1
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Li H, Zhang Y, Rao G, Zhang C, Guan Z, Huang Z, Li S, Lozach PY, Cao S, Peng K. Rift Valley fever virus coordinates the assembly of a programmable E3 ligase to promote viral replication. Cell 2024; 187:6896-6913.e15. [PMID: 39366381 DOI: 10.1016/j.cell.2024.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Viruses encode strategies to degrade cellular proteins to promote infection and pathogenesis. Here, we revealed that the non-structural protein NSs of Rift Valley fever virus forms a filamentous E3 ligase to trigger efficient degradation of targeted proteins. Reconstitution in vitro and cryoelectron microscopy analysis with the 2.9-Å resolution revealed that NSs forms right-handed helical fibrils. The NSs filamentous oligomers associate with the cellular FBXO3 to form a remodeled E3 ligase. The NSs-FBXO3 E3 ligase targets the cellular TFIIH complex through the NSs-P62 interaction, leading to ubiquitination and proteasome-dependent degradation of the TFIIH complex. NSs-FBXO3-triggered TFIIH complex degradation resulted in robust inhibition of antiviral immunity and promoted viral pathogenesis in vivo. Furthermore, it is demonstrated that NSs can be programmed to target additional proteins for proteasome-dependent degradation, serving as a versatile targeted protein degrader. These results showed that a virulence factor forms a filamentous and programmable degradation machinery to induce organized degradation of cellular proteins to promote viral infection.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Guibo Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziyan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, UMR754, Team iWays, Lyon, France
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Kril V, Hons M, Amadori C, Zimberger C, Couture L, Bouery Y, Burlaud-Gaillard J, Karpov A, Ptchelkine D, Thienel AL, Kümmerer BM, Desfosses A, Jones R, Roingeard P, Meertens L, Amara A, Reguera J. Alphavirus nsP3 organizes into tubular scaffolds essential for infection and the cytoplasmic granule architecture. Nat Commun 2024; 15:8106. [PMID: 39285216 PMCID: PMC11405681 DOI: 10.1038/s41467-024-51952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Alphaviruses, such as chikungunya virus (CHIKV), are mosquito-borne viruses that represent a significant threat to human health due to the current context of global warming. Efficient alphavirus infection relies on the activity of the non-structural protein 3 (nsP3), a puzzling multifunctional molecule whose role in infection remains largely unknown. NsP3 is a component of the plasma membrane-bound viral RNA replication complex (vRC) essential for RNA amplification and is also found in large cytoplasmic aggregates of unknown function. Here, we report the cryo-electron microscopy (cryo-EM) structure of the CHIKV nsP3 at 2.35 Å resolution. We show that nsP3 assembles into tubular structures made by a helical arrangement of its alphavirus unique domain (AUD). The nsP3 helical scaffolds are consistent with crown structures found on tomographic reconstructions of the mature viral RCs. In addition, nsP3 helices assemble into cytoplasmic granules organized in a network of tubular structures that contain viral genomic RNA and capsid as well as host factors required for productive infection. Structure-guided mutagenesis identified residues that prevent or disturb nsP3 assemblies, resulting in impaired viral replication or transcription. Altogether, our results reveal an unexpected nsP3-dependent molecular organization essential for different phases of alphavirus infection.
Collapse
Affiliation(s)
- Vasiliya Kril
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble, France
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchrotron DESY, Hamburg, Germany
| | - Celine Amadori
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Claire Zimberger
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Laurine Couture
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Yara Bouery
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Julien Burlaud-Gaillard
- Université́ de Tours, INSERM U1259 MAVIVH et Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Andrei Karpov
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Turing Centre for Living Systems, 13288, Marseille, France
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France
| | - Denis Ptchelkine
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France
| | - Philippe Roingeard
- Université́ de Tours, INSERM U1259 MAVIVH et Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Laurent Meertens
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Ali Amara
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France.
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France.
