1
|
Wang X, Li J, Fan Y, Zhang X, Yang Y, Gao Y. Zebrafish larvae as a model for investigating dual effects of fluoride on bone development. Toxicol Appl Pharmacol 2025; 500:117357. [PMID: 40318811 DOI: 10.1016/j.taap.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Long-term excessive ingestion of fluoride is a severe public health threat globally. Skeletal fluorosis, a significant manifestation of prolonged fluoride exposure, is characterized by aberrant bone structure and alterations in bone function. However, there is currently a shortage of an efficient, fast, and easy-to-operate biological model for application in the field of fluorosis research. Zebrafish larvae, with human - like skeletal traits, high reproduction, rapid development, and transparency, are commonly used in bone disease studies. This study evaluates the potential of zebrafish larvae as a novel model for fluoride-induced bone impairment. Results showed dose-dependent differences in cranial and spinal bone mineralization in zebrafish larvae exposed to sodium fluoride (NaF). The detection results of bone formation-related indicators indicated a considerable increase in alkaline phosphatase (ALP) activity in zebrafish larvae at doses of 0.5 and 1 mg/L. Simultaneously, the expression of critical bone formation proteins (BMP2, and β-catenin) was elevated in the 1 and 4 mg/L groups, which is largely consistent with the results of cranial bone mineralization. Fluoride - exposed zebrafish also showed abnormal bone metabolism markers. The total phosphorus (TP) content in the zebrafish larvae of the 100 mg/L group was markedly reduced. The total calcium (TCa) content in the zebrafish of the NaF group zebrafish was slightly decreased, although the tartrate-resistant acid phosphatase (StrACP) activity increased. In conclusion, different fluoride doses cause osteoporosis and osteosclerosis in zebrafish larvae, linked to enhanced osteogenic and osteoclastic activities and abnormal key bone - forming protein expression.
Collapse
Affiliation(s)
- Xin Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Junjun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Nanyang Second General Hospital, Nanyang, Henan 473000, China
| | - Yumei Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaodi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Yantai Center for Disease Control and Prevention, Yantai, Shandong 264000, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Joint Key Laboratory of Endemic Diseases(Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Joint Key Laboratory of Endemic Diseases(Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| |
Collapse
|
2
|
Pang X, Pan Y, Wang M, Qiu S, He Y, Ren Y, Yu T, Yu S, Cui Y. Comparison of reproductive performance and functional analysis of spermatogenesis factors between domestic yak and semi-wild blood yak. BMC Genomics 2025; 26:418. [PMID: 40301732 PMCID: PMC12038992 DOI: 10.1186/s12864-025-11594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
This study investigates differences in reproductive performance, testicular histology, and transcriptomic profiles between male Subei (SB; semi-wild) yaks and two domestic yaks, Gannan (GN) and Qinghai (QH). Key metrics including mating age, utilization time, breeding capacity, morphometric traits, and testicular indices were analyzed. SB yaks exhibited superior reproductive metrics, including earlier sexual maturity, prolonged utilization periods, and enhanced breeding capacity compared to GN and QH (P < 0.05). Morphologically, SB yaks demonstrated significantly greater body weight, and testicular dimensions. Compared with GN and QH yaks, the seminiferous tubules of SB yaks exhibited significantly larger spermatogenic cells and luminal cavities, along with a notably higher sperm density within the luminal cavity. Transcriptomic analysis identified 2,403 and 4,428 differentially expressed genes (DEGs) in GN vs. SB and QH vs. SB comparisons, respectively. Eight key genes (TPPP3, SMAD3, PAFAH1B3, BMP7, ARSA, CTNNB1, SMAD4, STAT3) and three pathways (Hippo, pluripotency regulation, TGF-β) were implicated in testicular development and spermatogenesis. These findings underscore the genetic and physiological advantages of SB yaks, offering insights for enhancing male yak reproductive performance.
Collapse
Affiliation(s)
- Xin Pang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yulong He
- Jiuquan Animal Husbandry and Veterinary Medicine General Station, Jiuquan, China
| | - Yuchun Ren
- Central Agricultural Radio and Television School Tianzhu County Branch, Wuwei, China
| | - Tianjun Yu
- Subei Mongolian Autonomous County Animal Husbandry and Veterinary Technical Service Center, Jiuquan, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| |
Collapse
|
3
|
Ruiz Daniels R, Salisbury SJ, Sveen L, Villamayor PR, Taylor RS, Vaadal M, Tengs T, Krasnov A, Monaghan SJ, Ballantyne M, Penaloza C, Fast MD, Bron JE, Houston R, Robinson N, Robledo D. Transcriptomic characterization of transitioning cell types in the skin of Atlantic salmon. BMC Biol 2025; 23:109. [PMID: 40289111 PMCID: PMC12036301 DOI: 10.1186/s12915-025-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The skin maintains the body's integrity and serves as the first line of defence against pathogens, stressors and mechanical injuries. Despite the global significance of salmon in aquaculture, how the transcriptomic profile of cells varies during wound healing remains unexplored. Teleost's skin contains adult pluripotent cells that differentiate into various tissues, including bone, cartilage, tendon, ligament, adipose, dermis, muscle and connective tissue within the skin. These cells are pivotal for preserving the integrity of skin tissue throughout an organism's lifespan and actively participate in the wound healing processes. In this study, we characterize the transcriptomic profiles of putative mesenchymal stromal cells (fibroblast-like adult stem cells) in healthy Atlantic salmon tissue and during the wound healing process. RESULTS Single-nucleus sequencing and spatial transcriptomics were used to detect transcriptomic changes occurring during wound healing that are commonly associated with mesenchymal stromal cells. We followed the transcriptomic activity of these cells during an in vivo wound healing time course study showing that these cells become more transcriptionally active during the remodelling stage of wound healing. The changes detected give insights into the potential differentiation pathways leading to osteogenic and fibroblast lineages in the skin of Atlantic salmon. CONCLUSIONS We chart the transcriptomic activity of subclusters of putative differentiating stromal cells during the process of wound healing for the first time, revealing different spatial niches of the various putative MSC subclusters, and setting the stage for further investigation of the manipulation of transitioning cell types to improve fish health.
