1
|
Phelps GB, Morin J, Pinto C, Schoenfeldt L, Guilmot S, Ocampo A, Perez K. Comprehensive evaluation of lifespan-extending molecules in C. elegans. Aging Cell 2025; 24:e14424. [PMID: 39853804 PMCID: PMC11984673 DOI: 10.1111/acel.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 01/26/2025] Open
Abstract
The nematode C. elegans has long served as a gold-standard model organism in aging research, particularly since the discovery of long-lived mutants in conserved aging pathways including daf-2 (IGF1) and age-1 (PI3K). Its short lifespan and small size make it highly suitable for high-throughput experiments. While numerous molecules have been tested for their effects on C. elegans lifespan, consensus is still lacking regarding the most effective and reproducible compounds. Confounding effects, especially those related to drug-bacteria interactions, remain a contentious issue in the literature. In this study, we evaluated 16 of the most frequently reported lifespan-extending molecules in C. elegans, examining their effects on lifespan with two different diets (live and UV-killed OP50). In addition, we assessed the compounds' impact on bacterial growth, their effects on various nematode strains, and the impact of the starting age of treatment. Our findings first confirmed robust lifespan extension by many, but not all, of the 16 tested compounds from the literature, and revealed that some of them could be combined to obtain additive effects. Additionally, we showed that some of these compounds also extend lifespan in the fly D. melanogaster, demonstrating a conserved effect across species. Finally, by expanding our screen to a broader pool of molecules, we identified novel lifespan-extending compounds in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandro Ocampo
- EPITERNAEpalingesSwitzerland
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | | |
Collapse
|
2
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
4
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Ploper D, Pernicone AO, Tomas-Grau RH, Manzano VE, Socías SB, Teran MDM, Budeguer Isa V, Sosa-Padilla B, González-Lizárraga F, Avila CL, Guayán ML, Chaves S, Cruz H, Vera Pingitore E, Varela O, Chehín R. Design, Synthesis, and Evaluation of a Novel Conjugate Molecule with Dopaminergic and Neuroprotective Activities for Parkinson's Disease. ACS Chem Neurosci 2024; 15:2795-2810. [PMID: 38991155 DOI: 10.1021/acschemneuro.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
The escalating prevalence of Parkinson's disease (PD) underscores the need for innovative therapeutic interventions since current palliative measures, including the standard l-Dopa formulations, face challenges of tolerance and side effects while failing to address the underlying neurodegenerative processes. Here, we introduce DAD9, a novel conjugate molecule that aims to combine symptomatic relief with disease-modifying strategies for PD. Crafted through knowledge-guided chemistry, the molecule combines a nonantibiotic doxycycline derivative with dopamine, preserving neuroprotective attributes while maintaining dopaminergic agonism. This compound exhibited no off-target effects on PD-relevant cell functions and sustained antioxidant and anti-inflammatory properties of the tetracycline precursor. Furthermore, it effectively interfered with the formation and seeding of toxic α-synuclein aggregates without producing detrimental oxidative species. In addition, DAD9 was able to activate dopamine receptors, and docking simulations shed light onto the molecular details of this interaction. These findings position DAD9 as a potential neuroprotective dopaminergic agonist, promising advancements in PD therapeutics.
Collapse
Affiliation(s)
- Diego Ploper
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Agustín O Pernicone
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón 2, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rodrigo H Tomas-Grau
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Verónica E Manzano
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón 2, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Sergio B Socías
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - María Del Milagro Teran
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Valentina Budeguer Isa
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Bernardo Sosa-Padilla
- Instituto de Química del Noroeste Argentino (INQUINOA) (CONICET), Universidad Nacional de Tucumán (UNT), Ayacucho 471, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Florencia González-Lizárraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - César L Avila
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - María Laura Guayán
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Silvina Chaves
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Hernán Cruz
- Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Esteban Vera Pingitore
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Oscar Varela
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón 2, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET), Universidad Nacional de Tucumán (UNT), Ministerio de Salud Pública de Tucumán - SIPROSA, Pasaje Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
6
|
Sfera A, Imran H, Sfera DO, Anton JJ, Kozlakidis Z, Hazan S. Novel Insights into Psychosis and Antipsychotic Interventions: From Managing Symptoms to Improving Outcomes. Int J Mol Sci 2024; 25:5904. [PMID: 38892092 PMCID: PMC11173215 DOI: 10.3390/ijms25115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
For the past 70 years, the dopamine hypothesis has been the key working model in schizophrenia. This has contributed to the development of numerous inhibitors of dopaminergic signaling and antipsychotic drugs, which led to rapid symptom resolution but only marginal outcome improvement. Over the past decades, there has been limited research on the quantifiable pathological changes in schizophrenia, including premature cellular/neuronal senescence, brain volume loss, the attenuation of gamma oscillations in electroencephalograms, and the oxidation of lipids in the plasma and mitochondrial membranes. We surmise that the aberrant activation of the aryl hydrocarbon receptor by toxins derived from gut microbes or the environment drives premature cellular and neuronal senescence, a hallmark of schizophrenia. Early brain aging promotes secondary changes, including the impairment and loss of mitochondria, gray matter depletion, decreased gamma oscillations, and a compensatory metabolic shift to lactate and lactylation. The aim of this narrative review is twofold: (1) to summarize what is known about premature cellular/neuronal senescence in schizophrenia or schizophrenia-like disorders, and (2) to discuss novel strategies for improving long-term outcomes in severe mental illness with natural senotherapeutics, membrane lipid replacement, mitochondrial transplantation, microbial phenazines, novel antioxidant phenothiazines, inhibitors of glycogen synthase kinase-3 beta, and aryl hydrocarbon receptor antagonists.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Hassan Imran
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Dan O. Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | |
Collapse
|
7
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
9
|
García-Garví A, Layana-Castro PE, Puchalt JC, Sánchez-Salmerón AJ. Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy. Comput Struct Biotechnol J 2023; 21:5049-5065. [PMID: 37867965 PMCID: PMC10589381 DOI: 10.1016/j.csbj.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains.
