1
|
Sun H, Zhang LH, Wang JH, Chen R, Liu Y, Zhang PC, Niu C. Lonicerin regulates AMPK/SIRT1/autophagy pathway to attenuate heat stress intestinal injury and inhibit inflammation. Int Immunopharmacol 2025; 154:114549. [PMID: 40157083 DOI: 10.1016/j.intimp.2025.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Intestinal injury is one of the most prevalent complications following heat stress (HS) in both humans and animals. Autophagy has been shown to maintain intestinal homeostasis, and modulation of autophagy may help alleviate intestinal injury caused by HS. Lonicerin (LN) are flavonoids known to have enhanced autophagy and anti-inflammatory effects. However, how LN prevent intestinal damage and regulate autophagy after HS remains unknown. The aim of this study was to elucidate the potential regulatory effects of LN on intestinal inflammation and intestinal barrier function in a HS model, and to elucidate the underlying molecular mechanisms. Firstly, we searched for the same inflammatory cytokines in the drug and disease targets through network pharmacology, and in vitro and in vivo experiments showed that LN significantly inhibited the production of pro-inflammatory cytokines. Then it was demonstrated that LN alleviates HS induced intestinal mucosal barrier damage by repairing tight junctions, goblet cells, and mucins in the colon of rats, consistent with the findings of in vitro experiments. In addition, LN reversed HS-induced reduced autophagic flux and maintained autophagic homeostasis via the AMP-activated protein kinase (AMPK)-Silent information regulator 1 (SIRT1) pathway in intestinal epithelial cells and intestinal system. In summary, this study demonstrated that LN exert intestinal protective and immunomodulatory effects by inhibiting the production of pro-inflammatory cytokines, maintaining the integrity of the intestinal mucosal barrier, and the level of AMPK-SIRT1 autophagy.
Collapse
Affiliation(s)
- Hui Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; Military Medical Sciences Academy, Tianjin 300050, China
| | - Long-Hui Zhang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Jin-Hao Wang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Ran Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; Military Medical Sciences Academy, Tianjin 300050, China
| | - Ying Liu
- Military Medical Sciences Academy, Tianjin 300050, China
| | | | - Chao Niu
- Military Medical Sciences Academy, Tianjin 300050, China.
| |
Collapse
|
2
|
Harrison BR, Lee MB, Zhang S, Young B, Han K, Sukomol J, Paus V, Tran S, Kim D, Fitchett H, Pan Y, Tesfaye P, Johnson AW, Zhao X, Djukovic D, Raftery D, Promislow DEL. Wide-ranging genetic variation in sensitivity to rapamycin in Drosophila melanogaster. Aging Cell 2024; 23:e14292. [PMID: 39135281 PMCID: PMC11561674 DOI: 10.1111/acel.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
The progress made in aging research using laboratory organisms is undeniable. Yet, with few exceptions, these studies are conducted in a limited number of isogenic strains. The path from laboratory discoveries to treatment in human populations is complicated by the reality of genetic variation in nature. To model the effect of genetic variation on the action of the drug rapamycin, here we use the growth of Drosophila melanogaster larvae. We screened 140 lines from the Drosophila Genetic References Panel for the extent of developmental delay and found wide-ranging variation in their response, from lines whose development time is nearly doubled by rapamycin, to those that appear to be completely resistant. Sensitivity did not associate with any single genetic marker, nor with any gene. However, variation at the level of genetic pathways was associated with rapamycin sensitivity and might provide insight into sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong response of the metabolome to rapamycin, but only among the sensitive larvae. In particular, we found that rapamycin altered levels of amino acids in sensitive larvae, and in a direction strikingly similar to the metabolome response to nutrient deprivation. This work demonstrates the need to evaluate interventions across genetic backgrounds and highlights the potential of omic approaches to reveal biomarkers of drug efficacy and to shed light on mechanisms underlying sensitivity to interventions aimed at increasing lifespan.
Collapse
Affiliation(s)
- Benjamin R. Harrison
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | - Shufan Zhang
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Bill Young
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Kenneth Han
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Jiranut Sukomol
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Vanessa Paus
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Sarina Tran
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - David Kim
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Hannah Fitchett
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Yu‐Chen Pan
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Philmon Tesfaye
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Alia W. Johnson
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Xiaqing Zhao
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Choi J, Jang H, Xuan Z, Park D. Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology. Autophagy 2024; 20:2373-2387. [PMID: 39099167 PMCID: PMC11572220 DOI: 10.1080/15548627.2024.2384349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiyoung Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| | - Haeun Jang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Zhao Xuan
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Daehun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
4
|
Yao T, Hao Z, Fan W, Han J, Wang S, Jiang Z, Wang Y, Yang XQ, Xu Z. Identification and validation of autophagy-related genes in Hirschsprung's disease. PeerJ 2024; 12:e18376. [PMID: 39494277 PMCID: PMC11531261 DOI: 10.7717/peerj.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Background Hirschsprung's disease (HSCR) is a congenital disorder characterized by aganglionosis in the intermuscular and submucosal nerve plexuses of the gut, leading to impaired gastrointestinal function. Although the precise cause and pathophysiology of HSCR remain elusive, increasing evidence points to a significant role of autophagy in its development, warranting further investigation into its underlying mechanisms. Methods This study utilized publicly available microarray expression profiling datasets, GSE96854 and GSE98502, from the Gene Expression Omnibus (GEO). The R software (version 4.2.0) was employed to identify autophagy-related genes potentially showing differential expression in HSCR. Subsequent analyses included correlation analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analysis using the STRING database (version 11.0) and Cytoscape software (version 3.8.2). Ultimately, HSCR samples were used to verify the mRNA levels of important genes by quantitative real-time polymerase chain reaction (qRT-PCR) in a laboratory setting. Results We have discovered 20 genes that are involved in autophagy and show variable expression. Among these genes, 15 are up-regulated and five are down-regulated. The enrichment analysis using the GO and KEGG pathways revealed a notable enrichment in pathways related to the control of autophagy. Nine hub genes were found via the investigation of the PPI network constructed from STRING database and module analysis using Cytoscape. Moreover, the concordance between SIRT1 expression in the HSCR model and the bioinformatics analysis of mRNA chip findings was validated using qRT-PCR. Conclusion Utilizing bioinformatics analysis, we identified 20 potential genes associated with Hirschsprung's disease that play a role in autophagy. Notably, the upregulation of SIRT1 may profoundly influence the progression of HSCR by regulating autophagy-related pathways, offering a novel perspective on the disease's pathogenesis.