Collapse
Affiliation(s)
- R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| | - S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - M Ballantyne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - C Penaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Benchmark Genetics, Penicuik, UK
| | - M D Fast
- Hoplite Research Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - N Robinson
- Nofima AS, Ås, Norway
- Sustainable Aquaculture Laboratory, Deakin University, Victoria, Australia
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Robertson TF, Schrope J, Zwick Z, Rindy J, Horn A, Hou Y, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. Development 2025; 152:dev204351. [PMID: 40114648 PMCID: PMC12070063 DOI: 10.1242/dev.204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Amoeboid cells such as leukocytes can enter and migrate in diverse tissues, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to determine whether cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with F-actin-rich, leading-edge pseudopods, matching how they migrate in vitro. T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of F-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro, and we found that the stratified keratinocyte layers of the epidermis also impose planar-like confinement on leukocytes in vivo. Collectively, our data indicate that immune cells adapt their migration strategy to navigate different tissue geometries in vivo.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Jon Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Zoe Zwick
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Adam Horn
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yiran Hou
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
5
|
McFarland EP, Crow KD. The evolution of cephalic fins in manta rays and their relatives: functional evidence for initiation of domain splitting and modulation of the Wnt signaling pathway in the pectoral fin AER of the little skate. EvoDevo 2024; 15:17. [PMID: 39731200 DOI: 10.1186/s13227-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion. Paired fin outgrowth is maintained during development by Wnt3, while domain splitting is accomplished by expression of the Wnt antagonist Dkk1, which is differentially expressed in the developing anterior pectoral fins of myliobatids, where cephalic fins separate from pectoral fins. We examine the evolution of this unique feature in the cownose ray (Rhinoptera bonasus), a member of the genus that is sister to Mobula. RESULTS Here, we provide functional evidence that DKK1 is sufficient to initiate pectoral fin domain splitting. Agarose beads soaked in DKK1 protein were implanted in the pectoral fins of little skate (Leucoraja erinacea) embryos resulting in AER interruption. This disruption arrests fin ray outgrowth, resembling the myliobatid phenotype. In addition, fins that received DKK1 beads exhibit interruption of Axin2 expression, a downstream target of β-catenin-dependent Wnt signaling and a known AER marker. We demonstrate that Msx1 and Lhx2 are also associated with fin expansion at the AER. These results provide functional evidence for the underlying genetic pathway associated with the evolution of a novel paired fin/limb modification in manta rays and their relatives. We introduce the gas/brake pedal model for paired fin remodeling at the AER, which may have been co-opted from domain splitting in pelvic fins of cartilaginous fishes 370 million years earlier. CONCLUSIONS The pectoral fins of manta rays and their relatives represent a dramatic remodel of the ancestral batoid body plan. The premiere feature of this remodel is the cephalic fins, which evolved via domain splitting of the anterior pectoral fins through inhibition of fin ray outgrowth. Here, we functionally validate the role of Dkk1 in the evolution of this phenotype. We find that introduction of ectopic DKK1 is sufficient to recapitulate the myliobatid pectoral fin phenotype in an outgroup lacking cephalic fins via AER interruption and fin ray truncation. Additional gene expression data obtained via in situ hybridization suggests that cephalic fin development may have evolved as a co-option of the pathway specifying claspers as modifications to the pelvic fins, the only other known example of domain splitting in vertebrate appendages.
Collapse
Affiliation(s)
- Emily P McFarland
- University of California, San Diego, USA.
- San Francisco State University, San Francisco, USA.
| | - Karen D Crow
- San Francisco State University, San Francisco, USA.
| |
Collapse
|
6
|
Thompson E, Hensley J, Taylor RS. Effect of High Glucose on Embryological Development of Zebrafish, Brachyodanio, Rerio through Wnt Pathway. Int J Mol Sci 2024; 25:9443. [PMID: 39273388 PMCID: PMC11394885 DOI: 10.3390/ijms25179443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a worldwide pregnancy complication. Gestational diabetes can significantly impact fetus development. However, the effects of high glucose on embryological development post-fertilization are yet to be researched. Danio rerio embryos are a great model for studying embryonic development. In this study, the effects on embryological (morphological and genetic) development were examined in the presence of a high-glucose environment that mimics the developing fetus in pregnant women with GDM. Fertilized zebrafish embryos were treated with normal media and high glucose for 5 days from 3 h post-fertilization (hpf) to 96 hpf, respectively, as control and experimental groups. Morphological changes are recorded with microscope images. Hatch rate and heart rate are compared between groups at set time points. RNA-Seq is performed to examine the gene changes in the experimental group. Glucose delayed the zebrafish embryo development by slowing the hatch rate by about 24 h. The brain, heart, and tail started showing smaller morphology in the glucose group compared to the control group at 24 hpf. Heart rate was faster in the glucose group compared to the control group on days 2 and 3 with a statistically significant difference. Among the zebrafish whole genome, the significantly changed genes were 556 upregulated genes and 1118 downregulated genes, respectively, in the high-glucose group. The metabolic and Wnt pathways are altered under high-glucose conditions. These conditions contribute to significant physiological differences that may provide insight into the functionality of post-embryological development.
Collapse
Affiliation(s)
- Ebony Thompson
- Division of Natural Sciences, College of Natural and Applied Sciences, Southwest Baptist University, 1600 University Road, Bolivar, MO 65613, USA
| | - Justin Hensley
- Division of Natural Sciences, College of Natural and Applied Sciences, Southwest Baptist University, 1600 University Road, Bolivar, MO 65613, USA
| | - Renfang Song Taylor
- Biology Department, School of Physical Sciences and Engineering, Anderson University, 1100 5th Street, Anderson, SC 29621, USA
| |
Collapse
|
7
|
Robertson TF, Schrope J, Zwick Z, Rindy JK, Horn A, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607647. [PMID: 39211200 PMCID: PMC11360923 DOI: 10.1101/2024.08.14.607647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amoeboid cells like leukocytes can enter and migrate within virtually every tissue of the body, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with f-actin-rich leading-edge pseudopods, matching how they migrate in vitro . T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of f-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro , and we correspondingly found the stratified keratinocyte layers of the epidermis impose planar-like confinement on leukocytes in vivo . By imaging the same cell type across the body, our data collectively indicates that cells adapt their migration strategy to navigate different tissue geometries in vivo .
Collapse
|
8
|
Benard EL, Küçükaylak I, Hatzold J, Berendes KU, Carney TJ, Beleggia F, Hammerschmidt M. wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. Dev Dyn 2024; 253:566-592. [PMID: 37870737 PMCID: PMC11035493 DOI: 10.1002/dvdy.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.