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France.
| |
Collapse
|
4
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| |
Collapse
|
5
|
Kimble JB, Noronha L, Trujillo JD, Mitzel D, Richt JA, Wilson WC. Rift Valley Fever. Vet Clin North Am Food Anim Pract 2024; 40:293-304. [PMID: 38453549 DOI: 10.1016/j.cvfa.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease that affects domestic and wild ruminants such as cattle, sheep, goats, camels, and buffaloes. Rift valley fever virus (RVFV), the causative agent of RVF, can also infect humans. RVFV is an arthropod-borne virus (arbovirus) that is primarily spread through the bites of infected mosquitoes or exposure to infected blood. RVFV was first isolated and characterized in the Rift Valley of Kenya in 1931 and is endemic throughout sub-Saharan Africa, including Comoros and Madagascar, the Arabian Peninsula (Saudi Arabia and Yemen), and Mayotte.
Collapse
Affiliation(s)
- J Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Leela Noronha
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Jessie D Trujillo
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dana Mitzel
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Juergen A Richt
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - William C Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA.
| |
Collapse
|
6
|
Fogeron ML, Callon M, Lecoq L, Böckmann A. Cell-Free Synthesis of Bunyavirales Proteins in View of Their Structural Characterization by Nuclear Magnetic Resonance. Methods Mol Biol 2024; 2824:105-120. [PMID: 39039409 DOI: 10.1007/978-1-0716-3926-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| | | | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Weber F, Bouloy M, Lozach PY. An Introduction to Rift Valley Fever Virus. Methods Mol Biol 2024; 2824:1-14. [PMID: 39039402 DOI: 10.1007/978-1-0716-3926-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is a pathogen transmitted to humans and livestock via mosquito bites. This virus, which was discovered in Kenya in 1930, is considered by the World Health Organization (WHO) and the World Organisation for Animal Health (WOAH) to be associated with a high risk of causing large-scale epidemics. However, means dedicated to fighting RVFV have been limited, and despite recent research efforts, the virus remains poorly understood at both the molecular and cellular levels as well as at a broader scale of research in the field and in animal and human populations. In this introductory chapter of a methods book, we aim to provide readers with a concise overview of RVFV, from its ecology and transmission to the structural and genomic organization of virions and its life cycle in host cells.
Collapse
Affiliation(s)
- Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Michèle Bouloy
- Institut Pasteur, Université Paris Cité, Bunyavirus Molecular Genetics Unit, Paris, France
| | - Pierre-Yves Lozach
- IVPC UMR754, INRAE, Université Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France.
| |
Collapse
|
8
|
Gondelaud F, Lozach PY, Longhi S. Viral amyloids: New opportunities for antiviral therapeutic strategies. Curr Opin Struct Biol 2023; 83:102706. [PMID: 37783197 DOI: 10.1016/j.sbi.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, 69007, Lyon, France. https://twitter.com/pylozach
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
9
|
Ito T, Wuerth JD, Weber F. Protection of eIF2B from inhibitory phosphorylated eIF2: A viral strategy to maintain mRNA translation during the PKR-triggered integrated stress response. J Biol Chem 2023; 299:105287. [PMID: 37742919 PMCID: PMC10616414 DOI: 10.1016/j.jbc.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.
Collapse
Affiliation(s)
- Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
10
|
Development and Validation of Rapid Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification for Detection of Rift Valley Fever Virus. Adv Virol 2023; 2023:1863980. [PMID: 36755743 PMCID: PMC9902148 DOI: 10.1155/2023/1863980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a high-priority zoonotic pathogen with the ability to cause massive loss during its outbreak within a very short period of time. Lack of a highly sensitive, instant reading diagnostic method for RVFV, which is more suitable for on-site testing, is a big gap that needs to be addressed. The aim of this study was to develop a novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the rapid detection of RVFV. To achieve this, the selected RVFV M segment nucleotide sequences were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) software in MEGA11 version 11.0.11 program to identify conserved regions. A 211 pb sequence was identified and six different primers to amplify it were designed using NEB LAMP Primer design tool version 1.1.0. The specificity of the designed primers was tested using primer BLAST, and a primer set, specific to RVFV and able to form a loop, was selected. In this study, we developed a single-tube test based on calorimetric RT-LAMP that enabled the visual detection of RVFV within 30 minutes at 65°C. Diagnostic sensitivity and specificity of the newly developed kit were compared with RVFV qRT-PCR, using total RNA samples extracted from 118 blood samples. The colorimetric RT-LAMP assay had a sensitivity of 98.36% and a specificity of 96.49%. The developed RT-LAMP was found to be tenfold more sensitive compared to the RVFV qRT-PCR assay commonly used in the confirmatory diagnosis of RVFV.