Collapse
Affiliation(s)
- Ting Yao
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zenghui Hao
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Fan
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinbao Han
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zaiqun Jiang
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunting Wang
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao Qian Yang
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhilin Xu
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Yi S, Wang L, Ho MS, Zhang S. The autophagy protein Atg9 functions in glia and contributes to parkinsonian symptoms in a Drosophila model of Parkinson's disease. Neural Regen Res 2024; 19:1150-1155. [PMID: 37862221 PMCID: PMC10749615 DOI: 10.4103/1673-5374.382259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by motor deficits, dopaminergic neuron loss, and brain accumulation of α-synuclein aggregates called Lewy bodies. Dysfunction in protein degradation pathways, such as autophagy, has been demonstrated in neurons as a critical mechanism for eliminating protein aggregates in Parkinson's disease. However, it is less well understood how protein aggregates are eliminated in glia, the other cell type in the brain. In the present study, we show that autophagy-related gene 9 (Atg9), the only transmembrane protein in the autophagy machinery, is highly expressed in Drosophila glia from adult brain. Results from immunostaining and live cell imaging analysis reveal that a portion of Atg9 localizes to the trans-Golgi network, autophagosomes, and lysosomes in glia. Atg9 is persistently in contact with these organelles. Lacking glial atg9 reduces the number of omegasomes and autophagosomes, and impairs autophagic substrate degradation. This suggests that glial Atg9 participates in the early steps of autophagy, and hence the control of autophagic degradation. Importantly, loss of glial atg9 induces parkinsonian symptoms in Drosophila including progressive loss of dopaminergic neurons, locomotion deficits, and glial activation. Our findings identify a functional role of Atg9 in glial autophagy and establish a potential link between glial autophagy and Parkinson's disease. These results may provide new insights on the underlying mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Ryan PJ, Uranga S, Stanelle ST, Lewis MH, O'Reilly CL, Cardin JM, Deaver JW, Morton AB, Fluckey JD. The autophagy inhibitor NSC185058 suppresses mTORC1-mediated protein anabolism in cultured skeletal muscle. Sci Rep 2024; 14:8094. [PMID: 38582781 PMCID: PMC10998866 DOI: 10.1038/s41598-024-58716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), and specifically the mTOR complex 1 (mTORC1) is the central regulator of anabolism in skeletal muscle. Among the many functions of this kinase complex is the inhibition of the catabolic process of autophagy; however, less work has been done in investigating the role of autophagy in regulating mTORC1 signaling. Using an in vitro model to better understand the pathways involved, we activated mTORC1 by several different means (growth factors, leucine supplementation, or muscle contraction), alone or with the autophagy inhibitor NSC185058. We found that inhibiting autophagy with NSC185058 suppresses mTORC1 activity, preventing any increase in cellular protein anabolism. These decrements were the direct result of action on the mTORC1 kinase, which we demonstrate, for the first time, cannot function when autophagy is inhibited by NSC185058. Our results indicate that, far from being a matter of unidirectional action, the relationship between mTORC1 and the autophagic cascade is more nuanced, with autophagy serving as an mTORC1 input, and mTORC1 inhibition of autophagy as a form of homeostatic feedback to regulate anabolic signaling. Future studies of cellular metabolism will have to consider this fundamental intertwining of protein anabolism and catabolism, and how it ultimately serves to regulate muscle proteostasis.
Collapse
Affiliation(s)
- Patrick J Ryan
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Selina Uranga
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Sean T Stanelle
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Megan H Lewis
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Colleen L O'Reilly
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Jessica M Cardin
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - J William Deaver
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - Aaron B Morton
- Soft Tissue Regeneration and Applied Biomaterials Laboratory, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, Gilchrist Building, 2929 Research Parkway, College Station, TX, 77843-4243, USA.