Collapse
Affiliation(s)
- Erica L. Benard
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Kilian U.W. Berendes
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Thomas J. Carney
- Discovery Research Division, Institute of Molecular and
Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research),
Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore, Republic of Singapore
| | - Filippo Beleggia
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital Cologne, University of Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine
and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne
Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne,
University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of
Cologne, Cologne, Germany
| |
Collapse
|
9
|
Aman AJ, Parichy DM. Anatomy, development and regeneration of zebrafish elasmoid scales. Dev Biol 2024; 510:1-7. [PMID: 38458375 PMCID: PMC11015963 DOI: 10.1016/j.ydbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Vertebrate skin appendages - particularly avian feathers and mammalian hairs, glands and teeth - are perennially useful systems for investigating fundamental mechanisms of development. The most common type of skin appendage in teleost fishes is the elasmoid scale, yet this structure has received much less attention than the skin appendages of tetrapods. Elasmoid scales are thin, overlapping plates of partially mineralized extracellular matrices, deposited in the skin in a hexagonal pattern by a specialized population of dermal cells in cooperation with the overlying epidermis. Recent years have seen rapid progress in our understanding of elasmoid scale development and regeneration, driven by the deployment of developmental genetics, live imaging and transcriptomics in larval and adult zebrafish. These findings are reviewed together with histological and ultrastructural approaches to understanding scale development and regeneration.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
10
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
11
|
Kobayashi-Sun J, Kobayashi I, Kashima M, Hirayama J, Kakikawa M, Yamada S, Suzuki N. Extremely low-frequency electromagnetic fields facilitate both osteoblast and osteoclast activity through Wnt/β-catenin signaling in the zebrafish scale. Front Cell Dev Biol 2024; 12:1340089. [PMID: 38385024 PMCID: PMC10879286 DOI: 10.3389/fcell.2024.1340089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Electromagnetic fields (EMFs) have received widespread attention as effective, noninvasive, and safe therapies across a range of clinical applications for bone disorders. However, due to the various frequencies of devices, their effects on tissues/cells are vary, which has been a bottleneck in understanding the effects of EMFs on bone tissue. Here, we developed an in vivo model system using zebrafish scales to investigate the effects of extremely low-frequency EMFs (ELF-EMFs) on fracture healing. Exposure to 10 millitesla (mT) of ELF-EMFs at 60 Hz increased the number of both osteoblasts and osteoclasts in the fractured scale, whereas 3 or 30 mT did not. Gene expression analysis revealed that exposure to 10 mT ELF-EMFs upregulated wnt10b and Wnt target genes in the fractured scale. Moreover, β-catenin expression was enhanced by ELF-EMFs predominantly at the fracture site of the zebrafish scale. Inhibition of Wnt/β-catenin signaling by IWR-1-endo treatment reduced both osteoblasts and osteoclasts in the fractured scale exposed to ELF-EMFs. These results suggest that ELF-EMFs promote both osteoblast and osteoclast activity through activation of Wnt/β-catenin signaling in fracture healing. Our data provide in vivo evidence that ELF-EMFs generated with a widely used commercial AC power supply have a facilitative effect on fracture healing.
Collapse
Affiliation(s)
- Jingjing Kobayashi-Sun
- Department of Clinical Engineering, Faculty of Health Science, Komatsu University, Komatsu, Ishikawa, Japan
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kashima
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Science, Komatsu University, Komatsu, Ishikawa, Japan
| | - Makiko Kakikawa
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sotoshi Yamada
- Department of Production System Engineering and Sciences, Faculty of Production System Engineering and Sciences, Komatsu University, Komatsu, Ishikawa, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Xu B, Cui Y, A L, Zhang H, Ma Q, Wei F, Liang J. Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development. BMC Genomics 2024; 25:140. [PMID: 38310220 PMCID: PMC10837935 DOI: 10.1186/s12864-024-10047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. RESULTS The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. CONCLUSION This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Collapse
Affiliation(s)
- Baoke Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Yanrong Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Linlin A
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Haichen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Qinghua Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Fulei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China.
| |
Collapse
|
13
|
De Simone A. Quantitative Live Imaging of Zebrafish Scale Regeneration: From Adult Fish to Signaling Patterns and Tissue Flows. Methods Mol Biol 2024; 2707:185-204. [PMID: 37668913 DOI: 10.1007/978-1-0716-3401-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In regeneration, a damaged body part grows back to its original form. Understanding the mechanisms and physical principles underlying this process has been limited by the difficulties of visualizing cell signals and behaviors in regeneration. Zebrafish scales are emerging as a model system to investigate morphogenesis during vertebrate regeneration using quantitative live imaging. Scales are millimeter-sized dermal bone disks forming a skeletal armor on the body of the fish. The scale bone is deposited by an adjacent monolayer of osteoblasts that, after scale loss, regenerates in about 2 weeks. This intriguing regenerative process is accessible to live confocal microscopy, quantifications, and mathematical modeling. Here, I describe methods to image scale regeneration live, tissue-wide and at sub-cellular resolution. Furthermore, I describe methods to process the resulting images and quantify cell, tissue, and signal dynamics.
Collapse
Affiliation(s)
- Alessandro De Simone
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Regeneration Center, Duke University, Durham, NC, USA.
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Square TA, Mackey EJ, Sundaram S, Weksler NC, Chen ZZ, Narayanan SN, Miller CT. Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts. Development 2023; 150:dev202168. [PMID: 38059590 PMCID: PMC10730089 DOI: 10.1242/dev.202168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.
Collapse
Affiliation(s)
- Tyler A. Square
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Emma J. Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Naama C. Weksler
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zoe Z. Chen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Sujanya N. Narayanan
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Craig T. Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Ben-Zvi I, Karasik D, Ackert-Bicknell CL. Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies. Curr Osteoporos Rep 2023; 21:650-659. [PMID: 37971665 DOI: 10.1007/s11914-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model. RECENT FINDINGS The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the "long" bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account. Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Collapse
Affiliation(s)
- Inbar Ben-Zvi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | |
Collapse
|
16
|
Craig EW, Black EC, Goo CE, Swearer AA, Yee NG, Rasmussen JP. Dendritic atoh1a+ cells serve as transient intermediates during zebrafish Merkel cell development and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557830. [PMID: 37745341 PMCID: PMC10515958 DOI: 10.1101/2023.09.14.557830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sensory cells often adopt specific morphologies that aid in the detection of external stimuli. Merkel cells encode gentle touch stimuli in vertebrate skin and adopt a reproducible shape characterized by spiky, actin-rich microvilli that emanate from the cell surface. The mechanism by which Merkel cells acquire this stereotyped morphology from basal keratinocyte progenitors is unknown. Here, we establish that dendritic Merkel cells (dMCs) express atonal homolog 1a (atoh1a), extend dynamic filopodial processes, and arise in transient waves during zebrafish skin development and regeneration. We find that dMCs share molecular similarities with both basal keratinocytes and Merkel cells, yet display mesenchymal-like behaviors, including local cell motility and proliferation within the epidermis. Furthermore, dMCs can directly adopt the mature, microvilliated Merkel cell morphology through substantial remodeling of the actin cytoskeleton. Loss of Ectodysplasin A signaling alters the morphology of dMCs and Merkel cells within specific skin regions. Our results show that dMCs represent an intermediate state in the Merkel cell maturation program and identify Ectodysplasin A signaling as a key regulator of Merkel cell morphology.