Collapse
|
11
|
Chaudhuri D, Datta J, Majumder S, Giri K. In silico study on miRNA regulation and NSs protein interactome characterization of the SFTS virus. J Mol Graph Model 2022; 117:108291. [PMID: 35977432 DOI: 10.1016/j.jmgm.2022.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023]
Abstract
Severe fever with thrombocytopenia syndrome causing virus i.e. SFTS virus has increased in the last few years. The underlying cause and mechanism of disease progression and development of symptoms is not well known. Many viruses including Hepatitis B, Hepatitis C, HIV-1, Herpes virus, Dengue virus and many others have been seen to regulate their functions at the miRNA level. This study aimed to find out those cellular miRNAs, which can be mimicked or antagonized by the viral genome and analyze the effect of these miRNAs on various gene functions. Investigations in this study suggest a correlation between miRNA regulation with the disease symptoms and progression. By exhaustive literature survey we have tried to identify the interacting partners of the Non Structural S (NSs) protein and characterized the protein-protein interactions. The binding interface that can serve as target for therapeutic studies involving the interfacial residues was analyzed. This study would serve as an avenue to design therapeutics making use of not only protein-protein interactions but also miRNA based regulation as well.
Collapse
Affiliation(s)
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
12
|
Schoof M, Wang L, Cogan JZ, Lawrence RE, Boone M, Wuerth JD, Frost A, Walter P. Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B. Nat Commun 2021; 12:7103. [PMID: 34876554 PMCID: PMC8651678 DOI: 10.1038/s41467-021-26164-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Viral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2's dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 30 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα mediated by five 'aromatic fingers'. NSs binding preserves eIF2B activity by maintaining eIF2B's conformation in its active A-State.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - J Zachery Cogan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | | | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Kashiwagi K, Shichino Y, Osaki T, Sakamoto A, Nishimoto M, Takahashi M, Mito M, Weber F, Ikeuchi Y, Iwasaki S, Ito T. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat Commun 2021; 12:7102. [PMID: 34876589 PMCID: PMC8651795 DOI: 10.1038/s41467-021-27337-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Ayako Sakamoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, D-35392, Germany
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
14
|
Peng K, Lozach PY. Rift Valley fever virus: a new avenue of research on the biological functions of amyloids? Future Virol 2021. [DOI: 10.2217/fvl-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rift Valley fever is a mosquito-borne viral zoonosis that was first discovered in the Great Rift Valley, Kenya, in 1930. Rift Valley fever virus (RVFV) primarily infects domestic animals and humans, with clinical outcomes ranging from self-limiting febrile illness to acute hepatitis and encephalitis. The virus left Africa a few decades ago, and there is a risk of introduction into southern Europe and Asia. From this perspective, we introduce RVFV and focus on the capacity of its virulence factor, the nonstructural protein NSs, to form amyloid-like fibrils. Here, we discuss the implications for the NSs biological function, the ability of RVFV to evade innate immunity, and RVFV virulence and neurotoxicity.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pierre-Yves Lozach
- Cell Networks, CIID (Cluster of Excellence & Center for Integrative Infectious Disease Research), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- University of Lyon, INRAE, EPHE, IVPC (Infections Virales et Pathologie Comparée), 69007, Lyon, France
| |
Collapse
|
15
|
Léger P, Lozach PY. [Rift Valley fever virus and the amazing NSs protein]. Med Sci (Paris) 2021; 37:601-608. [PMID: 34180819 DOI: 10.1051/medsci/2021090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rift Valley Fever Virus (RVFV) is an emerging zoonotic pathogen transmitted to humans and livestock through mosquito bites, which was first isolated in Kenya in 1930. The virus is classified by the WHO among the pathogens for which there is an urgent need to develop research, diagnostics, and therapies. However, the efforts developed to control the virus remain limited, and the virus is not well characterized. In this article, we will introduce RVFV and then focus on its virulence factor, the nonstructural protein NSs. We will mainly discuss the ability of this viral protein to form amyloid-like fibrils and its implication in the neurotoxicity associated with RVFV infection.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks, CIID (Cluster of Excellence and Center for Integrative Infectious Disease Research), Virology, University hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Allemagne
