificially heated just-fed bugs, (3) heated or (4) non-heated objects of the same size. In line with our hypothesis, non-heated just-fed bugs were not attacked by the 1st instar larvae, whereas heated bugs and object triggered biting behaviour in starved bugs, which performed either cleptohaematophagy or haemolymphagy on heated bugs. We conclude that cannibalism triggered by thermal stimuli has been one of the selection pressures that gave origin to thermoregulation during feeding on kissing bugs.
Collapse
Affiliation(s)
- Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université de Tours, France.
| | - Aurélie Fauquet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université de Tours, France
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
21
|
Abstract
A heat exchange mechanism in the head of kissing bugs helps to prevent stress and regulate their temperature while they feed on warm blood.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - David L Denlinger
- Department of Entomology, Ohio State University, Columbus, United States.,Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, United States
| |
Collapse
|
22
|
Pereira MH, Paim RMM, Lahondère C, Lazzari CR. Heat Shock Proteins and Blood-Feeding in Arthropods. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|