Collapse
Affiliation(s)
- Evan W. Craig
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Erik C. Black
- Department of Biology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Camille E.A. Goo
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Avery Angell Swearer
- Department of Biology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Nathaniel G. Yee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jeffrey P. Rasmussen
- Department of Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Evanitsky MN, Di Talia S. An active traveling wave of Eda/NF-κB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish. Development 2023; 150:dev201866. [PMID: 37747266 PMCID: PMC10560567 DOI: 10.1242/dev.201866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023]
Abstract
Periodic patterns drive the formation of a variety of tissues, including skin appendages such as feathers and scales. Skin appendages serve important and diverse functions across vertebrates, yet the mechanisms that regulate their patterning are not fully understood. Here, we have used live imaging to investigate dynamic signals regulating the ontogeny of zebrafish scales. Scales are bony skin appendages that develop sequentially along the anterior-posterior and dorsal-ventral axes to cover the fish in a hexagonal array. We have found that scale development requires cell-cell communication and is coordinated through an active wave mechanism. Using a live transcriptional reporter, we show that a wave of Eda/NF-κB activity precedes scale initiation and is required for scale formation. Experiments decoupling the propagation of the wave from dermal placode formation and osteoblast differentiation demonstrate that the Eda/NF-κB activity wavefront controls the timing of the sequential patterning of scales. Moreover, this decoupling resulted in defects in scale size and significant deviations in the hexagonal patterning of scales. Thus, our results demonstrate that a biochemical traveling wave coordinates scale initiation and proper hexagonal patterning across the fish body.
Collapse
Affiliation(s)
- Maya N. Evanitsky
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Aman AJ, Saunders LM, Carr AA, Srivatasan S, Eberhard C, Carrington B, Watkins-Chow D, Pavan WJ, Trapnell C, Parichy DM. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife 2023; 12:RP86670. [PMID: 37695017 PMCID: PMC10495112 DOI: 10.7554/elife.86670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Pigment patterns and skin appendages are prominent features of vertebrate skin. In zebrafish, regularly patterned pigment stripes and an array of calcified scales form simultaneously in the skin during post-embryonic development. Understanding the mechanisms that regulate stripe patterning and scale morphogenesis may lead to the discovery of fundamental mechanisms that govern the development of animal form. To learn about cell types and signaling interactions that govern skin patterning and morphogenesis, we generated and analyzed single-cell transcriptomes of skin from wild-type fish as well as fish having genetic or transgenically induced defects in squamation or pigmentation. These data reveal a previously undescribed population of epidermal cells that express transcripts encoding enamel matrix proteins, suggest hormonal control of epithelial-mesenchymal signaling, clarify the signaling network that governs scale papillae development, and identify a critical role for the hypodermis in supporting pigment cell development. Additionally, these comprehensive single-cell transcriptomic data representing skin phenotypes of biomedical relevance should provide a useful resource for accelerating the discovery of mechanisms that govern skin development and homeostasis.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - August A Carr
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sanjay Srivatasan
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Colten Eberhard
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Blake Carrington
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Dawn Watkins-Chow
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - David M Parichy
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
19
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
20
|
Fleischhauer L, López-Delgado AC, Geurtzen K, Knopf F. Glucocorticoid effects in the regenerating fin reflect tissue homeostasis disturbances in zebrafish by affecting Wnt signaling. Front Endocrinol (Lausanne) 2023; 14:1122351. [PMID: 37334313 PMCID: PMC10273277 DOI: 10.3389/fendo.2023.1122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
As a treatment for various immune-mediated diseases, the use of glucocorticoids as anti-inflammatory and immunosuppressive agents is common practice. However, their use is severely hampered by the risk of the development of adverse effects such as secondary osteoporosis, skin atrophy, and peptic ulcer formation. The exact molecular and cellular mechanisms underlying those adverse effects, which involve most major organ systems, are not yet fully understood. Therefore, their investigation is of great importance to improve treatment regimens for patients. Here, we investigated the effects of the glucocorticoid prednisolone on cell proliferation and Wnt signaling in homeostatic skin and intestinal tissue and compared them to the anti-regenerative effects in zebrafish fin regeneration. We also investigated a potential recovery from the glucocorticoid treatment and the impact of short-term treatment with prednisolone. We identified a dampening effect of prednisolone on Wnt signaling and proliferation in highly proliferative tissues, namely the skin and intestine, as well as reduced fin regenerate length and Wnt reporter activity in the fin. The presence of the Wnt inhibitor Dickkopf1 was enhanced in prednisolone treated skin tissue. A decreased number of mucous producing goblet cells was observed in the intestine of prednisolone treated zebrafish. Unexpectedly, proliferation in bone forming osteoblasts of the skull, homeostatic scales, as well as the brain was not decreased, opposite to the observed effects in the skin, fin, and intestine. Short-term treatment with prednisolone for a few days did not significantly alter fin regenerate length, skin cell proliferation, intestinal leukocyte number and proliferation of intestinal crypt cells. However, it affected the number of mucous-producing goblet cells in the gut. Likewise, discontinuation of prednisolone treatment for a few days saved the skin and intestine from a significant reduction of skin and intestinal cell proliferation, intestinal leukocyte number and regenerate length, but did not rescue goblet cell number. The suppressive effects of glucocorticoids in highly proliferative tissues may be relevant in the context of their therapeutic applications in patients with inflammatory diseases.