Collapse
Affiliation(s)
- Antonio García-Garví
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Pablo E. Layana-Castro
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Joan Carles Puchalt
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Antonio-José Sánchez-Salmerón
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| |
Collapse
|
10
|
Clay KJ, Yang Y, Clark C, Petrascheck M. Proteostasis is differentially modulated by inhibition of translation initiation or elongation. eLife 2023; 12:e76465. [PMID: 37795690 PMCID: PMC10581687 DOI: 10.7554/elife.76465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Recent work has revealed an increasingly important role for mRNA translation in maintaining proteostasis. Here, we use chemical inhibitors targeting discrete steps of translation to compare how lowering the concentration of all or only translation initiation-dependent proteins rescues Caenorhabditis elegans from proteotoxic stress. We systematically challenge proteostasis and show that pharmacologically inhibiting translation initiation or elongation elicits a distinct protective profile. Inhibiting elongation protects from heat and proteasome dysfunction independently from HSF-1 but does not protect from age-associated protein aggregation. Conversely, inhibition of initiation protects from heat and age-associated protein aggregation and increases lifespan, dependent on hsf-1, but does not protect from proteotoxicity caused by proteasome dysfunction. Surprisingly, we find that the ability of the translation initiation machinery to control the concentration of newly synthesized proteins depends on HSF-1. Inhibition of translation initiation in wild-type animals reduces the concentration of newly synthesized proteins but increases it in hsf-1 mutants. Our findings suggest that the HSF-1 pathway is not only a downstream target of translation but also directly cooperates with the translation initiation machinery to control the concentration of newly synthesized proteins to restore proteostasis.
Collapse
Affiliation(s)
- Khalyd J Clay
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Yongzhi Yang
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Christina Clark
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Michael Petrascheck
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
11
|
Bene M, Salmon AB. Testing the evidence that lifespan-extending compound interventions are conserved across laboratory animal model species. GeroScience 2023; 45:1401-1409. [PMID: 36637786 PMCID: PMC10400519 DOI: 10.1007/s11357-022-00722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
A growing number of pharmaceutical and small molecule interventions are reported to extend the lifespan of laboratory animals including Caenorhabditis, Drosophila, and mouse. However, the degree to which these pro-longevity interventions are conserved across species is unclear. Here, we took two approaches to ask the question: to what extent do longevity intervention studies in Caenorhabditis and Drosophila recapitulate effects on mouse lifespan? The first approach analyzes all published reports on longevity in the literature collated by the DrugAge database, and the second approach focused on results designed for reproducibility as reported from the NIA-supported Interventions Testing Program (ITP) and the Caenorhabditis Interventions Testing Program (CITP). Using published data sources, we identify only modest sensitivity and specificity of Drosophila interventional studies for identifying pro-longevity compounds in mouse lifespan studies. Surprisingly, reported studies in C. elegans show little predictive value for identifying drugs that extend lifespan in mice. The results therefore suggest caution should be used when making assumptions about the translatability of lifespan-extending compounds across species, including human intervention.
Collapse
Affiliation(s)
- Michael Bene
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA.
| |
Collapse
|
12
|
Kim HS, Jang S, Kim J. Genome-Wide Integrative Transcriptional Profiling Identifies Age-Associated Signatures in Dogs. Genes (Basel) 2023; 14:1131. [PMID: 37372311 DOI: 10.3390/genes14061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mammals experience similar stages of embryonic development, birth, infancy, youth, adolescence, maturity, and senescence. While embryonic developmental processes have been extensively researched, many molecular mechanisms regulating the different life stages after birth, such as aging, remain unresolved. We investigated the conserved and global molecular transitions in transcriptional remodeling with age in dogs of 15 breeds, which revealed that genes underlying hormone level regulation and developmental programs were differentially regulated during aging. Subsequently, we show that the candidate genes associated with tumorigenesis also exhibit age-dependent DNA methylation patterns, which might have contributed to the tumor state through inhibiting the plasticity of cell differentiation processes during aging, and ultimately suggesting the molecular events that link the processes of aging and cancer. These results highlight that the rate of age-related transcriptional remodeling is influenced not only by the lifespan, but also by the timing of critical physiological milestones.