| |
Collapse
|
7
|
Shang JN, Yu CG, Li R, Xi Y, Jian YJ, Xu N, Chen S. The nonautophagic functions of autophagy-related proteins. Autophagy 2024; 20:720-734. [PMID: 37682088 PMCID: PMC11062363 DOI: 10.1080/15548627.2023.2254664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yue Jenny Jian
- Nanjing Foreign Language School, Nanjing, Jiangsu, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| |
Collapse
|
8
|
Oyarce-Pezoa S, Rucatti GG, Muñoz-Carvajal F, Sanhueza N, Gomez W, Espinoza S, Leiva M, García N, Ponce DP, SanMartín CD, Rojas-Rivera D, Salvadores N, Behrens MI, Woehlbier U, Calegaro-Nassif M, Sanhueza M. The autophagy protein Def8 is altered in Alzheimer's disease and Aβ42-expressing Drosophila brains. Sci Rep 2023; 13:17137. [PMID: 37816871 PMCID: PMC10564863 DOI: 10.1038/s41598-023-44203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by protein accumulation in the brain as a main neuropathological hallmark. Among them, Aβ42 peptides tend to aggregate and create oligomers and plaques. Macroautophagy, a form of autophagy characterized by a double-membrane vesicle, plays a crucial role in maintaining neuronal homeostasis by degrading protein aggregates and dysfunctional organelles as a quality control process. Recently, DEF8, a relatively uncharacterized protein, has been proposed as a participant in vesicular traffic and autophagy pathways. We have reported increased DEF8 levels in lymphocytes from mild cognitive impairment (MCI) and early-stage AD patients and a neuronal profile in a murine transgenic AD model. Here, we analyzed DEF8 localization and levels in the postmortem frontal cortex of AD patients, finding increased levels compared to healthy controls. To evaluate the potential function of DEF8 in the nervous system, we performed an in silico assessment of its expression and network profiles, followed by an in vivo evaluation of a neuronal Def8 deficient model using a Drosophila melanogaster model of AD based on Aβ42 expression. Our findings show that DEF8 is an essential protein for maintaining cellular homeostasis in the nervous system, and it is upregulated under stress conditions generated by Aβ42 aggregation. This study suggests DEF8 as a novel actor in the physiopathology of AD, and its exploration may lead to new treatment avenues.
Collapse
Affiliation(s)
- Sebastián Oyarce-Pezoa
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
- Laboratory of Autophagy and Neuroprotection, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- PhD Program in Biomedicine, Universidad de los Andes, Santiago, Chile
- Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Guilherme Gischkow Rucatti
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
- Laboratory of Autophagy and Neuroprotection, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- PhD Program in Neurobiology, Universidad Mayor, Santiago, Chile
| | - Francisco Muñoz-Carvajal
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
- PhD Program in Neurobiology, Universidad Mayor, Santiago, Chile
| | - Nicole Sanhueza
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
| | - Wileidy Gomez
- Laboratory of Autophagy and Neuroprotection, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- PhD Program in Integrative Genomics, Universidad Mayor, Santiago, Chile
| | - Sandra Espinoza
- Laboratory of Autophagy and Neuroprotection, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Mario Leiva
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
| | - Nicolás García
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Aplicada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carol D SanMartín
- Centro de Investigación Clínica Aplicada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Natalia Salvadores
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile
- Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Temuco, Chile
| | - Maria I Behrens
- Centro de Investigación Clínica Aplicada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Melissa Calegaro-Nassif
- Laboratory of Autophagy and Neuroprotection, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile.
| | - Mario Sanhueza
- Center for Resilience, Adaptation and Mitigation, Universidad Mayor, Temuco, Chile.
- Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Temuco, Chile.
| |
Collapse
|
9
|
Bierlein M, Charles J, Polisuk-Balfour T, Bretscher H, Rice M, Zvonar J, Pohl D, Winslow L, Wasie B, Deurloo S, Van Wert J, Williams B, Ankney G, Harmon Z, Dann E, Azuz A, Guzman-Vargas A, Kuhns E, Neufeld TP, O’Connor MB, Amissah F, Zhu CC. Autophagy impairment and lifespan reduction caused by Atg1 RNAi or Atg18 RNAi expression in adult fruit flies (Drosophila melanogaster). Genetics 2023; 225:iyad154. [PMID: 37594076 PMCID: PMC11491525 DOI: 10.1093/genetics/iyad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Autophagy, an autophagosome and lysosome-based eukaryotic cellular degradation system, has previously been implicated in lifespan regulation in different animal models. In this report, we show that expression of the RNAi transgenes targeting the transcripts of the key autophagy genes Atg1 or Atg18 in adult fly muscle or glia does not affect the overall levels of autophagosomes in those tissues and does not change the lifespan of the tested flies but the lifespan reduction phenotype has become apparent when Atg1 RNAi or Atg18 RNAi is expressed ubiquitously in adult flies or after autophagy is eradicated through the knockdown of Atg1 or Atg18 in adult fly adipocytes. Lifespan reduction was also observed when Atg1 or Atg18 was knocked down in adult fly enteroblasts and midgut stem cells. Overexpression of wild-type Atg1 in adult fly muscle or adipocytes reduces the lifespan and causes accumulation of high levels of ubiquitinated protein aggregates in muscles. Our research data have highlighted the important functions of the key autophagy genes in adult fly adipocytes, enteroblasts, and midgut stem cells and their undetermined roles in adult fly muscle and glia for lifespan regulation.
Collapse
Affiliation(s)
- Mariah Bierlein
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Joseph Charles
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | | | - Heidi Bretscher
- Department of Genetics, Cell Biology, and Developmental Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micaela Rice
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Jacklyn Zvonar
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Drake Pohl
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Lindsey Winslow
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Brennah Wasie
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Sara Deurloo
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Jordan Van Wert
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Britney Williams
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Gabrielle Ankney
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Zachary Harmon
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Erica Dann
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Anna Azuz
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Alex Guzman-Vargas
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Elizabeth Kuhns
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology, and Developmental Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O’Connor
- Department of Genetics, Cell Biology, and Developmental Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Felix Amissah
- School of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Changqi C Zhu
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| |
Collapse
|
10
|
Socha C, Pais IS, Lee KZ, Liu J, Liégeois S, Lestradet M, Ferrandon D. Fast drosophila enterocyte regrowth after infection involves a reverse metabolic flux driven by an amino acid transporter. iScience 2023; 26:107490. [PMID: 37636057 PMCID: PMC10448536 DOI: 10.1016/j.isci.2023.107490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Upon exposure to a bacterial pore-forming toxin, enterocytes rapidly purge their apical cytoplasm into the gut lumen, resulting in a thin intestinal epithelium. The enterocytes regain their original shape and thickness within 16 h after the ingestion of the bacteria. Here, we show that the regrowth of Drosophila enterocytes entails an inversion of metabolic fluxes from the organism back toward the intestine. We identify a proton-assisted transporter, Arcus, that is required for the reverse absorption of amino acids and the timely recovery of the intestinal epithelium. Arcus is required for a peak of amino acids appearing in the hemolymph shortly after infection. The regrowth of enterocytes involves the insulin signaling pathway and Myc. The purge decreases Myc mRNA levels, which subsequently remain at low levels in the arcus mutant. Interestingly, the action of arcus and Myc in the intestinal epithelium is not cell-autonomous, suggesting amino acid fluxes within the intestinal epithelium.
