1
|
Patel AA, Cardona A, Cox DN. Neural substrates of cold nociception in Drosophila larva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.31.551339. [PMID: 37577520 PMCID: PMC10418107 DOI: 10.1101/2023.07.31.551339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury-causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in Drosophila larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Recent advances in circuit bases of behavior have identified and functionally validated Drosophila larval somatosensory circuitry involved in innocuous (mechanical) and noxious (heat and mechanical) cues. However, central processing of cold nociceptive cues remained unexplored. We implicate multisensory integrators (Basins), premotor (Down-and-Back) and projection (A09e and TePns) neurons as neural substrates required for cold-evoked behavioral and calcium responses. Neural silencing of cell types downstream of CIII md neurons led to significant reductions in cold-evoked behaviors and neural co-activation of CIII md neurons plus additional cell types facilitated larval contraction (CT) responses. Further, we demonstrate that optogenetic activation of CIII md neurons evokes calcium increases in these neurons. Finally, we characterize the premotor to motor neuron network underlying cold-evoked CT and delineate the muscular basis of CT response. Collectively, we demonstrate how Drosophila larvae process cold stimuli through functionally diverse somatosensory circuitry responsible for generating stimulus-specific behaviors.
Collapse
Affiliation(s)
- Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
2
|
Komarov N, Fritsch C, Maier GL, Bues J, Biočanin M, Avalos CB, Dodero A, Kwon JY, Deplancke B, Sprecher SG. Food hardness preference reveals multisensory contributions of fly larval gustatory organs in behaviour and physiology. PLoS Biol 2025; 23:e3002730. [PMID: 39883595 PMCID: PMC11781724 DOI: 10.1371/journal.pbio.3002730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025] Open
Abstract
Food presents a multisensory experience, with visual, taste, and olfactory cues being important in allowing an animal to determine the safety and nutritional value of a given substance. Texture, however, remains a surprisingly unexplored aspect, despite providing key information about the state of the food through properties such as hardness, liquidity, and granularity. Food perception is achieved by specialised sensory neurons, which themselves are defined by the receptor genes they express. While it was assumed that sensory neurons respond to one or few closely related stimuli, more recent findings challenge this notion and support evidence that certain sensory neurons are more broadly tuned. In the Drosophila taste system, gustatory neurons respond to cues of opposing hedonic valence or to olfactory cues. Here, we identified that larvae ingest and navigate towards specific food substrate hardnesses and probed the role of gustatory organs in this behaviour. By developing a genetic tool targeting specifically gustatory organs, we show that these organs are major contributors for evaluation of food hardness and ingestion decision-making. We find that ablation of gustatory organs not only results in loss of chemosensation, but also navigation and ingestion preference to varied substrate hardnesses. Furthermore, we show that certain neurons in the primary taste organ exhibit varied and concurrent physiological responses to mechanical and multimodal stimulation. We show that individual neurons house independent mechanisms for multiple sensory modalities, challenging assumptions about capabilities of sensory neurons. We propose that further investigations, across the animal kingdom, may reveal higher sensory complexity than currently anticipated.
Collapse
Affiliation(s)
- Nikita Komarov
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - G. Larisa Maier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Johannes Bues
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Marjan Biočanin
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Andrea Dodero
- Soft Matter Physics Group, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
4
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
5
|
Pedigo BD, Winding M, Priebe CE, Vogelstein JT. Bisected graph matching improves automated pairing of bilaterally homologous neurons from connectomes. Netw Neurosci 2023; 7:522-538. [PMID: 37409218 PMCID: PMC10319359 DOI: 10.1162/netn_a_00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/13/2022] [Indexed: 09/19/2024] Open
Abstract
Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes-in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm that allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises.
Collapse
|
6
|
Schoofs A, Pankratz MJ. Neuroscience: Moving thoughts control insulin release. Curr Biol 2023; 33:R274-R276. [PMID: 37040711 DOI: 10.1016/j.cub.2023.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Insulin release has mostly been studied in the context of metabolic signals. An electrophysiology approach in Drosophila now reveals regulation of insulin-producing cell activity by neuronal circuits controlling locomotion. Even without actual movement, activating these circuits is sufficient to inhibit neuropeptide release.