Collapse
Affiliation(s)
- Lisa Fleischhauer
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Alejandra Cristina López-Delgado
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Karina Geurtzen
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Franziska Knopf
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Robertson TF, Hou Y, Schrope J, Shen S, Rindy J, Sauer JD, Dinh HQ, Huttenlocher A. A tessellated lymphoid network provides whole-body T cell surveillance in zebrafish. Proc Natl Acad Sci U S A 2023; 120:e2301137120. [PMID: 37155881 PMCID: PMC10193988 DOI: 10.1073/pnas.2301137120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023] Open
Abstract
Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Nonmammalian jawed vertebrates lack lymph nodes but maintain diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing nonhematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen-presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ. This lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Jonathan Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53726
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| |
Collapse
|
22
|
Evanitsky MN, Di Talia S. An active traveling wave of Eda/NF-kB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536269. [PMID: 37090617 PMCID: PMC10120683 DOI: 10.1101/2023.04.10.536269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Periodic patterns make up a variety of tissues, including skin appendages such as feathers and scales. Skin appendages serve important and diverse functions across vertebrates, yet the mechanisms that regulate their patterning are not fully understood. Here, we have used live imaging to investigate dynamic signals regulating the ontogeny of zebrafish scales. Scales are bony skin appendages which develop sequentially along the anterior-posterior and dorsal-ventral axes to cover the fish in a hexagonal array. We have found that scale development requires cell-cell communication and is coordinated through an active wave mechanism. Using a live transcriptional reporter, we show that a wave of Eda/NF-κB activity precedes scale initiation and is required for scale formation. Experiments decoupling the propagation of the wave from dermal placode formation and osteoblast differentiation demonstrate that the Eda/NF-kB activity wavefront times the sequential patterning of scales. Moreover, this decoupling resulted in defects in scale size and significant deviations in the hexagonal patterning of scales. Thus, our results demonstrate that a biochemical traveling wave coordinates scale initiation and proper hexagonal patterning across the fish body.
Collapse
Affiliation(s)
- Maya N Evanitsky
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
23
|
Robertson TF, Hou Y, Shen S, Rindy J, Sauer JD, Dinh HQ, Huttenlocher A. A tessellated lymphoid network provides whole-body T cell surveillance in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524414. [PMID: 36711463 PMCID: PMC9882119 DOI: 10.1101/2023.01.17.524414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Non-mammalian jawed vertebrates lack lymph nodes but maintain similarly diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing non-hematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ . This novel lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system. Significance Statement In mammals, lymph nodes play a critical role in the initiation of adaptive immune responses by providing a dedicated place for T cells to scan antigen-presenting cells. Birds, reptiles, amphibians, and fish all maintain diverse repertoires of T cells but lack lymph nodes, raising questions about how adaptive immunity functions in lower jawed vertebrates. Here, we describe a novel network of lymphocytes in zebrafish that supports whole-body T cell trafficking and provides a site for antigen search, mirroring the function of mammalian lymph nodes. Within this network, T cells can prioritize large-scale trafficking or antigen scanning by toggling between two distinct modes of migration. This network provides valuable insights into the evolution of adaptive immunity.
Collapse
|
24
|
Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 2023; 12:85800. [PMID: 36648063 PMCID: PMC9901935 DOI: 10.7554/elife.85800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Biology, University of WashingtonSeattleUnited States
| | - Emma C Horton
- Department of Biology, University of WashingtonSeattleUnited States
| | - Evan W Craig
- Department of Biology, University of WashingtonSeattleUnited States
| | - Camille EA Goo
- Department of Biology, University of WashingtonSeattleUnited States
| | - Erik C Black
- Department of Biology, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Madeleine N Hewitt
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nathaniel G Yee
- Department of Biology, University of WashingtonSeattleUnited States
| | - Everett T Fan
- Department of Biology, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology - Head and Neck Surgery, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey P Rasmussen
- Department of Biology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
25
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
26
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
27
|
Abstract
Scales, as key structures of fish skin, play an important role in physiological function. The study of fish scale development mechanisms provides a basis for exploring the molecular-level developmental differences between scaled and non-scaled fishes. In this study, alizarin red staining was used to divide the different stages of zebrafish (Danio rerio) scale development. Four developmental stages, namely stage I (~17 dpf, scales have not started to grow), stage II (~33 dpf, the point at which scales start to grow), stage III (~41 dpf, the period in which the scales almost cover the whole body), and stage IV (~3 mpf, scales cover the whole body), were determined and used for subsequent transcriptome analysis. WGCNA (weighted correlation network analysis) and DEG (differentially expressed gene) analysis were used for screening the key genes. Based on the comparison between stage II and stage I, 54 hub-genes were identified by WGCNA analysis. Key genes including the Scpp family (Scpp7, Scpp6, Scpp5, and Scpp8), the Fgf family (Fgfr1b and Fgfr3), Tcf7, Wnt10b, Runx2b, and Il2rb were identified by DEG analysis, which indicated that these genes played important roles in the key nodes of scale development signal pathways. Combined with this analysis, the TGF-β, Wnt/β-catenin, and FGF signaling pathways were suggested to be the most important signal pathways for scales starting to grow. This study laid a foundation for exploring the scale development mechanism of other fishes. The scale development candidate genes identified in the current study will facilitate functional gene identifications in the future.
Collapse
|
28
|
Wagner M, Bračun S, Duenser A, Sturmbauer C, Gessl W, Ahi EP. Expression variations in ectodysplasin-A gene (eda) may contribute to morphological divergence of scales in haplochromine cichlids. BMC Ecol Evol 2022; 22:28. [PMID: 35272610 PMCID: PMC8908630 DOI: 10.1186/s12862-022-01984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elasmoid scales are one of the most common dermal appendages and can be found in almost all species of bony fish differing greatly in their shape. Whilst the genetic underpinnings behind elasmoid scale development have been investigated, not much is known about the mechanisms involved in moulding of scales. To investigate the links between gene expression differences and morphological divergence, we inferred shape variation of scales from two different areas of the body (anterior and posterior) stemming from ten haplochromine cichlid species from different origins (Lake Tanganyika, Lake Malawi, Lake Victoria and riverine). Additionally, we investigated transcriptional differences of a set of genes known to be involved in scale development and morphogenesis in fish. RESULTS We found that scales from the anterior and posterior part of the body strongly differ in their overall shape, and a separate look on scales from each body part revealed similar trajectories of shape differences considering the lake origin of single investigated species. Above all, nine as well as 11 out of 16 target genes showed expression differences between the lakes for the anterior and posterior dataset, respectively. Whereas in posterior scales four genes (dlx5, eda, rankl and shh) revealed significant correlations between expression and morphological differentiation, in anterior scales only one gene (eda) showed such a correlation. Furthermore, eda displayed the most significant expression difference between species of Lake Tanganyika and species of the other two younger lakes. Finally, we found genetic differences in downstream regions of eda gene (e.g., in the eda-tnfsf13b inter-genic region) that are associated with observed expression differences. This is reminiscent of a genetic difference in the eda-tnfsf13b inter-genic region which leads to gain or loss of armour plates in stickleback. CONCLUSION These findings provide evidence for cross-species transcriptional differences of an important morphogenetic factor, eda, which is involved in formation of ectodermal appendages. These expression differences appeared to be associated with morphological differences observed in the scales of haplochromine cichlids indicating potential role of eda mediated signal in divergent scale morphogenesis in fish.