Collapse
Affiliation(s)
- Hyun Seung Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
13
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
14
|
Lee HY, Lee JH, Kim SH, Jo SY, Min KJ. Probiotic Limosilactobacillus Reuteri (Lactobacillus Reuteri) Extends the Lifespan of Drosophila Melanogaster through Insulin/IGF-1 Signaling. Aging Dis 2023:AD.2023.0122. [PMID: 37163439 PMCID: PMC10389828 DOI: 10.14336/ad.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 05/12/2023] Open
Abstract
The term probiotic refers to bacteria that provide a beneficial effect to the host. Limosilactobacillus reuteri (Lactobacillus reuteri) is a probiotic isolated from human breast milk. Although L. reuteri has antimicrobial and anti-inflammatory activities occasionally linked to anti-aging effects, there are no reports of the effects of L. reuteri on longevity. This study evaluated the anti-aging effects of L. reuteri on the lifespan and physiology of Drosophila melanogaster. L. reuteri increased the mean lifespan of fruit flies significantly without reducing the reproductive output, food intake, or locomotor activity. Furthermore, the data suggested that the longevity effect of L. reuteri is mediated by the reduction of the insulin/IGF-1 signaling pathway and the action of reuterin, an antimicrobial compound produced by L. reuteri. These results show that L. reuteri can be used as a probiotic that acts as a dietary restriction mimetic with anti-aging effects.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Korea
| | - Su-Yeon Jo
- WEDEA Co., Science Park 305, HNU, Daejeon 34054, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
15
|
Kim HS, Pickering AM. Protein translation paradox: Implications in translational regulation of aging. Front Cell Dev Biol 2023; 11:1129281. [PMID: 36711035 PMCID: PMC9880214 DOI: 10.3389/fcell.2023.1129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Protein translation is an essential cellular process playing key roles in growth and development. Protein translation declines over the course of age in multiple animal species, including nematodes, fruit flies, mice, rats, and even humans. In all these species, protein translation transiently peaks in early adulthood with a subsequent drop over the course of age. Conversely, lifelong reductions in protein translation have been found to extend lifespan and healthspan in multiple animal models. These findings raise the protein synthesis paradox: age-related declines in protein synthesis should be detrimental, but life-long reductions in protein translation paradoxically slow down aging and prolong lifespan. This article discusses the nature of this paradox and complies an extensive body of work demonstrating protein translation as a modulator of lifespan and healthspan.
Collapse
Affiliation(s)
- Harper S. Kim
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Khanijou JK, Yee Z, Raida M, Lee JM, Tay EZE, Gruber J, Walczyk T. Efficiency of Protein Renewal Is Limited by Feed Intake and Not by Protein Lifetime in Aging Caenorhabditis elegans. J Proteome Res 2022; 21:2664-2686. [PMID: 36181456 DOI: 10.1021/acs.jproteome.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein turnover maintains the proteome's functional integrity. Here, protein turnover efficiency over time in wild-type Caenorhabditis elegans was assessed using inverse [15N]-pulse labeling up to 7 days after the egg-laying phase at 20 °C. Isotopic analysis of some abundant proteins was executed favoring data quality over quantity for mathematical modeling. Surprisingly, isotopic enrichment over time reached an upper limit showing an apparent cessation of protein renewal well before death, with protein fractions inaccessible to turnover ranging from 14 to 83%. For life span modulation, worms were raised at different temperatures after egg laying. Mathematical modeling of isotopic enrichment points either to a slowdown of protein turnover or to an increasing protein fraction resistant to turnover with time. Most notably, the estimated time points of protein turnover cessation from our mathematical model were highly correlated with the observed median life span. Thrashing and pumping rates over time were linearly correlated with isotopic enrichment, therefore linking protein/tracer intake to protein turnover rate and protein life span. If confirmed, life span extension is possible by optimizing protein turnover rate through modulating protein intake in C. elegans and possibly other organisms. While proteome maintenance benefits from a high protein turnover rate, protein turnover is fundamentally energy-intensive, where oxidative stress contributes to damage that it is supposed to repair.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Department of Chemistry, National University of Singapore (NUS), Singapore 117543, Singapore.,Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Zhuangli Yee
- Yale-NUS College, Singapore 138527, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Manfred Raida
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Jin Meng Lee
- Department of Chemistry, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Evan Zhi En Tay
- Department of Chemistry, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Jan Gruber
- Yale-NUS College, Singapore 138527, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Thomas Walczyk
- Department of Chemistry, National University of Singapore (NUS), Singapore 117543, Singapore
| |
Collapse
|
17
|
Lim JJ, Hyun S. Minocycline treatment improves proteostasis during Drosophila aging via autophagy mediated by FOXO and Hsp70. Biomed Pharmacother 2022; 149:112803. [PMID: 35286967 DOI: 10.1016/j.biopha.2022.112803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
Minocycline is a semi-synthetic tetracycline derivative antibiotic that has been examined for its non-antibiotic properties, such as anti-inflammatory, tumor-suppressive, and neuroprotective effects. In this study, we found that feeding minocycline to Drosophila improves proteostasis during organismal aging. Poly-ubiquitinated protein aggregates increase in the flight muscles as flies age, which are reduced in response to minocycline feeding. Minocycline feeding increases the expression of several autophagy genes and the activity of the autophagy/lysosomal pathway in Drosophila muscles. Interestingly, mutant flies lacking either FOXO or Hsp70 showed increased levels of poly-ubiquitinated protein aggregates with reduced autophagy/lysosomal activity, which was not reversed by minocycline feeding. Our findings suggest that minocycline may improve proteostasis in aging tissues via FOXO-Hsp70 axis, which highlights the multifaceted effects of minocycline as a therapeutic agent in age-associated features.