Collapse
Affiliation(s)
- Catherine Socha
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
| | - Inês S. Pais
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
| | - Kwang-Zin Lee
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
| | - Jiyong Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, Guangdong Province, China
| | - Samuel Liégeois
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
- Sino-French Hoffmann Institute, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, Guangdong Province, China
| | - Matthieu Lestradet
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
| | - Dominique Ferrandon
- Université de Strasbourg, CNRS, RIDI UPR 9022, F67084 Strasbourg, France
- Sino-French Hoffmann Institute, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, Guangdong Province, China
| |
Collapse
|
11
|
Wang R, Fortier TM, Chai F, Miao G, Shen JL, Restrepo LJ, DiGiacomo JJ, Velentzas PD, Baehrecke EH. PINK1, Keap1, and Rtnl1 regulate selective clearance of endoplasmic reticulum during development. Cell 2023; 186:4172-4188.e18. [PMID: 37633267 PMCID: PMC10530463 DOI: 10.1016/j.cell.2023.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.
Collapse
Affiliation(s)
- Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fei Chai
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangyan Miao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lucas J Restrepo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeromy J DiGiacomo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Panagiotis D Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Tran S, Juliani J, Fairlie WD, Lee EF. The emerging roles of autophagy in intestinal epithelial cells and its links to inflammatory bowel disease. Biochem Soc Trans 2023; 51:811-826. [PMID: 37052218 PMCID: PMC10212545 DOI: 10.1042/bst20221300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Landmark genome-wide association studies (GWAS) identified that mutations in autophagy genes correlated with inflammatory bowel disease (IBD), a heterogenous disease characterised by prolonged inflammation of the gastrointestinal tract, that can reduce a person's quality of life. Autophagy, the delivery of intracellular components to the lysosome for degradation, is a critical cellular housekeeping process that removes damaged proteins and turns over organelles, recycling their amino acids and other constituents to supply cells with energy and necessary building blocks. This occurs under both basal and challenging conditions such as nutrient deprivation. An understanding of the relationship between autophagy, intestinal health and IBD aetiology has improved over time, with autophagy having a verified role in the intestinal epithelium and immune cells. Here, we discuss research that has led to an understanding that autophagy genes, including ATG16L, ATG5, ATG7, IRGM, and Class III PI3K complex members, contribute to innate immune defence in intestinal epithelial cells (IECs) via selective autophagy of bacteria (xenophagy), how autophagy contributes to the regulation of the intestinal barrier via cell junctional proteins, and the critical role of autophagy genes in intestinal epithelial secretory subpopulations, namely Paneth and goblet cells. We also discuss how intestinal stem cells can utilise autophagy. Importantly, mouse studies have provided evidence that autophagy deregulation has serious physiological consequences including IEC death and intestinal inflammation. Thus, autophagy is now established as a key regulator of intestinal homeostasis. Further research into how its cytoprotective mechanisms can prevent intestinal inflammation may provide insights into the effective management of IBD.
Collapse
Affiliation(s)
- Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Juliani Juliani
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
13
|
Li H, Yu Z, Niu Z, Cheng Y, Wei Z, Cai Y, Ma F, Hu L, Zhu J, Zhang W. A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila. Cell Mol Life Sci 2023; 80:129. [PMID: 37086384 PMCID: PMC11073442 DOI: 10.1007/s00018-023-04778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Ufmylation is a recently identified small ubiquitin-like modification, whose biological function and relevant cellular targets are poorly understood. Here we present evidence of a neuroprotective role for Ufmylation involving Autophagy-related gene 9 (Atg9) during Drosophila aging. The Ufm1 system ensures the health of aged neurons via Atg9 by coordinating autophagy and mTORC1, and maintaining mitochondrial homeostasis and JNK (c-Jun N-terminal kinase) activity. Neuron-specific expression of Atg9 suppresses the age-associated movement defect and lethality caused by loss of Ufmylation. Furthermore, Atg9 is identified as a conserved target of Ufm1 conjugation mediated by Ddrgk1, a critical regulator of Ufmylation. Mammalian Ddrgk1 was shown to be indispensable for the stability of endogenous Atg9A protein in mouse embryonic fibroblast (MEF) cells. Taken together, our findings might have important implications for neurodegenerative diseases in mammals.