Collapse
Affiliation(s)
- Maximilian Wagner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.,Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sandra Bračun
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria. .,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
29
|
Kague E, Karasik D. Functional Validation of Osteoporosis Genetic Findings Using Small Fish Models. Genes (Basel) 2022; 13:279. [PMID: 35205324 PMCID: PMC8872034 DOI: 10.3390/genes13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
The advancement of human genomics has revolutionized our understanding of the genetic architecture of many skeletal diseases, including osteoporosis. However, interpreting results from human association studies remains a challenge, since index variants often reside in non-coding regions of the genome and do not possess an obvious regulatory function. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary, such as the one offered by animal models. These models enable us to identify causal mechanisms, clarify the underlying biology, and apply interventions. Over the past several decades, small teleost fishes, mostly zebrafish and medaka, have emerged as powerful systems for modeling the genetics of human diseases. Due to their amenability to genetic intervention and the highly conserved genetic and physiological features, fish have become indispensable for skeletal genomic studies. The goal of this review is to summarize the evidence supporting the utility of Zebrafish (Danio rerio) for accelerating our understanding of human skeletal genomics and outlining the remaining gaps in knowledge. We provide an overview of zebrafish skeletal morphophysiology and gene homology, shedding light on the advantages of human skeletal genomic exploration and validation. Knowledge of the biology underlying osteoporosis through animal models will lead to the translation into new, better and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK;
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
30
|
Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R, Youlten SE, Frysz M, Croucher PI, Flik G, Richardson RJ, Kemp JP, Hammond CL, Metz JR. Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol 2022; 20:21. [PMID: 35057801 PMCID: PMC8780716 DOI: 10.1186/s12915-021-01209-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Scales are mineralised exoskeletal structures that are part of the dermal skeleton. Scales have been mostly lost during evolution of terrestrial vertebrates whilst bony fish have retained a mineralised dermal skeleton in the form of fin rays and scales. Each scale is a mineralised collagen plate that is decorated with both matrix-building and resorbing cells. When removed, an ontogenetic scale is quickly replaced following differentiation of the scale pocket-lining cells that regenerate a scale. Processes promoting de novo matrix formation and mineralisation initiated during scale regeneration are poorly understood. Therefore, we performed transcriptomic analysis to determine gene networks and their pathways involved in dermal scale regeneration. Results We defined the transcriptomic profiles of ontogenetic and regenerating scales of zebrafish and identified 604 differentially expressed genes (DEGs). These were enriched for extracellular matrix, ossification, and cell adhesion pathways, but not in enamel or dentin formation processes indicating that scales are reminiscent to bone. Hypergeometric tests involving monogenetic skeletal disorders showed that DEGs were strongly enriched for human orthologues that are mutated in low bone mass and abnormal bone mineralisation diseases (P< 2× 10−3). The DEGs were also enriched for human orthologues associated with polygenetic skeletal traits, including height (P< 6× 10−4), and estimated bone mineral density (eBMD, P< 2× 10−5). Zebrafish mutants of two human orthologues that were robustly associated with height (COL11A2, P=6× 10−24) or eBMD (SPP1, P=6× 10−20) showed both exo- and endo- skeletal abnormalities as predicted by our genetic association analyses; col11a2Y228X/Y228X mutants showed exoskeletal and endoskeletal features consistent with abnormal growth, whereas spp1P160X/P160X mutants predominantly showed mineralisation defects. Conclusion We show that scales have a strong osteogenic expression profile comparable to other elements of the dermal skeleton, enriched in genes that favour collagen matrix growth. Despite the many differences between scale and endoskeletal developmental processes, we also show that zebrafish scales express an evolutionarily conserved sub-population of genes that are relevant to human skeletal disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01209-8.
Collapse
|
31
|
Wainwright DK, Karan EA, Collar DC. Evolutionary patterns of scale morphology in damselfishes (Pomacentridae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Fish scales are bony plates embedded in the skin that vary extensively in shape across taxa. Despite a plethora of hypotheses regarding form–function relationships in scales, we know little about the ecological selective factors that shape their diversity. Here we examine evolutionary patterns of scale morphology using novel three-dimensional topography from the surfaces of 59 species of damselfishes, a prominent radiation of coral reef fishes. We find evidence that scale morphology changes with different flow environments, such that species that spend more time in open-water habitats have smoother scales. We also show that other aspects of ecology lead to highly derived scales. For example, anemonefishes show an evolutionary transition to smaller scales and smaller ctenii (scale spines). Moreover, changes in body shape, which may reflect ecological differentiation, are related to scale shape but not surface properties. We also demonstrate weak evolutionary integration among multiple aspects of scale morphology; however, scale size and shape are related, and scale morphology is correlated between different body regions. Finally, we also identify a relationship between aspects of lateral line pore morphology, such that the number of lateral line pores per scale and the size of those pores are inversely related. Overall, our study provides insights into the multidimensionality of scale evolution and improves our understanding of some of the factors that can give rise to the diversity of scales seen across fishes.
Collapse
|
32
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
33
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
34
|
Braunstein JA, Robbins AE, Stewart S, Stankunas K. Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. Dev Biol 2021; 477:177-190. [PMID: 34038742 PMCID: PMC10802891 DOI: 10.1016/j.ydbio.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.
Collapse
Affiliation(s)
- Joshua A Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA.
| |
Collapse
|
35
|
Aman AJ, Kim M, Saunders LM, Parichy DM. Thyroid hormone regulates abrupt skin morphogenesis during zebrafish postembryonic development. Dev Biol 2021; 477:205-218. [PMID: 34089732 PMCID: PMC10069294 DOI: 10.1016/j.ydbio.2021.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Thyroid hormone is a key regulator of post-embryonic vertebrate development. Skin is a biomedically important thyroid hormone target organ, but the cellular and molecular mechanisms underlying skin pathologies associated with thyroid dysfunction remain obscure. The transparent skin of zebrafish is an accessible model system for studying vertebrate skin development. During post-embryonic development of the zebrafish, scales emerge in the skin from a hexagonally patterned array of dermal papillae, like other vertebrate skin appendages such as feathers and hair follicles. We show here that thyroid hormone regulates the rate of post-embryonic dermal development through interaction with nuclear hormone receptors. This couples skin development with body growth to generate a well ordered array of correctly proportioned scales. This work extends our knowledge of thyroid hormone actions on skin by providing in-vivo evidence that thyroid hormone regulates multiple aspects of dermal development.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Margaret Kim
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
36
|
Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo 2021; 12:4. [PMID: 33766133 PMCID: PMC7995769 DOI: 10.1186/s13227-021-00172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Emma J Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
37
|
Transcriptome profiling towards understanding of the morphogenesis in the scale development of blunt snout bream (Megalobrama amblycephala). Genomics 2021; 113:983-991. [PMID: 33640463 DOI: 10.1016/j.ygeno.2020.12.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
Abstract
Skin appendages in vertebrates have individual morphological differences, but share the same evolutionary origin. In this study, we used Megalobrama amblycephala as a fish model to study the developmental regulation mechanism of a common skin appendage in fish: scales. By combining in-toto live imaging method and transcriptomic analysis during the scale development, we elucidated core features of scale patterning containing three distinct regions and experiencing four stages. Differentially expressed genes in skin tissues at the initial site before and after scale development were analyzed and some key regulatory genes (Wnt3, Wnt6, Fgf8, Fgf10, Fgf16, Fgfr1a, Ihhb and BMP6) which are crucial for scale morphogenesis were selected. This study provides a strong reference for further exploration of the function of genes related to the molecular regulation mechanism of scale development in M. amblycephala, as well as in other fishes.