| | - Pierre-Yves Lozach
- CellNetworks, CIID (Cluster of Excellence and Center for Integrative Infectious Disease Research), Virology, University hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Allemagne - Univ. Lyon, INRAe, EPHE, IVPC (Infections virales et pathologie comparée), 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
16
|
The Change P82L in the Rift Valley Fever Virus NSs Protein Confers Attenuation in Mice. Viruses 2021; 13:v13040542. [PMID: 33805122 PMCID: PMC8064099 DOI: 10.3390/v13040542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore, it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an interferon (IFN)-competent cell line as well as the production of interferon beta (IFN-β) did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results highlight the key role of the NSs protein in the modulation of viral infectivity.
Collapse
|
17
|
Lau S, Weber F. Nuclear pore protein Nup98 is involved in replication of Rift Valley fever virus and nuclear import of virulence factor NSs. J Gen Virol 2020; 101:712-716. [PMID: 31671053 PMCID: PMC7660236 DOI: 10.1099/jgv.0.001347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
The non-structural protein NSs is the main virulence factor of Rift Valley fever virus, a major zoonotic pathogen in Africa. NSs forms large aggregates in the nucleus and impairs induction of the antiviral type I IFN system by several mechanisms, including degradation of subunit p62 of the general RNA polymerase II transcription factor TFIIH. Here, we show that depletion of the nuclear pore protein Nup98 affects the nuclear import of NSs. Nonetheless, NSs was still able to degrade TFIIH-p62 under these conditions. Depletion of Nup98, however, had a negative effect on Rift Valley fever virus multiplication. Our data thus indicate that NSs utilizes Nup98 for import into the nucleus, but also plays a general role in the viral replication cycle.
Collapse
Affiliation(s)
- Simone Lau
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
- German Center for Infection Research (DZIF), partner sites Marburg and Giessen, Germany
| |
Collapse
|
18
|
Léger P, Nachman E, Richter K, Tamietti C, Koch J, Burk R, Kummer S, Xin Q, Stanifer M, Bouloy M, Boulant S, Kräusslich HG, Montagutelli X, Flamand M, Nussbaum-Krammer C, Lozach PY. NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat Commun 2020; 11:3281. [PMID: 32612175 PMCID: PMC7329897 DOI: 10.1038/s41467-020-17101-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Amyloid fibrils result from the aggregation of host cell-encoded proteins, many giving rise to specific human illnesses such as Alzheimer's disease. Here we show that the major virulence factor of Rift Valley fever virus, the protein NSs, forms filamentous structures in the brain of mice and affects mortality. NSs assembles into nuclear and cytosolic disulfide bond-dependent fibrillary aggregates in infected cells. NSs structural arrangements exhibit characteristics typical for amyloids, such as an ultrastructure of 12 nm-width fibrils, a strong detergent resistance, and interactions with the amyloid-binding dye Thioflavin-S. The assembly dynamics of viral amyloid-like fibrils can be visualized in real-time. They form spontaneously and grow in an amyloid fashion within 5 hours. Together, our results demonstrate that viruses can encode amyloid-like fibril-forming proteins and have strong implications for future research on amyloid aggregation and toxicity in general.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Eliana Nachman
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | | | | | - Jana Koch
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Robin Burk
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Susann Kummer
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Qilin Xin
- University Lyon, INRAE, EPHE, IVPC, 69007, Lyon, France
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- DKFZ, 69120, Heidelberg, Germany
| | - Michèle Bouloy
- Unité de Génétique Moléculaire des Bunyavirus, Institut Pasteur, 75015, Paris, France
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- DKFZ, 69120, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | | | - Marie Flamand
- Structural Virology, Institut Pasteur, 75015, Paris, France
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
- University Lyon, INRAE, EPHE, IVPC, 69007, Lyon, France.