Collapse
Affiliation(s)
- Huifang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenghong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hosptial of Medical School, Nanjing University, Nanjing, 210002, China
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Cheng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhenhao Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Ma
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lanxin Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Murakawa T, Nakamura T, Kawaguchi K, Murayama F, Zhao N, Stasevich TJ, Kimura H, Fujita N. A Drosophila toolkit for HA-tagged proteins unveils a block in autophagy flux in the last instar larval fat body. Development 2022; 149:dev200243. [PMID: 35319746 DOI: 10.1242/dev.200243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 01/04/2025]
Abstract
For in vivo functional analysis of a protein of interest (POI), multiple transgenic strains with a POI that harbors different tags are needed but generation of these strains is still labor-intensive work. To overcome this, we have developed a versatile Drosophila toolkit with a genetically encoded single-chain variable fragment for the HA epitope tag: 'HA Frankenbody'. This system allows various analyses of HA-tagged POI in live tissues by simply crossing an HA Frankenbody fly with an HA-tagged POI fly. Strikingly, the GFP-mCherry tandem fluorescent-tagged HA Frankenbody revealed a block in autophagic flux and an accumulation of enlarged autolysosomes in the last instar larval and prepupal fat body. Mechanistically, lysosomal activity was downregulated at this stage, and endocytosis, but not autophagy, was indispensable for the swelling of lysosomes. Furthermore, forced activation of lysosomes by fat body-targeted overexpression of Mitf, the single MiTF/TFE family gene in Drosophila, suppressed the lysosomal swelling and resulted in pupal lethality. Collectively, we propose that downregulated lysosomal function in the fat body plays a role in the metamorphosis of Drosophila.
Collapse
Affiliation(s)
- Tadayoshi Murakawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tsuyoshi Nakamura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Futoshi Murayama
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- World Research Hub Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- World Research Hub Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Precursory Research for Embryonic Science & Technology (PRESTO), Japan Science & Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J 2022; 41:e109992. [PMID: 35262206 PMCID: PMC9194749 DOI: 10.15252/embj.2021109992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | | | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, Chen GC. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep 2022; 38:110354. [PMID: 35196483 DOI: 10.1016/j.celrep.2022.110354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hsing Shen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
17
|
Wang R, Miao G, Shen JL, Fortier TM, Baehrecke EH. ESCRT dysfunction compromises endoplasmic reticulum maturation and autophagosome biogenesis in Drosophila. Curr Biol 2022; 32:1262-1274.e4. [PMID: 35134326 PMCID: PMC8969116 DOI: 10.1016/j.cub.2022.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Autophagy targets cytoplasmic materials for degradation and influences cell health. Organelle contact and trafficking systems provide membranes for autophagosome formation, but how different membrane systems are selected for use during autophagy remains unclear. Here, we report a novel function of the endosomal sorting complex required for transport (ESCRT) in the regulation of endoplasmic reticulum (ER) coat protein complex II (COPII) vesicle formation that influences autophagy. The ESCRT functions in a pathway upstream of Vps13D to influence COPII vesicle transport, ER-Golgi intermediate compartment (ERGIC) assembly, and autophagosome formation. Atg9 functions downstream of the ESCRT to facilitate ERGIC and autophagosome formation. Interestingly, cells lacking either ESCRT or Vps13D functions exhibit dilated ER structures that are similar to cranio-lenticulo-sutural dysplasia patient cells with SEC23A mutations, which encodes a component of COPII vesicles. Our data reveal a novel ESCRT-dependent pathway that influences the ERGIC and autophagosome formation.
Collapse
Affiliation(s)
- Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangyan Miao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A 2022; 119:2113704119. [PMID: 35074910 PMCID: PMC8795540 DOI: 10.1073/pnas.2113704119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.
Collapse
|
19
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 2021; 12:6750. [PMID: 34799570 PMCID: PMC8605025 DOI: 10.1038/s41467-021-26999-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
Collapse
Affiliation(s)
- Elodie Mailler
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nunziata Maio
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Kallergi E, Nikoletopoulou V. Macroautophagy and normal aging of the nervous system: Lessons from animal models. Cell Stress 2021; 5:146-166. [PMID: 34708187 PMCID: PMC8490955 DOI: 10.15698/cst2021.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.
Collapse
Affiliation(s)
- Emmanouela Kallergi
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
23
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
24
|
Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci 2021; 284:119876. [PMID: 34389405 DOI: 10.1016/j.lfs.2021.119876] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are biosynthetic, bioenergetic, and signaling organelles which are critical for physiological adaptations and cellular stress responses to the environment. Various endogenous and environmental stress affects critical processes in mitochondrial homeostasis such as oxidative phosphorylation, biogenesis, mitochondrial redox system which leads to the formation of reactive oxygen species (ROS) and free radicals. The state of function of the mitochondrion is particularly dependent on the dynamic balance between mitochondrial biogenesis, fusion and fission, and degradation of damaged mitochondria by mitophagy. Increasing evidence has suggested a prominent role of mitochondrial dysfunction in the onset and progression of various lung pathologies, ranging from acute to chronic disorders. In this comprehensive review, we discuss the emerging findings of multifaceted regulations of mitochondrial dynamics and mitophagy in normal lung homeostasis as well as the prominence of mitochondrial dysfunction as a determining factor in different lung disorders such as lung cancer, COPD, IPF, ALI/ARDS, BPD, and asthma. The review will contribute to the existing understanding of critical molecular machinery regulating mitochondrial dynamic state during these pathological states. Furthermore, we have also highlighted various molecular checkpoints involved in mitochondrial dynamics, which may serve as hopeful therapeutic targets for the development of potential therapies for these lung disorders.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
25
|
Allen EA, Amato C, Fortier TM, Velentzas P, Wood W, Baehrecke EH. A conserved myotubularin-related phosphatase regulates autophagy by maintaining autophagic flux. J Cell Biol 2021; 219:152081. [PMID: 32915229 PMCID: PMC7594499 DOI: 10.1083/jcb.201909073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
Macroautophagy (autophagy) targets cytoplasmic cargoes to the lysosome for degradation. Like all vesicle trafficking, autophagy relies on phosphoinositide identity, concentration, and localization to execute multiple steps in this catabolic process. Here, we screen for phosphoinositide phosphatases that influence autophagy in Drosophila and identify CG3530. CG3530 is homologous to the human MTMR6 subfamily of myotubularin-related 3-phosphatases, and therefore, we named it dMtmr6. dMtmr6, which is required for development and viability in Drosophila, functions as a regulator of autophagic flux in multiple Drosophila cell types. The MTMR6 family member MTMR8 has a similar function in autophagy of higher animal cells. Decreased dMtmr6 and MTMR8 function results in autophagic vesicle accumulation and influences endolysosomal homeostasis.