Collapse
Affiliation(s)
- Andreas Schoofs
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, Kazimiers T, Fushiki A, Andrade IV, Khandelwal A, Valdes-Aleman J, Li F, Randel N, Barsotti E, Correia A, Fetter RD, Hartenstein V, Priebe CE, Vogelstein JT, Cardona A, Zlatic M. The connectome of an insect brain. Science 2023; 379:eadd9330. [PMID: 36893230 PMCID: PMC7614541 DOI: 10.1126/science.add9330] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.
Collapse
Affiliation(s)
- Michael Winding
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin D. Pedigo
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, USA
| | - Christopher L. Barnes
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Heather G. Patsolic
- Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA
- Accenture, Arlington, VA, USA
| | - Youngser Park
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- kazmos GmbH, Dresden, Germany
| | - Akira Fushiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ingrid V. Andrade
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - Avinash Khandelwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Javier Valdes-Aleman
- University of Cambridge, Department of Zoology, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nadine Randel
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
| | - Elizabeth Barsotti
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Ana Correia
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Richard D. Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Stanford University, Stanford, CA, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - Carey E. Priebe
- Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Joshua T. Vogelstein
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, USA
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Albert Cardona
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Marta Zlatic
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
8
|
Farris SM. Insect PRXamides: Evolutionary Divergence, Novelty, and Loss in a Conserved Neuropeptide System. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 36661324 PMCID: PMC9853942 DOI: 10.1093/jisesa/ieac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 06/17/2023]
Abstract
The PRXamide neuropeptides have been described in both protostome and deuterostome species, including all major groups of the Panarthropoda. Best studied are the insect PRXamides consisting of three genes: pk/pban, capa, and eth, each encoding multiple short peptides that are cleaved post-translationally. Comparisons of genome and transcriptome sequences reveal that while retaining its fundamental ancestral organization, the products of the pk/pban gene have undergone significant change in the insect Order Diptera. Basal dipteran pk/pban genes are much like those of other holometabolous insects, while more crown species have lost two peptide coding sequences including the otherwise ubiquitous pheromone biosynthesis activating neuropeptide (PBAN). In the genomic model species Drosophila melanogaster, one of the remaining peptides (hugin) plays a potentially novel role in feeding and locomotor regulation tied to circadian rhythms. Comparison of peptide coding sequences of pk/pban across the Diptera pinpoints the acquisition or loss of the hugin and PBAN peptide sequences respectively, and provides clues to associated changes in life history, physiology, and/or behavior. Interestingly, the neural circuitry underlying pk/pban function is highly conserved across the insects regardless of the composition of the pk/pban gene. The rapid evolution and diversification of the Diptera provide many instances of adaptive novelties from genes to behavior that can be placed in the context of emerging selective pressures at key points in their phylogeny; further study of changing functional roles of pk/pban may then be facilitated by the high-resolution genetic tools available in Drosophila melanogaster.
Collapse
|
9
|
Ohhara Y, Yamanaka N. Internal sensory neurons regulate stage-specific growth in Drosophila. Development 2022; 149:dev200440. [PMID: 36227580 PMCID: PMC10496149 DOI: 10.1242/dev.200440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 09/15/2023]
Abstract
Animals control their developmental schedule in accordance with internal states and external environments. In Drosophila larvae, it is well established that nutrient status is sensed by different internal organs, which in turn regulate production of insulin-like peptides and thereby control growth. In contrast, the impact of the chemosensory system on larval development remains largely unclear. Here, we performed a genetic screen to identify gustatory receptor (Gr) neurons regulating growth and development, and found that Gr28a-expressing neurons are required for proper progression of larval growth. Gr28a is expressed in a subset of peripheral internal sensory neurons, which directly extend their axons to insulin-producing cells (IPCs) in the central nervous system. Silencing of Gr28a-expressing neurons blocked insulin-like peptide release from IPCs and suppressed larval growth during the mid-larval period. These results indicate that Gr28a-expressing neurons promote larval development by directly regulating growth-promoting endocrine signaling in a stage-specific manner.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
10
|
The neuronal logic of how internal states control food choice. Nature 2022; 607:747-755. [DOI: 10.1038/s41586-022-04909-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|
11
|
Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 2022; 11:e79887. [PMID: 35791902 PMCID: PMC9292995 DOI: 10.7554/elife.79887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust the behavioral outcomes. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.