| |
Collapse
|
19
|
Min YQ, Shi C, Yao T, Feng K, Mo Q, Deng F, Wang H, Ning YJ. The Nonstructural Protein of Guertu Virus Disrupts Host Defenses by Blocking Antiviral Interferon Induction and Action. ACS Infect Dis 2020; 6:857-870. [PMID: 32167734 DOI: 10.1021/acsinfecdis.9b00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guertu virus (GTV) is a potentially highly pathogenic bunyavirus newly isolated in China, which is genetically related to the severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV), two other emerging life-threatening bunyaviruses. Previous studies suggested that SFTSV and HRTV antagonize the interferon (IFN) system by targeting antiviral signaling proteins in different ways. However, whether and how GTV counteracts the host innate immunity are unclear. Here, we found that GTV strongly inhibits both IFN induction and action through its nonstructural protein (NSs). Different from the NSs of SFTSV and HRTV, GTV NSs (G-NSs) induced the formation of two distinctive cytoplasmic structures, compact inclusion bodies (IBs) and extended filamentous structures (FSs). Protein interaction and colocalization analyses demonstrated that G-NSs interacts with TBK1 (TANK binding kinase-1, the pivotal kinase for IFN induction) and STAT2 (signal transducer and activator of transcription 2, the essential transcription factor for IFN action) and irreversibly sequesters the host proteins into the viral IBs and FSs. Consistently, G-NSs thus inhibited phosphorylation/activation and nuclear translocation of IFN-regulatory factor 3 (IRF3, the substrate of TBK1), diminishing the IFN induction. Furthermore, G-NSs sequestration of STAT2 blocked phosphorylation/activation and nuclear translocation of STAT2, disabling IFN action and host antiviral state establishment. Collectively, this study shows the robust subversion of the two phases of the IFN antiviral system by GTV and unravels the respective molecular mechanisms, exhibiting some notable differences from those employed by SFTSV and HRTV, providing insights into the virus-host interactions and pathogenesis, and probably also benefiting the prevention and treatment of the related infectious diseases in the future.
Collapse
Affiliation(s)
- Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Chen Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- The University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ting Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- The University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kuan Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- The University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- The University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
20
|
Li S, Zhu X, Guan Z, Huang W, Zhang Y, Kortekaas J, Lozach PY, Peng K. NSs Filament Formation Is Important but Not Sufficient for RVFV Virulence In Vivo. Viruses 2019; 11:v11090834. [PMID: 31500343 PMCID: PMC6783917 DOI: 10.3390/v11090834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne phlebovirus that represents as a serious health threat to both domestic animals and humans. The viral protein NSs is the key virulence factor of RVFV, and has been proposed that NSs nuclear filament formation is critical for its virulence. However, the detailed mechanisms are currently unclear. Here, we generated a T7 RNA polymerase-driven RVFV reverse genetics system based on a strain imported into China (BJ01). Several NSs mutations (T1, T3 and T4) were introduced into the system for investigating the correlation between NSs filament formation and virulence in vivo. The NSs T1 mutant showed distinct NSs filament in the nuclei of infected cells, the T3 mutant diffusively localized in the cytoplasm and the T4 mutant showed fragmented nuclear filament formation. Infection of BALB/c mice with these NSs mutant viruses revealed that the in vivo virulence was severely compromised for all three NSs mutants, including the T1 mutant. This suggests that NSs filament formation is not directly correlated with RVFV virulence in vivo. Results from this study not only shed new light on the virulence mechanism of RVFV NSs but also provided tools for future in-depth investigations of RVFV pathogenesis and anti-RVFV drug screening.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan 430071, China.
| | - Xiangtao Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenfeng Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan 430071, China.