Collapse
|
38
|
Li C, Olave M, Hou Y, Qin G, Schneider RF, Gao Z, Tu X, Wang X, Qi F, Nater A, Kautt AF, Wan S, Zhang Y, Liu Y, Zhang H, Zhang B, Zhang H, Qu M, Liu S, Chen Z, Zhong J, Zhang H, Meng L, Wang K, Yin J, Huang L, Venkatesh B, Meyer A, Lu X, Lin Q. Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nat Commun 2021; 12:1094. [PMID: 33597547 PMCID: PMC7889852 DOI: 10.1038/s41467-021-21379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Seahorses have a circum-global distribution in tropical to temperate coastal waters. Yet, seahorses show many adaptations for a sedentary, cryptic lifestyle: they require specific habitats, such as seagrass, kelp or coral reefs, lack pelvic and caudal fins, and give birth to directly developed offspring without pronounced pelagic larval stage, rendering long-range dispersal by conventional means inefficient. Here we investigate seahorses' worldwide dispersal and biogeographic patterns based on a de novo genome assembly of Hippocampus erectus as well as 358 re-sequenced genomes from 21 species. Seahorses evolved in the late Oligocene and subsequent circum-global colonization routes are identified and linked to changing dynamics in ocean currents and paleo-temporal seaway openings. Furthermore, the genetic basis of the recurring "bony spines" adaptive phenotype is linked to independent substitutions in a key developmental gene. Analyses thus suggest that rafting via ocean currents compensates for poor dispersal and rapid adaptation facilitates colonizing new habitats.
Collapse
Affiliation(s)
- Chunyan Li
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China ,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Melisa Olave
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,grid.423606.50000 0001 1945 2152Present Address: Argentine Dryland Research Institute, National Council for Scientific and Technical Research (IADIZA-CONICET), Mendoza, Argentina
| | - Yali Hou
- grid.464209.d0000 0004 0644 6935Beijing Institute of Genomics, Chinese Academy of Sciences; China National Center for Bioinformation, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Geng Qin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ralf F. Schneider
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,Marine Ecology, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Zexia Gao
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | | | - Xin Wang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Furong Qi
- grid.464209.d0000 0004 0644 6935Beijing Institute of Genomics, Chinese Academy of Sciences; China National Center for Bioinformation, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Alexander Nater
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas F. Kautt
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Shiming Wan
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yali Liu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Huixian Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Meng Qu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Shuaishuai Liu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zeyu Chen
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.419010.d0000 0004 1792 7072State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jia Zhong
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Kai Wang
- grid.443651.1School of Agriculture, Ludong University, Yantai, China
| | - Jianping Yin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Liangmin Huang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Byrappa Venkatesh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Axel Meyer
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Xuemei Lu
- grid.419010.d0000 0004 1792 7072State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qiang Lin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China ,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
40
|
Control of osteoblast regeneration by a train of Erk activity waves. Nature 2021; 590:129-133. [PMID: 33408418 PMCID: PMC7864885 DOI: 10.1038/s41586-020-03085-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances1-5, but how they might regulate growth during tissue regeneration is unresolved6,7. Here, we report that rhythmic traveling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that Erk activity waves travel as expanding concentric rings, broadcast from a central source, inducing ring-like patterns of osteoblast tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves able to traverse the entire scale in approximately two days, with the frequency of wave generation controlling the rate of scale regeneration. Furthermore, periodic induction of synchronous, tissue-wide Erk activation in place of travelling waves impairs tissue growth, indicating that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration.
Collapse
|
41
|
Rangel-Huerta E, Guzman A, Maldonado E. The dynamics of epidermal stratification during post-larval development in zebrafish. Dev Dyn 2020; 250:175-190. [PMID: 32877571 DOI: 10.1002/dvdy.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epidermis, as a defensive barrier, is a consistent trait throughout animal evolution. During post-larval development, the zebrafish epidermis thickens by stratification or addition of new cell layers. Epidermal basal stem cells, expressing the transcription factor p63, are known to be involved in this process. Zebrafish post-larval epidermal stratification is a tractable system to study how stem cells participate in organ growth. METHODS We used immunohistochemistry, in combination with EdU cell proliferation detection, to study zebrafish epidermal stratification. For this procedure, we selected a window of post-larval stages (5-8 mm of standard length or SL, which normalizes age by size). Simultaneously, we used markers for asymmetric cell division and the Notch signaling pathway. RESULTS We found that epidermal stratification is the consequence of several events, including changes in cell shape, active cell proliferation and asymmetrical cell divisions. We identified a subset of highly proliferative epidermal cells with reduced levels of p63, which differed from the basal stem cells with high levels of p63. Additionally, we described different mechanisms that participate in the stratification process, including the phosphorylation of p63, asymmetric cell division regulated by the Par3 and LGN proteins, and expression of Notch genes.
Collapse
Affiliation(s)
- Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, UNAM, Puerto Morelos, Quintana Roo, Mexico
| | - Aida Guzman
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Estudio Técnico Especializado en Histopatología, Escuela Nacional Preparatoria, ENP, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
42
|
Hulsey CD, Cohen KE, Johanson Z, Karagic N, Meyer A, Miller CT, Sadier A, Summers AP, Fraser GJ. Grand Challenges in Comparative Tooth Biology. Integr Comp Biol 2020; 60:563-580. [PMID: 32533826 PMCID: PMC7821850 DOI: 10.1093/icb/icaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.