Collapse
Affiliation(s)
- Philip K Shiu
- University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Sterne
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Sun LL, Liu XL, Wang YN, Berg BG, Xie GY, Chen WB, Liu Y, Wang GR, Zhao XC, Tang QB. Neuronal architecture and functional mapping of the taste center of larval Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT SCIENCE 2022; 29:730-748. [PMID: 34427391 DOI: 10.1111/1744-7917.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds. The peripheral coding of taste has been thoroughly studied in many insect species, but the central gustatory pathways are poorly described. In the present study, we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique. We identified different types of neurons, including sensory neurons, interneurons, and motor neurons. The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion. The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion. We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H. armigera larvae.
Collapse
Affiliation(s)
- Long-Long Sun
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ya-Nan Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bente G Berg
- Chemosensory laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, 7489, Norway
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
13
|
Engert S, Sterne GR, Bock DD, Scott K. Drosophila gustatory projections are segregated by taste modality and connectivity. eLife 2022; 11:e78110. [PMID: 35611959 PMCID: PMC9170244 DOI: 10.7554/elife.78110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gustatory sensory neurons detect caloric and harmful compounds in potential food and convey this information to the brain to inform feeding decisions. To examine the signals that gustatory neurons transmit and receive, we reconstructed gustatory axons and their synaptic sites in the adult Drosophila melanogaster brain, utilizing a whole-brain electron microscopy volume. We reconstructed 87 gustatory projections from the proboscis labellum in the right hemisphere and 57 from the left, representing the majority of labellar gustatory axons. Gustatory neurons contain a nearly equal number of interspersed pre- and postsynaptic sites, with extensive synaptic connectivity among gustatory axons. Morphology- and connectivity-based clustering revealed six distinct groups, likely representing neurons recognizing different taste modalities. The vast majority of synaptic connections are between neurons of the same group. This study resolves the anatomy of labellar gustatory projections, reveals that gustatory projections are segregated based on taste modality, and uncovers synaptic connections that may alter the transmission of gustatory signals.
Collapse
Affiliation(s)
- Stefanie Engert
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Gebehart C, Büschges A. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J Neurophysiol 2021; 126:1875-1890. [PMID: 34705575 DOI: 10.1152/jn.00399.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system, using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of multisensory integration in the NSI network showed an early phase of movement signal processing and a delayed phase of load signal integration. The temporal delay of load signals relative to movement feedback persisted into MN activity and muscle force development. We demonstrate differential delays in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.NEW & NOTEWORTHY Networks integrating multisensory input face the challenge of not only spatial but also temporal integration. In the local network controlling insect leg movements, proprioceptive signal delays differ between sensory modalities. Specifically, signal transmission times to and neuronal connectivity within the sensorimotor network lead to delayed information about leg loading relative to movement signals. Temporal delays persist up to the level of the motor output, demonstrating its relevance for motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr Biol 2021; 32:149-163.e8. [PMID: 34798050 DOI: 10.1016/j.cub.2021.10.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.
Collapse
Affiliation(s)
- Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Fangmin Zhou
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Andrey Formozov
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Annika Wittich
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Chun Hu
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ednilson Macarenhas Varela
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Fabiana Herédia
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - André Macedo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Philipp Schlegel
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University Medical School, 427E Bryan Research, Durham, NC 27710, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - J Simon Wiegert
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Albert Cardona
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
16
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
18
|
Sterne GR, Otsuna H, Dickson BJ, Scott K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 2021; 10:e71679. [PMID: 34473057 PMCID: PMC8445619 DOI: 10.7554/elife.71679] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.
Collapse
Affiliation(s)
- Gabriella R Sterne
- University of California BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandQueenslandAustralia
| | - Kristin Scott
- University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
19
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|
20
|
Hückesfeld S, Schlegel P, Miroschnikow A, Schoofs A, Zinke I, Haubrich AN, Schneider-Mizell CM, Truman JW, Fetter RD, Cardona A, Pankratz MJ. Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. eLife 2021; 10:e65745. [PMID: 34085637 PMCID: PMC8177888 DOI: 10.7554/elife.65745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.
Collapse
Affiliation(s)
- Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of BonnBonnGermany
| | - Philipp Schlegel
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of BonnBonnGermany
| | - Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of BonnBonnGermany
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of BonnBonnGermany
| | - André N Haubrich
- Life & Brain, Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center GermanyBonnGermany
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick AvenueCambridgeUnited Kingdom
- Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of BonnBonnGermany
| |
Collapse
|
21
|
Schlegel P, Bates AS, Stürner T, Jagannathan SR, Drummond N, Hsu J, Serratosa Capdevila L, Javier A, Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis GSXE. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 2021; 10:e66018. [PMID: 34032214 PMCID: PMC8298098 DOI: 10.7554/elife.66018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Tomke Stürner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Nikolas Drummond
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joseph Hsu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Alexandre Javier
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Elizabeth C Marin
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Imaan FM Tamimi
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
22
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
23
|
Kobler O, Weiglein A, Hartung K, Chen YC, Gerber B, Thomas U. A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval Drosophila. J Neurogenet 2021; 35:306-319. [PMID: 33688796 DOI: 10.1080/01677063.2021.1892096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.