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, 8211 Lelystad, The Netherlands.
- Laboratory of Virology, Wageningen University, 6701 Wageningen, The Netherlands.
| | - Pierre-Yves Lozach
- Cell Networks-Cluster of Excellence and Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69115 Heidelberg, Germany.
- IVPC UMR754, INRA, Univ. Lyon, EPHE, 50 Av. Tony Garnier, 69007 Lyon, France.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Saul VV, Seibert M, Krüger M, Jeratsch S, Kracht M, Schmitz ML. ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. iScience 2019; 19:527-544. [PMID: 31442668 PMCID: PMC6710720 DOI: 10.1016/j.isci.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions.
Collapse
Affiliation(s)
- Vera Vivian Saul
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Michael Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research.
| |
Collapse
|
22
|
Ter Horst S, Conceição-Neto N, Neyts J, Rocha-Pereira J. Structural and functional similarities in bunyaviruses: Perspectives for pan-bunya antivirals. Rev Med Virol 2019; 29:e2039. [PMID: 30746831 PMCID: PMC7169261 DOI: 10.1002/rmv.2039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
Abstract
The order of Bunyavirales includes numerous (re)emerging viruses that collectively have a major impact on human and animal health worldwide. There are no vaccines for human use or antiviral drugs available to prevent or treat infections with any of these viruses. The development of efficacious and safe drugs and vaccines is a pressing matter. Ideally, such antivirals possess pan‐bunyavirus antiviral activity, allowing the containment of every bunya‐related threat. The fact that many bunyaviruses need to be handled in laboratories with biosafety level 3 or 4, the great variety of species and the frequent emergence of novel species complicate such efforts. We here examined the potential druggable targets of bunyaviruses, together with the level of conservation of their biological functions, structure, and genetic similarity by means of heatmap analysis. In the light of this, we revised the available models and tools currently available, pointing out directions for antiviral drug discovery.
Collapse
Affiliation(s)
- Sebastiaan Ter Horst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Joana Rocha-Pereira
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Barski M. BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins. BMC Genomics 2018; 19:902. [PMID: 30537929 PMCID: PMC6290515 DOI: 10.1186/s12864-018-5322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/28/2018] [Indexed: 12/02/2022] Open
Abstract
Background Intrinsic structural disorder is a common property of many proteins, especially in eukaryotic and virus proteomes. The tendency of some proteins or protein regions to exist in a disordered state usually precludes their structural characterisation and renders them especially difficult for experimental handling after recombinant expression. Results A new intuitive, publicly-available computational resource, called BASILIScan, is presented here. It provides a BLAST-based search for close homologues of the protein of interest, integrated with a simultaneous prediction of intrinsic disorder together with a robust data viewer and interpreter. This allows for a quick, high-throughput screening, scoring and selection of closely-related yet highly structured homologues of the protein of interest. Comparative parallel analysis of the conservation of extended regions of disorder in multiple sequences is also offered. The use of BASILIScan and its capacity for yielding biologically applicable predictions is demonstrated. Using a high-throughput BASILIScan screen it is also shown that a large proportion of the human proteome displays homologous sequences of superior intrinsic structural order in many related species. Conclusion Through the swift identification of intrinsically stable homologues and poorly conserved disordered regions by the BASILIScan software, the chances of successful recombinant protein expression and compatibility with downstream applications such as crystallisation can be greatly increased. Electronic supplementary material The online version of this article (10.1186/s12864-018-5322-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Barski
- Section of Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|