Collapse
Affiliation(s)
- Jin Ju Lim
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
18
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
19
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
20
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
21
|
Kiriaev L, Perry BD, Mahns DA, Shortland PJ, Redwan A, Morley JW, Head SI. Minocycline Treatment Reduces Mass and Force Output From Fast-Twitch Mouse Muscles and Inhibits Myosin Production in C2C12 Myotubes. Front Physiol 2021; 12:696039. [PMID: 34290621 PMCID: PMC8287211 DOI: 10.3389/fphys.2021.696039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Minocycline, a tetracycline-class of antibiotic, has been tested with mixed effectiveness on neuromuscular disorders such as amyotrophic lateral sclerosis, autoimmune neuritis and muscular dystrophy. The independent effect of minocycline on skeletal muscle force production and signalling remain poorly understood. Our aim here is to investigate the effects of minocycline on muscle mass, force production, myosin heavy chain abundance and protein synthesis. Mice were injected with minocycline (40 mg/kg i.p.) daily for 5 days and sacrificed at day six. Fast-twitch EDL, TA muscles and slow-twitch soleus muscles were dissected out, the TA muscle was snap-frozen and the remaining muscles were attached to force transducer whilst maintained in an organ bath. In C2C12 myotubes, minocycline was applied to the media at a final concentration of 10 μg/mL for 48 h. In minocycline treated mice absolute maximal force was lower in fast-twitch EDL while in slow-twitch soleus there was an increase in the time to peak and relaxation of the twitch. There was no effect of minocycline treatment on the other contractile parameters measured in isolated fast- and slow-twitch muscles. In C2C12 cultured cells, minocycline treatment significantly reduced both myosin heavy chain content and protein synthesis without visible changes to myotube morphology. In the TA muscle there was no significant changes in myosin heavy chain content. These results indicate that high dose minocycline treatment can cause a reduction in maximal isometric force production and mass in fast-twitch EDL and impair protein synthesis during myogenesis in C2C12 cultured cells. These findings have important implications for future studies investigating the efficacy of minocycline treatment in neuromuscular or other muscle-atrophy inducing conditions.
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Ben D Perry
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Asma Redwan
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
22
|
Morgan GJ. Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis. Molecules 2021; 26:3571. [PMID: 34208058 PMCID: PMC8230685 DOI: 10.3390/molecules26123571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.
Collapse
Affiliation(s)
- Gareth J Morgan
- Section of Hematology and Medical Oncology, Amyloidosis Center, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
23
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
24
|
Kepchia D, Currais A, Dargusch R, Finley K, Schubert D, Maher P. Geroprotective effects of Alzheimer's disease drug candidates. Aging (Albany NY) 2021; 13:3269-3289. [PMID: 33550278 PMCID: PMC7906177 DOI: 10.18632/aging.202631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/14/2021] [Indexed: 04/18/2023]
Abstract
Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer's disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard Dargusch
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kim Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Tharakan R, Ubaida-Mohien C, Piao Y, Gorospe M, Ferrucci L. Ribosome profiling analysis of human skeletal muscle identifies reduced translation of mitochondrial proteins with age. RNA Biol 2021; 18:1555-1559. [PMID: 33472542 DOI: 10.1080/15476286.2021.1875647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
With advancing age, human muscle loses strength and function, but the molecular causes of these losses are unknown. Skeletal muscle shows an age-dependent decline in the levels of different proteins, but whether such decline is associated with reduced translation has not been studied. To address this gap of knowledge, we used the technique of ribosome profiling to study translation in muscle from middle-aged and old individuals. Using ribosome occupancy as a measure of translation status, several mRNAs showed differential translation with age. Older age was associated with lower translation of myosin and titin isoforms and more broadly with the translation of proteins involved in oxidative phosphorylation encoded by the mitochondrial genome. Based on our findings, we propose that mitochondrial proteins are less translated in old skeletal muscle.