Collapse
Affiliation(s)
- Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility (CNI), Magdeburg, Germany
| | - Aliće Weiglein
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Hartung
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Yi-Chun Chen
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
24
|
Ashaber M, Tomina Y, Kassraian P, Bushong EA, Kristan WB, Ellisman MH, Wagenaar DA. Anatomy and activity patterns in a multifunctional motor neuron and its surrounding circuits. eLife 2021; 10:e61881. [PMID: 33587033 PMCID: PMC7954528 DOI: 10.7554/elife.61881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3's processes. Further, we traced back the processes of DE-3's presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all the behaviors were widely distributed over DE-3's branches, yet that functional clusters were different during (fictive) swimming vs. crawling.
Collapse
Affiliation(s)
- Mária Ashaber
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yusuke Tomina
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Eric A Bushong
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - William B Kristan
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San DiegoSan DiegoUnited States
- Department of Neurosciences, UCSD School of MedicineSan DiegoUnited States
| | - Daniel A Wagenaar
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
25
|
Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. eLife 2021; 10:e63379. [PMID: 33570489 PMCID: PMC7877909 DOI: 10.7554/elife.63379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mushroom body (MB) is a well-characterized associative memory structure within the Drosophila brain. Analyzing MB connectivity using multiple approaches is critical for understanding the functional implications of this structure. Using the genetic anterograde transsynaptic tracing tool, trans-Tango, we identified divergent projections across the brain and convergent downstream targets of the MB output neurons (MBONs). Our analysis revealed at least three separate targets that receive convergent input from MBONs: other MBONs, the fan-shaped body (FSB), and the lateral accessory lobe (LAL). We describe, both anatomically and functionally, a multilayer circuit in which inhibitory and excitatory MBONs converge on the same genetic subset of FSB and LAL neurons. This circuit architecture enables the brain to update and integrate information with previous experience before executing appropriate behavioral responses. Our use of trans-Tango provides a genetically accessible anatomical framework for investigating the functional relevance of components within these complex and interconnected circuits.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Department of Psychology, Bryant UniversitySmithfieldUnited States
- Center for Health and Behavioral Sciences, Bryant UniversitySmithfieldUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - John D Fisher
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Karla R Kaun
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| |
Collapse
|
26
|
Development of motor circuits: From neuronal stem cells and neuronal diversity to motor circuit assembly. Curr Top Dev Biol 2020; 142:409-442. [PMID: 33706923 DOI: 10.1016/bs.ctdb.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we discuss motor circuit assembly starting from neuronal stem cells. Until recently, studies of neuronal stem cells focused on how a relatively small pool of stem cells could give rise to a large diversity of different neuronal identities. Historically, neuronal identity has been assayed in embryos by gene expression, gross anatomical features, neurotransmitter expression, and physiological properties. However, these definitions of identity are largely unlinked to mature functional neuronal features relevant to motor circuits. Such mature neuronal features include presynaptic and postsynaptic partnerships, dendrite morphologies, as well as neuronal firing patterns and roles in behavior. This review focuses on recent work that links the specification of neuronal molecular identity in neuronal stem cells to mature, circuit-relevant identity specification. Specifically, these studies begin to address the question: to what extent are the decisions that occur during motor circuit assembly controlled by the same genetic information that generates diverse embryonic neuronal diversity? Much of the research addressing this question has been conducted using the Drosophila larval motor system. Here, we focus largely on Drosophila motor circuits and we point out parallels to other systems. And we highlight outstanding questions in the field. The main concepts addressed in this review are: (1) the description of temporal cohorts-novel units of developmental organization that link neuronal stem cell lineages to motor circuit configuration and (2) the discovery that temporal transcription factors expressed in neuronal stem cells control aspects of circuit assembly by controlling the size of temporal cohorts and influencing synaptic partner choice.
