1
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
3
|
Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, Galenkamp H, Levin E, Groen AK, Zwinderman AH, Nieuwdorp M. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 2022; 30:1464-1480.e6. [PMID: 36099924 DOI: 10.1016/j.chom.2022.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
Previous studies in mainly European populations have reported that the gut microbiome composition is associated with the human genome. However, the genotype-microbiome interaction in different ethnicities is largely unknown. We performed a large fecal microbiome genome-wide association study of a single multiethnic cohort, the Healthy Life in an Urban Setting (HELIUS) cohort (N = 4,117). Mendelian randomization was performed using the multiethnic Pan-UK Biobank (N = 460,000) to dissect potential causality. We identified ethnicity-specific associations between host genomes and gut microbiota. Certain microbes were associated with genotype in multiple ethnicities. Several of the microbe-associated loci were found to be related to immune functions, interact with glutamate and the mucus layer, or be expressed in the gut or brain. Additionally, we found that gut microbes potentially influence cardiometabolic health factors such as BMI, cholesterol, and blood pressure. This provides insight into the relationship of ethnicity and gut microbiota and into the possible causal effects of gut microbes on cardiometabolic traits.
Collapse
Affiliation(s)
- Ulrika Boulund
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Diogo M Bastos
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; HorAIzon BV, 2645 LT Delfgauw, the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Schweibenz BD, Devarkar SC, Solotchi M, Craig C, Zheng J, Pascal BD, Gokhale S, Xie P, Griffin PR, Patel SS. The intrinsically disordered CARDs-Helicase linker in RIG-I is a molecular gate for RNA proofreading. EMBO J 2022; 41:e109782. [PMID: 35437807 PMCID: PMC9108607 DOI: 10.15252/embj.2021109782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
The innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non-specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG-I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs-Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD-chosen RNAs to bind the helicase domain, while at the same time blocking non-specific RNAs. These findings also indicate that CHL could represent a novel target for RIG-I-based therapeutics.
Collapse
Affiliation(s)
- Brandon D Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Swapnil C Devarkar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Cell and Development Biology, Rutgers University, Piscataway, NJ, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, Jupiter, FL, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Fina ME, Wang J, Vedula P, Tang HY, Kashina A, Dong DW. Arginylation Regulates G-protein Signaling in the Retina. Front Cell Dev Biol 2022; 9:807345. [PMID: 35127722 PMCID: PMC8815403 DOI: 10.3389/fcell.2021.807345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/03/2022] Open
Abstract
Arginylation is a post-translational modification mediated by the arginyltransferase (Ate1). We recently showed that conditional deletion of Ate1 in the nervous system leads to increased light-evoked response sensitivities of ON-bipolar cells in the retina, indicating that arginylation regulates the G-protein signaling complexes of those neurons and/or photoreceptors. However, none of the key players in the signaling pathway were previously shown to be arginylated. Here we show that Gαt1, Gβ1, RGS6, and RGS7 are arginylated in the retina and RGS6 and RGS7 protein levels are elevated in Ate1 knockout, suggesting that arginylation plays a direct role in regulating their protein level and the G-protein-mediated responses in the retina.
Collapse
Affiliation(s)
- Marie E. Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Pavan Vedula
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| | - Dawei W. Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| |
Collapse
|
7
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|
8
|
Patil DN, Singh S, Laboute T, Strutzenberg TS, Qiu X, Wu D, Novick SJ, Robinson CV, Griffin PR, Hunt JF, Izard T, Singh AK, Martemyanov KA. Cryo-EM structure of human GPR158 receptor coupled to the RGS7-Gβ5 signaling complex. Science 2022; 375:86-91. [PMID: 34793198 PMCID: PMC8926151 DOI: 10.1126/science.abl4732] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
GPR158 is an orphan G protein–coupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown. We used single-particle cryo–electron microscopy (cryo-EM) to determine the structures of human GPR158 alone and bound to an RGS signaling complex. The structures reveal a homodimeric organization stabilized by a pair of phospholipids and the presence of an extracellular Cache domain, an unusual ligand-binding domain in GPCRs. We further demonstrate the structural basis of GPR158 coupling to RGS7-Gβ5. Together, these results provide insights into the unusual biology of orphan receptors and the formation of GPCR-RGS complexes.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027
| | - Thibaut Laboute
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Xingyu Qiu
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Di Wu
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Scott J. Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University New York, NY 10027
| | - Tina Izard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India,Co-corresponding authors: Dr. Kirill A. Martemyanov, ; Dr. Appu K. Singh,
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Co-corresponding authors: Dr. Kirill A. Martemyanov, ; Dr. Appu K. Singh,
| |
Collapse
|
9
|
De Nittis P, Efthymiou S, Sarre A, Guex N, Chrast J, Putoux A, Sultan T, Raza Alvi J, Ur Rahman Z, Zafar F, Rana N, Rahman F, Anwar N, Maqbool S, Zaki MS, Gleeson JG, Murphy D, Galehdari H, Shariati G, Mazaheri N, Sedaghat A, Lesca G, Chatron N, Salpietro V, Christoforou M, Houlden H, Simonds WF, Pedrazzini T, Maroofian R, Reymond A. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J Med Genet 2021; 58:815-831. [PMID: 33172956 PMCID: PMC8639930 DOI: 10.1136/jmedgenet-2020-107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.