Collapse
Affiliation(s)
- Ravi Tharakan
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA.,Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
26
|
Dohrn MF, Ihne S, Hegenbart U, Medina J, Züchner SL, Coelho T, Hahn K. Targeting transthyretin - Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 2020; 156:802-818. [PMID: 33155274 DOI: 10.1111/jnc.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Maike F Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Ihne
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany.,Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University and University Hospital Würzburg, Würzburg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Department of Internal Medicine V, Division of Hematology/Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Stephan L Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Teresa Coelho
- Andrade's Center for Familial Amyloidosis, University of Porto, Porto, Portugal.,Department of Neurosciences, Hospital de Santo António, Centro Hospitalar Do Porto, University of Porto, Porto, Portugal
| | - Katrin Hahn
- Department of Neurology, Charité University Medicine, Berlin, Germany.,Amyloidosis Center Charité Berlin (ACCB), Charité University Medicine, Berlin, Germany
| |
Collapse
|
27
|
González-Lizárraga F, Ploper D, Ávila CL, Socías SB, Dos-Santos-Pereira M, Machín B, Del-Bel E, Michel PP, Pietrasanta LI, Raisman-Vozari R, Chehín R. CMT-3 targets different α-synuclein aggregates mitigating their toxic and inflammogenic effects. Sci Rep 2020; 10:20258. [PMID: 33219264 PMCID: PMC7679368 DOI: 10.1038/s41598-020-76927-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which only symptomatic treatments are available. Repurposing drugs that target α-synuclein aggregation, considered one of the main drivers of PD progression, could accelerate the development of disease-modifying therapies. In this work, we focused on chemically modified tetracycline 3 (CMT-3), a derivative with reduced antibiotic activity that crosses the blood–brain barrier and is pharmacologically safe. We found that CMT-3 inhibited α-synuclein amyloid aggregation and led to the formation of non-toxic molecular species, unlike minocycline. Furthermore, CMT-3 disassembled preformed α-synuclein amyloid fibrils into smaller fragments that were unable to seed in subsequent aggregation reactions. Most interestingly, disaggregated species were non-toxic and less inflammogenic on brain microglial cells. Finally, we modelled the interactions between CMT-3 and α-synuclein aggregates by molecular simulations. In this way, we propose a mechanism for fibril disassembly. Our results place CMT-3 as a potential disease modifier for PD and possibly other synucleinopathies.
Collapse
Affiliation(s)
- Florencia González-Lizárraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Diego Ploper
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - César L Ávila
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Sergio B Socías
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | | | - Belén Machín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Elaine Del-Bel
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Lía I Pietrasanta
- Departamento de Física-Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET) and Centro de Microscopías Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Rita Raisman-Vozari
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France.
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina.
| |
Collapse
|
28
|
Yee Z, Lim SHY, Ng LF, Gruber J. Inhibition of mTOR decreases insoluble proteins burden by reducing translation in C. elegans. Biogerontology 2020; 22:101-118. [PMID: 33159806 DOI: 10.1007/s10522-020-09906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Aging animals accumulate insoluble proteins as a consequence of a decline of proteostatic maintenance with age. In Caenorhabditis elegans, for instance, levels of detergent-insoluble proteins increase with age. In longer-lived strains of C. elegans, this accumulation occurs more slowly, implying a link to lifespan determination. We further explored this link and found that detergent-insoluble proteins accumulate more rapidly at higher temperatures, a condition where lifespan is short. We employed a C. elegans strain carrying a GFP transcriptional reporter under the control of a heat shock (hsp-16.2) promoter to investigate the dynamics of proteostatic failure in individual nematodes. We found that early, sporadic activation of hsp-16.2 was predictive of shorter remaining lifespan in individual nematodes. Exposure to rapamycin, resulting in reduced mTOR signaling, delayed spurious expression, extended lifespan, and delayed accumulation of insoluble proteins, suggesting that targets downstream of the mTOR pathway regulate the accumulation of insoluble proteins. We specifically explored ribosomal S6 kinase (rsks-1) as one such candidate and found that RNAi against rsks-1 also resulted in less age-dependent accumulation of insoluble proteins and extended lifespan. Our results demonstrate that inhibition of protein translation via reduced mTOR signaling resulted in slower accumulation of insoluble proteins, delayed proteostatic crisis, and extended lifespan in C. elegans.