Collapse
|
27
|
Eschbach C, Zlatic M. Useful road maps: studying Drosophila larva's central nervous system with the help of connectomics. Curr Opin Neurobiol 2020; 65:129-137. [PMID: 33242722 PMCID: PMC7773133 DOI: 10.1016/j.conb.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The larva of Drosophila melanogaster is emerging as a powerful model system for comprehensive brain-wide understanding of the circuit implementation of neural computations. With an unprecedented amount of tools in hand, including synaptic-resolution connectomics, whole-brain imaging, and genetic tools for selective targeting of single neuron types, it is possible to dissect which circuits and computations are at work behind behaviors that have an interesting level of complexity. Here we present some of the recent advances regarding multisensory integration, learning, and action selection in Drosophila larva.
Collapse
Affiliation(s)
- Claire Eschbach
- Department of Zoology, University of Cambridge, United Kingdom.
| | - Marta Zlatic
- Department of Zoology, University of Cambridge, United Kingdom; MRC Laboratory of Molecular Biology, United Kingdom.
| |
Collapse
|
28
|
Hampel S, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. eLife 2020; 9:e59976. [PMID: 33103999 PMCID: PMC7652415 DOI: 10.7554/elife.59976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.
Collapse
Affiliation(s)
- Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Daichi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
29
|
Louis M. Mini-brain computations converting dynamic olfactory inputs into orientation behavior. Curr Opin Neurobiol 2020; 64:1-9. [PMID: 31837503 PMCID: PMC7286801 DOI: 10.1016/j.conb.2019.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023]
Abstract
The neural logic underlying the conversion of non-stationary (dynamic) olfactory inputs into odor-search behaviors has been difficult to crack due to the distributed nature of the olfactory code - food odors typically co-activate multiple olfactory sensory neurons. In the Drosophila larva, the activity of a single olfactory sensory neuron is sufficient to direct accurate reorientation maneuvers in odor gradients (chemotaxis). In this reduced sensory system, a descending pathway essential for larval chemotaxis has been delineated from the peripheral olfactory system down to the premotor system. Here, I review how anatomical and functional inspections of this pathway have advanced our understanding of the neural mechanisms that convert behaviorally relevant sensory signals into orientation responses.
Collapse
Affiliation(s)
- Matthieu Louis
- Neuroscience Research Institute & Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
30
|
Molecular Basis for Cephalic Mechanosensitivity of Drosophila Larvae. Neurosci Bull 2020; 36:1051-1056. [PMID: 32761438 DOI: 10.1007/s12264-020-00555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/03/2020] [Indexed: 10/23/2022] Open
|
31
|
Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol 2020; 30:R831-R840. [DOI: 10.1016/j.cub.2020.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Brünner B, Saumweber J, Samur M, Weber D, Schumann I, Mahishi D, Rohwedder A, Thum AS. Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae. J Neurogenet 2020; 34:123-132. [PMID: 31975653 DOI: 10.1080/01677063.2020.1714612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many animals, the establishment and expression of food-related memory is limited by the presence of food and promoted by its absence, implying that this behavior is driven by motivation. In the past, this has already been demonstrated in various insects including honeybees and adult Drosophila. For Drosophila larvae, which are characterized by an immense growth and the resulting need for constant food intake, however, knowledge is rather limited. Accordingly, we have analyzed whether starvation modulates larval memory formation or expression after appetitive classical olfactory conditioning, in which an odor is associated with a sugar reward. We show that odor-sugar memory of starved larvae lasts longer than in fed larvae, although the initial performance is comparable. 80 minutes after odor fructose conditioning, only starved but not fed larvae show a reliable odor-fructose memory. This is likely due to a specific increase in the stability of anesthesia-resistant memory (ARM). Furthermore, we observe that starved larvae, in contrast to fed ones, prefer sugars that offer a nutritional benefit in addition to their sweetness. Taken together our work shows that Drosophila larvae adjust the expression of learned and naïve choice behaviors in the absence of food. These effects are only short-lasting probably due to their lifestyle and their higher internal motivation to feed. In the future, the extensive use of established genetic tools will allow us to identify development-specific differences arising at the neuronal and molecular level.