Collapse
Affiliation(s)
- Elizabeth A Allen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Clelia Amato
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tina M Fortier
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Panagiotis Velentzas
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Will Wood
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eric H Baehrecke
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
26
|
A switch to feeding on cycads generates parallel accelerated evolution of toxin tolerance in two clades of Eumaeus caterpillars (Lepidoptera: Lycaenidae). Proc Natl Acad Sci U S A 2021; 118:2018965118. [PMID: 33568532 DOI: 10.1073/pnas.2018965118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We assembled a complete reference genome of Eumaeus atala, an aposematic cycad-eating hairstreak butterfly that suffered near extinction in the United States in the last century. Based on an analysis of genomic sequences of Eumaeus and 19 representative genera, the closest relatives of Eumaeus are Theorema and Mithras We report natural history information for Eumaeus, Theorema, and Mithras Using genomic sequences for each species of Eumaeus, Theorema, and Mithras (and three outgroups), we trace the evolution of cycad feeding, coloration, gregarious behavior, and other traits. The switch to feeding on cycads and to conspicuous coloration was accompanied by little genomic change. Soon after its origin, Eumaeus split into two fast evolving lineages, instead of forming a clump of close relatives in the phylogenetic tree. Significant overlap of the fast evolving proteins in both clades indicates parallel evolution. The functions of the fast evolving proteins suggest that the caterpillars developed tolerance to cycad toxins with a range of mechanisms including autophagy of damaged cells, removal of cell debris by macrophages, and more active cell proliferation.
Collapse
|
27
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Nagai H, Tatara H, Tanaka-Furuhashi K, Kurata S, Yano T. Homeostatic Regulation of ROS-Triggered Hippo-Yki Pathway via Autophagic Clearance of Ref(2)P/p62 in the Drosophila Intestine. Dev Cell 2021; 56:81-94.e10. [PMID: 33400912 DOI: 10.1016/j.devcel.2020.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Homeostasis of intestinal epithelia is maintained by coordination of the proper rate of regeneration by stem cell division with the rate of cell loss. Regeneration of host epithelia is normally quiescent upon colonization of commensal bacteria; however, the epithelia often develop dysplasia in a context-dependent manner, the cause and underlying mechanism of which remain unclear. Here, we show that in Drosophila intestine, autophagy lowers the sensitivity of differentiated enterocytes to reactive oxygen species (ROS) that are produced in response to commensal bacteria. We find that autophagy deficiency provokes ROS-dependent excessive regeneration and subsequent epithelial dysplasia and barrier dysfunction. Mechanistically, autophagic substrate Ref(2)P/p62, which co-localizes and physically interacts with Dachs, a Hippo signaling regulator, accumulates upon autophagy deficiency and thus inactivates Hippo signaling, resulting in stem cell over-proliferation non-cell autonomously. Our findings uncover a mechanism whereby suppression of undesirable regeneration by autophagy maintains long-term homeostasis of intestinal epithelia.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Tatara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
29
|
Duan X, Tong C. Autophagy in Drosophila and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:333-356. [PMID: 34260032 DOI: 10.1007/978-981-16-2830-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a highly conserved cellular process that delivers cellular contents to the lysosome for degradation. It not only serves as a bulk degradation system for various cytoplasmic components but also functions selectively to clear damaged organelles, aggregated proteins, and invading pathogens (Feng et al., Cell Res 24:24-41, 2014; Galluzzi et al., EMBO J 36:1811-36, 2017; Klionsky et al., Autophagy 12:1-222, 2016). The malfunction of autophagy leads to multiple developmental defects and diseases (Mizushima et al., Nature 451:1069-75, 2008). Drosophila and zebrafish are higher metazoan model systems with sophisticated genetic tools readily available, which make it possible to dissect the autophagic processes and to understand the physiological functions of autophagy (Lorincz et al., Cells 6:22, 2017a; Mathai et al., Cells 6:21, 2017; Zhang and Baehrecke, Trends Cell Biol 25:376-87, 2015). In this chapter, we will discuss recent progress that has been made in the autophagic field by using these animal models. We will focus on the protein machineries required for autophagosome formation and maturation as well as the physiological roles of autophagy in both Drosophila and zebrafish.