Collapse
Affiliation(s)
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Audrey Putoux
- Service de Génétique, Hopital Femme Mere Enfant, Bron, France
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Zia Ur Rahman
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, La Jolla, California, USA
| | - David Murphy
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - William F Simonds
- Metabolic Diseases Branch/NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne, Lausanne, Switzerland
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Jeong E, Kim Y, Jeong J, Cho Y. Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5. Nat Commun 2021; 12:6805. [PMID: 34815401 PMCID: PMC8611064 DOI: 10.1038/s41467-021-27147-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.
Collapse
Affiliation(s)
- Eunyoung Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihong Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
11
|
Zhang F, Chen X, Chen J, Xu Y, Li S, Guo Y, Pu X. Probing Allosteric Regulation Mechanism of W7.35 on Agonist-Induced Activity for μOR by Mutation Simulation. J Chem Inf Model 2021; 62:5120-5135. [PMID: 34779608 DOI: 10.1021/acs.jcim.1c00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The residue located at 15 positions before the most conserved residue in TM7 (7.35 of Ballesteros-Weinstein number) plays important roles in ligand binding and the receptor activity for class A GPCRs. Nevertheless, its regulation mechanism has not been clearly clarified in experiments, and some controversies also exist for its impact on μ-opioid receptors (μOR) bound by agonists. Thus, we chose the μ-opioid receptor (μOR) of class A GPCRs as a representative and utilized a microsecond accelerated molecular dynamics simulation (aMD) coupled with a protein structure network (PSN) to explore the effect of W3187.35 on its functional activity induced by the agonist endomorphin2 mainly by a comparison of the wild system and its W7.35A mutant. When endomorphin2 binds to the wild-type μOR, TM6 in μOR moves outward to form an open intracellular conformation that is beneficial to accommodating the β-arrestin transducer, rather than the G-protein transducer due to the clash with the α5 helix of G-protein, thus acting as a β-arrestin biased agonist. However, the W318A mutation induces the intracellular part of μOR to form a closed state, which disfavors coupling with either G-protein or β-arrestin. The allosteric pathway analysis further reveals that the binding of endomorphin2 to the wild-type μOR transmits more activation signals to the β-arrestin binding site while the W318A mutation induces more structural signals to transmit to common binding residues of the G protein and β-arrestin. More interestingly, the residue at the 7.35 position regulates the shortest allosteric pathway in indirect ways by influencing the interactions between other ligand-binding residues and endomorphin2. W2936.48 and F2896.44 are important for regulating the different activities of μOR induced either by the agonist or by the mutation. Y3367.53, F3438.50, and D3408.47 play crucial roles in activating the β-arrestin biased signal induced by the agonist endomorphin2, while L1583.43 and V2866.41 devote important contributions to the change in the activity of endomorphin2 from the β-arrestin biased agonist to the antagonist upon the W318A mutation.
Collapse
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanjiani Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiqi Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
13
|
Mechanisms and Regulation of Neuronal GABA B Receptor-Dependent Signaling. Curr Top Behav Neurosci 2020; 52:39-79. [PMID: 32808092 DOI: 10.1007/7854_2020_129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.
Collapse
|
14
|
Wang Q, Henry TAN, Pronin AN, Jang GF, Lubaczeuski C, Crabb JW, Bernal-Mizrachi E, Slepak VZ. The regulatory G protein signaling complex, Gβ5-R7, promotes glucose- and extracellular signal-stimulated insulin secretion. J Biol Chem 2020; 295:7213-7223. [PMID: 32229584 PMCID: PMC7247291 DOI: 10.1074/jbc.ra119.011534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Taylor A N Henry
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Camila Lubaczeuski
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - John W Crabb
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136.
| |
Collapse
|
15
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
16
|
Adikaram PR, Zhang JH, Kittock CM, Pandey M, Hassan SA, Lue NG, Wang G, Gucek M, Simonds WF. Development of R7BP inhibitors through cross-linking coupled mass spectrometry and integrated modeling. Commun Biol 2019; 2:338. [PMID: 31531399 PMCID: PMC6744478 DOI: 10.1038/s42003-019-0585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interaction (PPI) networks are known to be valuable targets for therapeutic intervention; yet the development of PPI modulators as next-generation drugs to target specific vertices, edges, and hubs has been impeded by the lack of structural information of many of the proteins and complexes involved. Building on recent advancements in cross-linking mass spectrometry (XL-MS), we describe an effective approach to obtain relevant structural data on R7BP, a master regulator of itch sensation, and its interfaces with other proteins in its network. This approach integrates XL-MS with a variety of modeling techniques to successfully develop antibody inhibitors of the R7BP and RGS7/Gβ5 duplex interaction. Binding and inhibitory efficiency are studied by surface plasmon resonance spectroscopy and through an R7BP-derived dominant negative construct. This approach may have broader applications as a tool to facilitate the development of PPI modulators in the absence of crystal structures or when structural information is limited.
Collapse
Affiliation(s)
- Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Claire M. Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Sergio A. Hassan
- Center for Molecular Modeling, Center for Information Technology, Bldg. 12/Rm 2049, Bethesda, MD 20892 USA
| | - Nicole G. Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Guanghui Wang
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm 8C-103A, Bethesda, MD 20892 USA
| | - Marjan Gucek
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm 8C-103A, Bethesda, MD 20892 USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|