Collapse
Affiliation(s)
- Benita Brünner
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Merve Samur
- Department of Genetics, University of Leipzig, Leipzig, Germany.,Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Denise Weber
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Deepthi Mahishi
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Andreas S Thum
- Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Abstract
The full functionality of the brain is determined by its molecular, cellular and circuit structure. Modern neuroscience now prioritizes the mapping of whole brain connectomes by detecting all direct neuron to neuron synaptic connections, a feat first accomplished for C. elegans, a full reconstruction of a 302-neuron nervous system. Efforts at Janelia Research Campus will soon reconstruct the whole brain connectomes of a larval and an adult Drosophila. These connectomes will provide a framework for incorporating detailed neural circuit information that Drosophila neuroscientists have gathered over decades. But when viewed in the context of a whole brain, it becomes difficult to isolate the contributions of distinct circuits, whether sensory systems or higher brain regions. The complete wiring diagram tells us that sensory information is not only processed in separate channels, but that even the earliest sensory layers are strongly synaptically interconnected. In the higher brain, long-range projections densely interconnect major brain regions and convergence centers that integrate input from different sensory systems. Furthermore, we also need to understand the impact of neuronal communication beyond direct synaptic modulation. Nevertheless, all of this can be pursued with Drosophila, combining connectomics with a diverse array of genetic tools and behavioral paradigms that provide effective approaches to entire brain function.
Collapse
Affiliation(s)
- Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Mahishi D, Huetteroth W. The prandial process in flies. CURRENT OPINION IN INSECT SCIENCE 2019; 36:157-166. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Feeding is fundamental to any heterotroph organism; in its role to quell hunger it overrides most other motivational states. But feeding also literally opens the door to harmful risks, especially for a saprophagous animal like Drosophila; ingestion of poisonous substrate can lead to irreversible damage. Thus feeding incorporates a series of steps with several checkpoints to guarantee that the ingestion remains beneficial and provides a balanced diet, or the feeding process is interrupted. Subsequently, we will summarize and describe the feeding process in Drosophila in a comprehensive manner. We propose eleven distinct steps for feeding, grouped into four categories, to address our current knowledge of prandial regulatory mechanisms in Drosophila.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
35
|
Selcho M, Pauls D. Linking physiological processes and feeding behaviors by octopamine. CURRENT OPINION IN INSECT SCIENCE 2019; 36:125-130. [PMID: 31606580 DOI: 10.1016/j.cois.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 05/21/2023]
Abstract
The biogenic amine octopamine and to some extent its precursor tyramine function as an alerting signal in insects. Octopaminergic/tyraminergic neurons arborize in most parts of the central nervous system and additionally reach almost all peripheral organs, tissues, and muscles. Indeed, octopamine is involved in motivation, arousal, and the initiation of different behaviors reflecting its function as an alerting signal. A well-studied example of octopamine function is feeding behavior in Drosophila. Here, the amine is involved in food search, sugar/bitter sensitivity, food intake, and starvation-induced hyperactivity. Thereby octopamine modulates feeding initiation in response to internal needs and external stimuli. Additionally, it seems that octopamine/tyramine orchestrate behaviors such as locomotion and feeding or flight and song production to adapt the behavioral outcome of an animal to physiological and environmental conditions. There is a possibility that octopamine and tyramine are required in the selection of behaviors in insects.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute Biocenter, University of Würzburg, Würzburg, Germany; Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute Biocenter, University of Würzburg, Würzburg, Germany; Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.
| |
Collapse
|
36
|
Toshima N, Kantar Weigelt M, Weiglein A, Boetzl FA, Gerber B. An amino-acid mixture can be both rewarding and punishing to larval Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.209486. [PMID: 31672727 DOI: 10.1242/jeb.209486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D . melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Melisa Kantar Weigelt
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.,Institute for Biology, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
37
|
Tenedini FM, Sáez González M, Hu C, Pedersen LH, Petruzzi MM, Spitzweck B, Wang D, Richter M, Petersen M, Szpotowicz E, Schweizer M, Sigrist SJ, Calderon de Anda F, Soba P. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nat Commun 2019; 10:3506. [PMID: 31383864 PMCID: PMC6683158 DOI: 10.1038/s41467-019-11408-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.
Collapse
Affiliation(s)
- Federico Marcello Tenedini
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Maria Sáez González
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Chun Hu
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Lisa Hedegaard Pedersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Mabel Matamala Petruzzi
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bettina Spitzweck
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Denan Wang
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melanie Richter
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Emanuela Szpotowicz
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Froylan Calderon de Anda
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
38
|
Abstract
The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms 'type 1 obesity' and 'type 2 obesity': type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
Immediate and delayed effects of nutrient-sensing in fruit fly Drosophila melanogaster. Behav Processes 2019; 164:133-142. [DOI: 10.1016/j.beproc.2019.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 11/20/2022]
|