Collapse
Affiliation(s)
- Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Wang WJ, Lyu TJ, Li Z. Research Progress on PATJ and Underlying Mechanisms Associated with Functional Outcomes After Stroke. Neuropsychiatr Dis Treat 2021; 17:2811-2818. [PMID: 34471355 PMCID: PMC8405222 DOI: 10.2147/ndt.s310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Cell polarity is an intrinsic property of epithelial cells regulated by scaffold proteins. The CRB (crumbs) complex is known to play a predominant role in the dynamic cooperative network of polarity scaffold proteins. PATJ (PALS1-associated tight junction) is the core component in the CRB complex and has been highly conserved throughout evolution. PATJ is crucial to several important events in organisms' survival, including embryonic development, cell polarity, and barrier establishment. A recent study shows that PATJ plays an important role in functional outcomes of stroke. In this article, we elaborate on the biological structure and physiological functions of PATJ and explore the underlying mechanisms of PATJ genetic polymorphism that are associated with poor functional outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Tian-Jie Lyu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China.,Chinese Institute for Brain Research, Beijing, 100070, People's Republic of China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, People's Republic of China
| |
Collapse
|
31
|
Murakawa T, Kiger AA, Sakamaki Y, Fukuda M, Fujita N. An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling. J Cell Sci 2020; 133:jcs248336. [PMID: 33077556 PMCID: PMC7673362 DOI: 10.1242/jcs.248336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Lysosomes are compartments for the degradation of both endocytic and autophagic cargoes. The shape of lysosomes changes with cellular degradative demands; however, there is limited knowledge about the mechanisms or significance that underlies distinct lysosomal morphologies. Here, we found an extensive tubular autolysosomal network in Drosophila abdominal muscle remodeling during metamorphosis. The tubular network transiently appeared and exhibited the capacity to degrade autophagic cargoes. The tubular autolysosomal network was uniquely marked by the autophagic SNARE protein Syntaxin17 and its formation depended on both autophagic flux and degradative function, with the exception of the Atg12 and Atg8 ubiquitin-like conjugation systems. Among ATG-deficient mutants, the efficiency of lysosomal tubulation correlated with the phenotypic severity in muscle remodeling. The lumen of the tubular network was continuous and homogeneous across a broad region of the remodeling muscle. Altogether, we revealed that the dynamic expansion of a tubular autolysosomal network synchronizes the abundant degradative activity required for developmentally regulated muscle remodeling.
Collapse
Affiliation(s)
- Tadayoshi Murakawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Amy A Kiger
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Precursory Research for Embryonic Science & Technology (PRESTO), Japan Science & Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
32
|
The Mammalian Crumbs Complex Defines a Distinct Polarity Domain Apical of Epithelial Tight Junctions. Curr Biol 2020; 30:2791-2804.e6. [PMID: 32531288 DOI: 10.1016/j.cub.2020.05.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Epithelial apico-basal polarity is established through the asymmetric cortical distribution of the Par, Crumbs and Scribble polarity modules. Apical (Par and Crumbs) and basolateral (Scribble) polarity modules overlap at the apical-lateral border, which, in mammals, is defined by the apical junctional complex (AJC). The AJC is composed of tight junctions (TJ) and adherens junctions (AJ) and plays fundamental roles in epithelial morphogenesis and plasticity. However, the molecular composition and precise sub-junctional organization of the AJC and its associated polarity regulators are not well defined. Here, we used the peroxidase APEX2 for quantitative proximity proteomics (QPP) and electron microscopy (EM) imaging to dissect the architecture of the AJC in fully polarized MDCK-II cells. We present a high-confidence proteome of the apical-lateral border in which TJ and AJ components and apical and lateral compartment markers are spatially resolved. We further demonstrate that the Crumbs complex (Pals1, PatJ, Lin7c, and Crumbs3) defines a hitherto unidentified membrane compartment apical of TJ, which we coin the vertebrate marginal zone (VMZ). QPP, imaging, and immunoprecipitation assays showed that the HOMER scaffolding proteins, PKN2 and PTPN13, and the membrane-proximal HIPPO pathway proteins ARHGAP29 and STXBP4 are recruited to the VMZ via the PDZ domains of PatJ. Taken together, our work defines the spatial and molecular organization of the apical-lateral border in mammalian epithelial cells, reveals an intriguing molecular and spatial conservation of invertebrate and vertebrate cell polarity protein domains, and identifies a VMZ-associated protein network implicated in HIPPO signaling and the control of the cortical actin cytoskeleton.
Collapse
|
33
|
Drosophila Atg9 regulates the actin cytoskeleton via interactions with profilin and Ena. Cell Death Differ 2019; 27:1677-1692. [PMID: 31740789 DOI: 10.1038/s41418-019-0452-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy ensures the turnover of cytoplasm and requires the coordinated action of Atg proteins, some of which also have moonlighting functions in higher eukaryotes. Here we show that the transmembrane protein Atg9 is required for female fertility, and its loss leads to defects in actin cytoskeleton organization in the ovary and enhances filopodia formation in neurons in Drosophila. Atg9 localizes to the plasma membrane anchor points of actin cables and is also important for the integrity of the cortical actin network. Of note, such phenotypes are not seen in other Atg mutants, suggesting that these are independent of autophagy defects. Mechanistically, we identify the known actin regulators profilin and Ena/VASP as novel binding partners of Atg9 based on microscopy, biochemical, and genetic interactions. Accordingly, the localization of both profilin and Ena depends on Atg9. Taken together, our data identify a new and unexpected role for Atg9 in actin cytoskeleton regulation.
Collapse
|
34
|
Maruzs T, Simon-Vecsei Z, Kiss V, Csizmadia T, Juhász G. On the Fly: Recent Progress on Autophagy and Aging in Drosophila. Front Cell Dev Biol 2019; 7:140. [PMID: 31396511 PMCID: PMC6667644 DOI: 10.3389/fcell.2019.00140] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Autophagy ensures the lysosome-mediated breakdown and recycling of self-material, as it not only degrades obsolete or damaged intracellular constituents but also provides building blocks for biosynthetic and energy producing reactions. Studies in animal models including Drosophila revealed that autophagy defects lead to the rapid decline of neuromuscular function, neurodegeneration, sensitivity to stress (such as starvation or oxidative damage), and stem cell loss. Of note, recently identified human Atg gene mutations cause similar symptoms including ataxia and mental retardation. Physiologically, autophagic degradation (flux) is known to decrease during aging, and this defect likely contributes to the development of such age-associated diseases. Many manipulations that extend lifespan (including dietary restriction, reduced TOR kinase signaling, exercise or treatment with various anti-aging substances) require autophagy for their beneficial effect on longevity, pointing to the key role of this housekeeping process. Importantly, genetic (e.g., Atg8a overexpression in either neurons or muscle) or pharmacological (e.g., feeding rapamycin or spermidine to animals) promotion of autophagy has been successfully used to extend lifespan in Drosophila, suggesting that this intracellular degradation pathway can rejuvenate cells and organisms. In this review, we highlight key discoveries and recent progress in understanding the relationship of autophagy and aging in Drosophila.