Collapse
Affiliation(s)
- Zhuangli Yee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaun Hsien Yang Lim
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Fang Ng
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
29
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology 2020; 21:709-719. [PMID: 32562114 PMCID: PMC7541369 DOI: 10.1007/s10522-020-09887-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
It is hypothesized that treating the general aging population with compounds that slow aging, geroprotectors, could provide many benefits to society, including a reduction of age-related diseases. It is intuitive that such compounds should cause minimal side effects, since they would be distributed to otherwise healthy individuals for extended periods of time. The question therefore emerges of how we should prioritize geroprotectors discovered in model organisms for clinical testing in humans. In other words, which compounds are least likely to cause harm, while still potentially providing benefit? To systematically answer this question we queried the DrugAge database—containing hundreds of known geroprotectors—and cross-referenced this with a recently published repository of compound side effect predictions. In total, 124 geroprotectors were associated to 800 unique side effects. Geroprotectors with high risks of side effects, some even with risk for death, included lamotrigine and minocycline, while compounds with low side effect risks included spermidine and d-glucosamine. Despite their popularity as top geroprotector candidates for humans, sirolimus and metformin harbored greater risks of side effects than many other candidate geroprotectors, sirolimus being the more severe of the two. Furthermore, we found that a correlation existed between maximum lifespan extension in worms and the likelihood of causing a side effect, suggesting that extreme lifespan extension in model organisms should not necessarily be the priority when screening for novel geroprotectors. We discuss the implications of our findings for prioritizing geroprotectors, suggesting spermidine and d-glucosamine for clinical trials in humans.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| |
Collapse
|
31
|
The aging transcriptome: read between the lines. Curr Opin Neurobiol 2020; 63:170-175. [PMID: 32563038 DOI: 10.1016/j.conb.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The increasing sophistication of gene expression technologies has given rise to the idea that aging could be understood by analyzing transcriptomes. Mapping trajectories of gene expression changes in aging organisms, across different tissues and brain regions has provided insights on how biological functions change with age. However, recent publications suggest that transcriptional regulation itself deteriorates with age. Loss of transcriptional regulation will lead to non-regulated gene expression changes, but current analysis strategies were not designed to disentangle mixtures of regulated and non-regulated changes. Disentangling transcriptional data to distinguish adaptive, regulatory changes, from those that are the consequence of the age-associated deterioration is likely to create an analytical challenge but promises to unlock yet poorly understood aspects of many age-associated transcriptomes.
Collapse
|
32
|
Le-Niculescu H, Roseberry K, Levey DF, Rogers J, Kosary K, Prabha S, Jones T, Judd S, McCormick MA, Wessel AR, Williams A, Phalen PL, Mamdani F, Sequeira A, Kurian SM, Niculescu AB. Towards precision medicine for stress disorders: diagnostic biomarkers and targeted drugs. Mol Psychiatry 2020; 25:918-938. [PMID: 30862937 PMCID: PMC7192849 DOI: 10.1038/s41380-019-0370-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
Abstract
The biological fingerprint of environmental adversity may be key to understanding health and disease, as it encompasses the damage induced as well as the compensatory reactions of the organism. Metabolic and hormonal changes may be an informative but incomplete window into the underlying biology. We endeavored to identify objective blood gene expression biomarkers for psychological stress, a subjective sensation with biological roots. To quantify the stress perception at a particular moment in time, we used a simple visual analog scale for life stress in psychiatric patients, a high-risk group. Then, using a stepwise discovery, prioritization, validation, and testing in independent cohort design, we were successful in identifying gene expression biomarkers that were predictive of high-stress states and of future psychiatric hospitalizations related to stress, more so when personalized by gender and diagnosis. One of the top biomarkers that survived discovery, prioritization, validation, and testing was FKBP5, a well-known gene involved in stress response, which serves as a de facto reassuring positive control. We also compared our biomarker findings with telomere length (TL), another well-established biological marker of psychological stress and show that newly identified predictive biomarkers such as NUB1, APOL3, MAD1L1, or NKTR are comparable or better state or trait predictors of stress than TL or FKBP5. Over half of the top predictive biomarkers for stress also had prior evidence of involvement in suicide, and the majority of them had evidence in other psychiatric disorders, providing a molecular underpinning for the effects of stress in those disorders. Some of the biomarkers are targets of existing drugs, of potential utility in patient stratification, and pharmacogenomics approaches. Based on our studies and analyses, the biomarkers with the best overall convergent functional evidence (CFE) for involvement in stress were FKBP5, DDX6, B2M, LAIR1, RTN4, and NUB1. Moreover, the biomarker gene expression signatures yielded leads for possible new drug candidates and natural compounds upon bioinformatics drug repurposing analyses, such as calcium folinate and betulin. Our work may lead to improved diagnosis and treatment for stress disorders such as PTSD, that result in decreased quality of life and adverse outcomes, including addictions, violence, and suicide.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Rogers
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Kosary
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Prabha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T Jones
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - S Judd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M A McCormick
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A R Wessel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Williams
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - P L Phalen
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - F Mamdani
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - A Sequeira