Collapse
Affiliation(s)
- C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Karly E Cohen
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5HD, UK
| | - Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexa Sadier
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA 90032, USA
| | - Adam P Summers
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Giffin JL, Franz-Odendaal TA. Quantitative gene expression dynamics of key placode signalling factors in the embryonic chicken scleral ossicle system. Gene Expr Patterns 2020; 38:119131. [PMID: 32755633 DOI: 10.1016/j.gep.2020.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including β-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/β-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and β-catenin had the greatest number of moderate correlations (r = 0.400-0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
44
|
Archambeault SL, Bärtschi LR, Merminod AD, Peichel CL. Adaptation via pleiotropy and linkage: Association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol Lett 2020; 4:282-301. [PMID: 32774879 PMCID: PMC7403726 DOI: 10.1002/evl3.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022] Open
Abstract
Genomic mapping of the loci associated with phenotypic evolution has revealed genomic "hotspots," or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| | - Luis R. Bärtschi
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
| | | | - Catherine L. Peichel
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| |
Collapse
|
45
|
Zhang J, Qi J, Shi F, Pan H, Liu M, Tian R, Geng Y, Li H, Qu Y, Chen J, Seim I, Li M. Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis. iScience 2020; 23:101267. [PMID: 32593955 PMCID: PMC7327861 DOI: 10.1016/j.isci.2020.101267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Salangids, known as Asian icefishes, represent a peculiar radiation within the bony fish order Protacanthopterygii where adult fish retain larval characteristics such as transparent and miniaturized bodies and a cartilaginous endoskeleton into adulthood. Here, we report a de novo genome of Protosalanx chinensis, the most widely distributed salangid lineage. The P. chinensis genome assembly is more contiguous and complete than a previous assembly. We estimate that P. chinensis, salmons, trouts, and pikes diverged from a common ancestor 185 million years ago. A juxtaposition with other fish genomes revealed loss of the genes encoding ectodysplasin-A receptor (EDAR), SCPP1, and four Hox proteins and likely lack of canonical fibroblast growth factor 5 (FGF5) function. We also report genomic variations of P. chinensis possibly reflecting the immune system repertoire of a species with a larval phenotype in sexually mature individuals. The new Asian icefish reference genome provides a solid foundation for future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.
| | - Jiwei Qi
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Fanglei Shi
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ran Tian
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Huaying Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yujie Qu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource, Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China.
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia.
| | - Ming Li
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
46
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
47
|
Sun X, Zhang R, Chen H, Du X, Chen S, Huang J, Liu M, Xu M, Luo F, Jin M, Su N, Qi H, Yang J, Tan Q, Zhang D, Ni Z, Liang S, Zhang B, Chen D, Zhang X, Luo L, Chen L, Xie Y. Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/β-catenin signaling. Theranostics 2020; 10:7111-7130. [PMID: 32641982 PMCID: PMC7330844 DOI: 10.7150/thno.45286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
CATSHL syndrome, characterized by camptodactyly, tall stature and hearing loss, is caused by loss-of-function mutations of fibroblast growth factor receptors 3 (FGFR3) gene. Most manifestations of patients with CATSHL syndrome start to develop in the embryonic stage, such as skeletal overgrowth, craniofacial abnormalities, however, the pathogenesis of these phenotypes especially the early maldevelopment remains incompletely understood. Furthermore, there are no effective therapeutic targets for this skeleton dysplasia. Methods: We generated fgfr3 knockout zebrafish by CRISPR/Cas9 technology to study the developmental mechanisms and therapeutic targets of CATSHL syndrome. Several zebrafish transgenic lines labeling osteoblasts and chondrocytes, and live Alizarin red staining were used to analyze the dynamical skeleton development in fgfr3 mutants. Western blotting, whole mount in situ hybridization, Edu labeling based cell proliferation assay and Wnt/β-catenin signaling antagonist were used to explore the potential mechanisms and therapeutic targets. Results: We found that fgfr3 mutant zebrafish, staring from early development stage, showed craniofacial bone malformation with microcephaly and delayed closure of cranial sutures, chondroma-like lesion and abnormal development of auditory sensory organs, partially resembling the clinical manifestations of patients with CATSHL syndrome. Further studies showed that fgfr3 regulates the patterning and shaping of pharyngeal arches and the timely ossification of craniofacial skeleton. The abnormal development of pharyngeal arch cartilage is related to the augmented hypertrophy and disordered arrangement of chondrocytes, while decreased proliferation, differentiation and mineralization of osteoblasts may be involved in the delayed maturation of skull bones. Furthermore, we revealed that deficiency of fgfr3 leads to enhanced IHH signaling and up-regulated canonical Wnt/β-catenin signaling, and pharmacological inhibition of Wnt/β-catenin could partially alleviate the phenotypes of fgfr3 mutants. Conclusions: Our study further reveals some novel phenotypes and underlying developmental mechanism of CATSHL syndrome, which deepens our understanding of the pathogenesis of CATSHL and the role of fgfr3 in skeleton development. Our findings provide evidence that modulation of Wnt/β-catenin activity could be a potential therapy for CATSHL syndrome and related skeleton diseases.
Collapse
Affiliation(s)
- Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruobin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Mi Liu
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Meng Xu
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Liang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
48
|
Li C, Barton C, Henke K, Daane J, Treaster S, Caetano-Lopes J, Tanguay RL, Harris MP. celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. eLife 2020; 9:50523. [PMID: 31985398 PMCID: PMC7010407 DOI: 10.7554/elife.50523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Carrie Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Jake Daane
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Joana Caetano-Lopes
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| |
Collapse
|
49
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
50
|
The Genetic Basis of Scale-Loss Phenotype in the Rapid Radiation of Takifugu Fishes. Genes (Basel) 2019; 10:genes10121027. [PMID: 31835491 PMCID: PMC6947334 DOI: 10.3390/genes10121027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
Rapid radiation associated with phenotypic divergence and convergence provides an opportunity to study the genetic mechanisms of evolution. Here we investigate the genus Takifugu that has undergone explosive radiation relatively recently and contains a subset of closely-related species with a scale-loss phenotype. By using observations during development and genetic mapping approaches, we show that the scale-loss phenotype of two Takifugu species, T. pardalis Temminck & Schlegel and T. snyderi Abe, is largely controlled by an overlapping genomic segment (QTL). A search for candidate genes underlying the scale-loss phenotype revealed that the QTL region contains no known genes responsible for the evolution of scale-loss phenotype in other fishes. These results suggest that the genes used for the scale-loss phenotypes in the two Takifugu are likely the same, but the genes used for the similar phenotype in Takifugu and distantly related fishes are not the same. Meanwhile, Fgfrl1, a gene predicted to function in a pathway known to regulate bone/scale development was identified in the QTL region. Since Fgfr1a1, another memebr of the Fgf signaling pathway, has been implicated in scale loss/scale shape in fish distantly related to Takifugu, our results suggest that the convergence of the scale-loss phenotype may be constrained by signaling modules with conserved roles in scale development.
Collapse
|