Collapse
Affiliation(s)
- Tamás Maruzs
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Kiss
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
35
|
Doktór B, Damulewicz M, Pyza E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. BMC Neurosci 2019; 20:24. [PMID: 31138137 PMCID: PMC6540415 DOI: 10.1186/s12868-019-0506-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson’s disease (PD). In several studies it has been shown that in Parkinson’s disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. Results We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. Conclusions All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD. Electronic supplementary material The online version of this article (10.1186/s12868-019-0506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
36
|
Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM, Edgar BA. An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Dev Cell 2019; 49:574-589.e5. [PMID: 31006650 DOI: 10.1016/j.devcel.2019.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of intracellular vesicle trafficking on stem-cell behavior is largely unexplored. We screened the Drosophila sorting nexins (SNXs) and discovered that one, SH3PX1, profoundly affects gut homeostasis and lifespan. SH3PX1 restrains intestinal stem cell (ISC) division through an endocytosis-autophagy network that includes Dynamin, Rab5, Rab7, Atg1, 5, 6, 7, 8a, 9, 12, 16, and Syx17. Blockages in this network stabilize ligand-activated EGFRs, recycling them via Rab11-dependent endosomes to the plasma membrane. This hyperactivated ERK, calcium signaling, and ER stress, autonomously stimulating ISC proliferation. The excess divisions induced epithelial stress, Yki activity, and Upd3 and Rhomboid production in enterocytes, catalyzing feedforward ISC hyperplasia. Similarly, blocking autophagy increased ERK activity in human cells. Many endocytosis-autophagy genes are mutated in cancers, most notably those enriched in microsatellite instable-high and KRAS-wild-type colorectal cancers. Disruptions in endocytosis and autophagy may provide an alternative route to RAS-ERK activation, resulting in EGFR-dependent cancers.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andreana N Holowatyj
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Taylor Roy
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen M Pronovost
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marco Marchetti
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Hanbin Liu
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Guo T, Nan Z, Miao C, Jin X, Yang W, Wang Z, Tu Y, Bao H, Lyu J, Zheng H, Deng Q, Guo P, Xi Y, Yang X, Ge W. The autophagy-related gene Atg101 in Drosophila regulates both neuron and midgut homeostasis. J Biol Chem 2019; 294:5666-5676. [PMID: 30760524 DOI: 10.1074/jbc.ra118.006069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Atg101 is an autophagy-related gene identified in worms, flies, mice, and mammals, which encodes a protein that functions in autophagosome formation by associating with the ULK1-Atg13-Fip200 complex. In the last few years, the critical role of Atg101 in autophagy has been well-established through biochemical studies and the determination of its protein structure. However, Atg101's physiological role, both during development and in adulthood, remains less understood. Here, we describe the generation and characterization of an Atg101 loss-of-function mutant in Drosophila and report on the roles of Atg101 in maintaining tissue homeostasis in both adult brains and midguts. We observed that homozygous or hemizygous Atg101 mutants were semi-lethal, with only some of them surviving into adulthood. Both developmental and starvation-induced autophagy processes were defective in the Atg101 mutant animals, and Atg101 mutant adult flies had a significantly shorter lifespan and displayed a mobility defect. Moreover, we observed the accumulation of ubiquitin-positive aggregates in Atg101 mutant brains, indicating a neuronal defect. Interestingly, Atg101 mutant adult midguts were shorter and thicker and exhibited abnormal morphology with enlarged enterocytes. Detailed analysis also revealed that the differentiation from intestinal stem cells to enterocytes was impaired in these midguts. Cell type-specific rescue experiments disclosed that Atg101 had a function in enterocytes and limited their growth. In summary, the results of our study indicate that Drosophila Atg101 is essential for tissue homeostasis in both adult brains and midguts. We propose that Atg101 may have a role in age-related processes.
Collapse
Affiliation(s)
- Ting Guo
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Zi Nan
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Chen Miao
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Xiaoye Jin
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Weiwei Yang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Zehua Wang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Yinqi Tu
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Hongcun Bao
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Jialan Lyu
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Huimei Zheng
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Qiannan Deng
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Pengfei Guo
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Yongmei Xi
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Xiaohang Yang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Wanzhong Ge
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058, .,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| |
Collapse
|
38
|
Xu C, Ericsson M, Perrimon N. Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 11:24-31. [PMID: 31595264 PMCID: PMC6781628 DOI: 10.1016/j.coisb.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the aims of systems biology is to model and discover properties of cells, tissues and organisms functioning as a system. In recent years, studies in the adult Drosophila gut have provided a wealth of information on the cell types and their functions, and the signaling pathways involved in the complex interactions between proliferating and differentiated cells in the context of homeostasis and pathology. Here, we document and discuss how high-resolution ultrastructure studies of organelle morphology have much to contribute to our understanding of how the gut functions as an integrated system.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Harvard Medical School, Goldenson 323, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|