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - S M Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indianapolis VA Medical Center, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Kelly JW. Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2020; 12:a034108. [PMID: 31088828 PMCID: PMC7197434 DOI: 10.1101/cshperspect.a034108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintenance of the proteome, ensuring the proper locations, proper conformations, appropriate concentrations, etc., is essential to preserve the health of an organism in the face of environmental insults, infectious diseases, and the challenges associated with aging. Maintaining the proteome is even more difficult in the background of inherited mutations that render a given protein and others handled by the same proteostasis machinery misfolding prone and/or aggregation prone. Maintenance of the proteome or maintaining proteostasis requires the orchestration of protein synthesis, folding, trafficking, and degradation by way of highly conserved, interacting, and competitive proteostasis pathways. Each subcellular compartment has a unique proteostasis network compromising common and specialized proteostasis maintenance pathways. Stress-responsive signaling pathways detect the misfolding and/or aggregation of proteins in specific subcellular compartments using stress sensors and respond by generating an active transcription factor. Subsequent transcriptional programs up-regulate proteostasis network capacity (i.e., ability to fold and degrade proteins in that compartment). Stress-responsive signaling pathways can also be linked by way of signaling cascades to nontranscriptional means to reestablish proteostasis (e.g., by translational attenuation). Proteostasis is also strongly influenced by the inherent kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins, and these sequence-based attributes in combination with proteostasis network capacity together influence proteostasis. In this review, we will focus on the growing body of evidence that proteostasis deficits leading to human pathology can be reversed by pharmacologic adaptation of proteostasis network capacity through stress-responsive signaling pathway activation. The power of this approach will be exemplified by focusing on the ATF6 arm of the unfolded protein response stress responsive-signaling pathway that regulates proteostasis network capacity of the secretory pathway.
Collapse
Affiliation(s)
- Jeffery W Kelly
- Departments of Chemistry and Molecular Medicine; and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
34
|
Ly S, Lee DA, Strus E, Prober DA, Naidoo N. Evolutionarily Conserved Regulation of Sleep by the Protein Translational Regulator PERK. Curr Biol 2020; 30:1639-1648.e3. [PMID: 32169212 DOI: 10.1016/j.cub.2020.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Sleep is a cross-species phenomenon whose evolutionary and biological function remain poorly understood. Clinical and animal studies suggest that sleep disturbance is significantly associated with disruptions in protein homeostasis-or proteostasis-in the brain, but the mechanism of this link has not been explored. In the cell, the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway modulates proteostasis by transiently inhibiting protein synthesis in response to proteostatic stress. In this study, we examined the role of the PERK pathway in sleep regulation and provide the first evidence that PERK signaling is required to regulate normal sleep in both vertebrates and invertebrates. We show that pharmacological inhibition of PERK reduces sleep in both Drosophila and zebrafish, indicating an evolutionarily conserved requirement for PERK in sleep. Genetic knockdown of PERK activity also reduces sleep in Drosophila, whereas PERK overexpression induces sleep. Finally, we demonstrate that changes in PERK signaling directly impact wake-promoting neuropeptide expression, revealing a mechanism through which proteostatic pathways can affect sleep and wake behavior. Taken together, these results demonstrate that protein synthesis pathways like PERK could represent a general mechanism of sleep and wake regulation and provide greater insight into the relationship between sleep and proteostasis.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ewa Strus
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Felker DP, Robbins CE, McCormick MA. Automation of C. elegans lifespan measurement. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Abstract
Measuring lifespan of the model organism, Caenorhabditis elegans, in a 96-well format enables the screening of large chemical libraries to identify biologically active molecules. Furthermore, the wide availability of these animals with specific genetic mutations allows the identification of genes that influence lifespan, and by extension, age-related biological pathways. Here, we present a method for measuring the lifespan of C. elegans in 96-well microtiter plates to identify and study pharmacologically active molecules that extend lifespan. The format of this assay is readily adapted for automated liquid handling systems and imaging of phenotypes.
Collapse
|
37
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
38
|
Felker DP, Robbins CE, McCormick MA. Automation of C. elegans lifespan measurement. TRANSLATIONAL MEDICINE OF AGING 2019; 4:1-10. [PMID: 33134648 PMCID: PMC7597742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Aging is a fundamental biological process that is still not fully understood. As many of the most significant human diseases have aging as their greatest risk factor, a better understanding of aging potentially has enormous practical implications in treating these diseases. The nematode C. elegans is an exceptionally useful genetic model organism that had been used with great success to shed light on many genes and pathways that are involved in aging. Many of these pathways and mechanisms have been shown to be conserved through mammals. The standard methods for assaying survival in C. elegans to measure changes in lifespan are tedious and time consuming. This limits the throughput and productivity of C. elegans aging researchers. In recent years, many inroads have been made into automating various facets of the collection and analysis of C. elegans lifespan experimental data. The advances described in this review all work to ameliorate some of the hurdles that come with manual worm lifespan scoring, by automating or eliminating some of the most time consuming aspects of the assay. By greatly increasing the throughput of lifespan assays, these methods will enable types of experiments (e.g., drug library screens) whose scale is currently impractical. These methods have already proved exceptionally useful, and some of them are likely to be the predecessors of even more refined methods that could lead to breakthroughs in the ability to study lifespan in C. elegans. This could in turn potentially revolutionize our understanding of the basic biology of aging, and one day lead to treatments that could offset or delay age-related diseases in humans.
Collapse
Affiliation(s)
- Daniel P Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence
| |
Collapse
|
39
|
Hagerty JR, Jolly ER. Heads or tails? Differential translational regulation in cercarial heads and tails of schistosome worms. PLoS One 2019; 14:e0224358. [PMID: 31658287 PMCID: PMC6816793 DOI: 10.1371/journal.pone.0224358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Schistosomes are obligate helminths responsible for over 218 million cases of human schistosomiasis in 78 countries around the world. Infection occurs when free-swimming cercariae penetrate human skin and initiate developmental progression into parasitic obligate worms that consume red blood cells. Transcriptomic studies of infectious cercariae reveal abundant mRNAs associated with energy metabolism and host invasion. However, the cercaria is mostly transcriptionally quiescent, suggesting that most mRNAs are primed prior to cercarial escape from the snail host. The use of transcriptomics to understand protein expression presumes that transcription and translation are functionally coupled and the cercarial stage has categorically been treated as a single unit for -omic analysis. Per contra, the relationship between transcription and translation in infectious cercariae has not been described. To understand the correlation between transcription and translation in cercariae, we separately measured nascent translation levels in cercarial heads, cercarial tails and in the developing schistosomula, the next stage of its life cycle. The loss of the cercarial tail is essential for the transformation from a cercaria to a schistosomulum. We observed that translation was initially limited and the translation rate accelerated during the first 72-hours after tail loss. When we tested nascent translation in cercarial heads, cercarial tails, whole cercariae, and 4-hour schistosomula, we found that translation is significantly upregulated in the cercarial tail when compared to the cercarial head and that translation was undetectable in heads using immunofluorescent image quantification (p = .0005). These data represent a major shift in how we understand the cercarial stage. The cercarial head is mostly transcriptionally and translationally quiescent while being sufficient for progression into a schistosomulum. In addition, transcription and translation are not linked in Schistosoma mansoni cercaria. Thus, our current conceptual approach of treating the cercaria as a single functional unit for -omic studies may be insufficient to understand cercarial development.
Collapse
Affiliation(s)
- James R. Hagerty
- Case Western Reserve University, Department of Biology, Cleveland, OH, United States of America
| | - Emmitt R. Jolly
- Case Western Reserve University, Department of Biology, Cleveland, OH, United States of America
- Case Western Reserve University, Center for Global Health and Disease, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
40
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
41
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
42
|
Abstract
Despite tremendous progress in recent years, our understanding of the evolution of ageing is still incomplete. A dominant paradigm maintains that ageing evolves due to the competing energy demands of reproduction and somatic maintenance leading to slow accumulation of unrepaired cellular damage with age. However, the centrality of energy trade-offs in ageing has been increasingly challenged as studies in different organisms have uncoupled the trade-off between reproduction and longevity. An emerging theory is that ageing instead is caused by biological processes that are optimized for early-life function but become harmful when they continue to run-on unabated in late life. This idea builds on the realization that early-life regulation of gene expression can break down in late life because natural selection is too weak to optimize it. Empirical evidence increasingly supports the hypothesis that suboptimal gene expression in adulthood can result in physiological malfunction leading to organismal senescence. We argue that the current state of the art in the study of ageing contradicts the widely held view that energy trade-offs between growth, reproduction, and longevity are the universal underpinning of senescence. Future research should focus on understanding the relative contribution of energy and function trade-offs to the evolution and expression of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
43
|
Abstract
The field of aging research has progressed significantly over the past decades. Exogenously and endogenously inflicted molecular damage ranging from genotoxic to organellar damage drives the aging process. Repair mechanisms and compensatory responses counteract the detrimental consequences of the various damage types. Here, we discuss recent progress in understanding cellular mechanisms and interconnections between signaling pathways that control longevity. We summarize cell-autonomous and non-cell-autonomous mechanisms that impact the cellular and organismal aging process
Collapse
Affiliation(s)
- Robert Bayersdorf
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Topf U, Uszczynska-Ratajczak B, Chacinska A. Mitochondrial stress-dependent regulation of cellular protein synthesis. J Cell Sci 2019; 132:132/8/jcs226258. [DOI: 10.1242/jcs.226258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.
Collapse
Affiliation(s)
- Ulrike Topf
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | | | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| |
Collapse
|
45
|
Pharmacological convergence reveals a lipid pathway that regulates C. elegans lifespan. Nat Chem Biol 2019; 15:453-462. [PMID: 30911178 PMCID: PMC6548519 DOI: 10.1038/s41589-019-0243-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
46
|
Kim EJE, Lee SJV. Recent progresses on anti-aging compounds and their targets in Caenorhabditis elegans. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|